blob: d31f55d295e2b3e8da6c2b6e583793be49514d3d [file] [log] [blame] [edit]
/*
* Copyright (c) 2019, Alliance for Open Media. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_alloc.h"
static void swap_ptr(void *a, void *b) {
void **a_p = (void **)a;
void **b_p = (void **)b;
void *c = *a_p;
*a_p = *b_p;
*b_p = c;
}
void av1_init_layer_context(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
SVC *const svc = &cpi->svc;
int mi_rows = cpi->common.mi_params.mi_rows;
int mi_cols = cpi->common.mi_params.mi_cols;
svc->base_framerate = 30.0;
svc->current_superframe = 0;
svc->force_zero_mode_spatial_ref = 1;
svc->num_encoded_top_layer = 0;
svc->use_flexible_mode = 0;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc;
lrc->ni_av_qi = oxcf->rc_cfg.worst_allowed_q;
lp_rc->total_actual_bits = 0;
lrc->ni_tot_qi = 0;
lp_rc->tot_q = 0.0;
lp_rc->avg_q = 0.0;
lp_rc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q);
lrc->best_quality = av1_quantizer_to_qindex(lc->min_q);
lrc->rtc_external_ratectrl = 0;
for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lp_rc->rate_correction_factors[i] = 1.0;
}
lc->target_bandwidth = lc->layer_target_bitrate;
lp_rc->last_q[INTER_FRAME] = lrc->worst_quality;
lp_rc->avg_frame_qindex[INTER_FRAME] = lrc->worst_quality;
lp_rc->avg_frame_qindex[KEY_FRAME] = lrc->worst_quality;
lp_rc->buffer_level =
oxcf->rc_cfg.starting_buffer_level_ms * lc->target_bandwidth / 1000;
lp_rc->bits_off_target = lp_rc->buffer_level;
// Initialize the cyclic refresh parameters. If spatial layers are used
// (i.e., ss_number_layers > 1), these need to be updated per spatial
// layer. Cyclic refresh is only applied on base temporal layer.
if (svc->number_spatial_layers > 1 && tl == 0) {
lc->sb_index = 0;
lc->actual_num_seg1_blocks = 0;
lc->actual_num_seg2_blocks = 0;
lc->counter_encode_maxq_scene_change = 0;
if (lc->map) aom_free(lc->map);
CHECK_MEM_ERROR(cm, lc->map,
aom_calloc(mi_rows * mi_cols, sizeof(*lc->map)));
}
}
svc->downsample_filter_type[sl] = BILINEAR;
svc->downsample_filter_phase[sl] = 8;
}
if (svc->number_spatial_layers == 3) {
svc->downsample_filter_type[0] = EIGHTTAP_SMOOTH;
}
}
bool av1_alloc_layer_context(AV1_COMP *cpi, int num_layers) {
SVC *const svc = &cpi->svc;
if (svc->layer_context == NULL || svc->num_allocated_layers < num_layers) {
aom_free(svc->layer_context);
svc->num_allocated_layers = 0;
svc->layer_context =
(LAYER_CONTEXT *)aom_calloc(num_layers, sizeof(*svc->layer_context));
if (svc->layer_context == NULL) return false;
svc->num_allocated_layers = num_layers;
}
return true;
}
// Update the layer context from a change_config() call.
void av1_update_layer_context_change_config(AV1_COMP *const cpi,
const int64_t target_bandwidth) {
const RATE_CONTROL *const rc = &cpi->rc;
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
SVC *const svc = &cpi->svc;
int layer = 0;
int64_t spatial_layer_target = 0;
float bitrate_alloc = 1.0;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
svc->layer_context[layer].target_bandwidth = lc->layer_target_bitrate;
}
spatial_layer_target = svc->layer_context[layer].target_bandwidth;
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
LAYER_CONTEXT *const lc =
&svc->layer_context[sl * svc->number_temporal_layers + tl];
RATE_CONTROL *const lrc = &lc->rc;
PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc;
lc->spatial_layer_target_bandwidth = spatial_layer_target;
bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
lp_rc->starting_buffer_level =
(int64_t)(p_rc->starting_buffer_level * bitrate_alloc);
lp_rc->optimal_buffer_level =
(int64_t)(p_rc->optimal_buffer_level * bitrate_alloc);
lp_rc->maximum_buffer_size =
(int64_t)(p_rc->maximum_buffer_size * bitrate_alloc);
lp_rc->bits_off_target =
AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size);
lp_rc->buffer_level =
AOMMIN(lp_rc->buffer_level, lp_rc->maximum_buffer_size);
lc->framerate = cpi->framerate / lc->framerate_factor;
lrc->avg_frame_bandwidth =
(int)round(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
lrc->rtc_external_ratectrl = rc->rtc_external_ratectrl;
lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q);
lrc->best_quality = av1_quantizer_to_qindex(lc->min_q);
}
}
}
/*!\brief Return layer context for current layer.
*
* \ingroup rate_control
* \param[in] cpi Top level encoder structure
*
* \return LAYER_CONTEXT for current layer.
*/
static LAYER_CONTEXT *get_layer_context(AV1_COMP *const cpi) {
return &cpi->svc.layer_context[cpi->svc.spatial_layer_id *
cpi->svc.number_temporal_layers +
cpi->svc.temporal_layer_id];
}
void av1_update_temporal_layer_framerate(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
RATE_CONTROL *const lrc = &lc->rc;
const int tl = svc->temporal_layer_id;
lc->framerate = cpi->framerate / lc->framerate_factor;
lrc->avg_frame_bandwidth = (int)round(lc->target_bandwidth / lc->framerate);
lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
// Update the average layer frame size (non-cumulative per-frame-bw).
if (tl == 0) {
lc->avg_frame_size = lrc->avg_frame_bandwidth;
} else {
int prev_layer = svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id - 1;
LAYER_CONTEXT *const lcprev = &svc->layer_context[prev_layer];
const double prev_layer_framerate =
cpi->framerate / lcprev->framerate_factor;
const int64_t prev_layer_target_bandwidth = lcprev->layer_target_bitrate;
lc->avg_frame_size =
(int)round((lc->target_bandwidth - prev_layer_target_bandwidth) /
(lc->framerate - prev_layer_framerate));
}
}
static AOM_INLINE bool check_ref_is_low_spatial_res_super_frame(
int ref_frame, const SVC *svc, const RTC_REF *rtc_ref) {
int ref_frame_idx = rtc_ref->ref_idx[ref_frame - 1];
return svc->buffer_time_index[ref_frame_idx] == svc->current_superframe &&
svc->buffer_spatial_layer[ref_frame_idx] <= svc->spatial_layer_id - 1;
}
void av1_restore_layer_context(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
const AV1_COMMON *const cm = &cpi->common;
LAYER_CONTEXT *const lc = get_layer_context(cpi);
const int old_frame_since_key = cpi->rc.frames_since_key;
const int old_frame_to_key = cpi->rc.frames_to_key;
// Restore layer rate control.
cpi->rc = lc->rc;
cpi->ppi->p_rc = lc->p_rc;
cpi->oxcf.rc_cfg.target_bandwidth = lc->target_bandwidth;
cpi->gf_frame_index = 0;
cpi->mv_search_params.max_mv_magnitude = lc->max_mv_magnitude;
if (cpi->mv_search_params.max_mv_magnitude == 0)
cpi->mv_search_params.max_mv_magnitude = AOMMAX(cm->width, cm->height);
// Reset the frames_since_key and frames_to_key counters to their values
// before the layer restore. Keep these defined for the stream (not layer).
cpi->rc.frames_since_key = old_frame_since_key;
cpi->rc.frames_to_key = old_frame_to_key;
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
svc->number_spatial_layers > 1 && svc->temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
swap_ptr(&cr->map, &lc->map);
cr->sb_index = lc->sb_index;
cr->actual_num_seg1_blocks = lc->actual_num_seg1_blocks;
cr->actual_num_seg2_blocks = lc->actual_num_seg2_blocks;
cr->counter_encode_maxq_scene_change = lc->counter_encode_maxq_scene_change;
}
svc->skip_mvsearch_last = 0;
svc->skip_mvsearch_gf = 0;
svc->skip_mvsearch_altref = 0;
// For each reference (LAST/GOLDEN) set the skip_mvsearch_last/gf frame flags.
// This is to skip searching mv for that reference if it was last
// refreshed (i.e., buffer slot holding that reference was refreshed) on the
// previous spatial layer(s) at the same time (current_superframe).
if (rtc_ref->set_ref_frame_config && svc->force_zero_mode_spatial_ref) {
if (check_ref_is_low_spatial_res_super_frame(LAST_FRAME, svc, rtc_ref)) {
svc->skip_mvsearch_last = 1;
}
if (check_ref_is_low_spatial_res_super_frame(GOLDEN_FRAME, svc, rtc_ref)) {
svc->skip_mvsearch_gf = 1;
}
if (check_ref_is_low_spatial_res_super_frame(ALTREF_FRAME, svc, rtc_ref)) {
svc->skip_mvsearch_altref = 1;
}
}
}
void av1_save_layer_context(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
const AV1_COMMON *const cm = &cpi->common;
LAYER_CONTEXT *lc = get_layer_context(cpi);
lc->rc = cpi->rc;
lc->p_rc = cpi->ppi->p_rc;
lc->target_bandwidth = (int)cpi->oxcf.rc_cfg.target_bandwidth;
lc->group_index = cpi->gf_frame_index;
lc->max_mv_magnitude = cpi->mv_search_params.max_mv_magnitude;
if (svc->spatial_layer_id == 0) svc->base_framerate = cpi->framerate;
// For spatial-svc, allow cyclic-refresh to be applied on the spatial layers,
// for the base temporal layer.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->svc.number_spatial_layers > 1 && svc->temporal_layer_id == 0) {
CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
signed char *temp = lc->map;
lc->map = cr->map;
cr->map = temp;
lc->sb_index = cr->sb_index;
lc->actual_num_seg1_blocks = cr->actual_num_seg1_blocks;
lc->actual_num_seg2_blocks = cr->actual_num_seg2_blocks;
lc->counter_encode_maxq_scene_change = cr->counter_encode_maxq_scene_change;
}
// For any buffer slot that is refreshed, update it with
// the spatial_layer_id and the current_superframe.
if (cpi->common.current_frame.frame_type == KEY_FRAME) {
// All slots are refreshed on KEY.
for (unsigned int i = 0; i < REF_FRAMES; i++) {
svc->buffer_time_index[i] = svc->current_superframe;
svc->buffer_spatial_layer[i] = svc->spatial_layer_id;
}
} else if (cpi->ppi->rtc_ref.set_ref_frame_config) {
for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) {
int ref_frame_map_idx = cpi->ppi->rtc_ref.ref_idx[i];
if (cpi->ppi->rtc_ref.refresh[ref_frame_map_idx]) {
svc->buffer_time_index[ref_frame_map_idx] = svc->current_superframe;
svc->buffer_spatial_layer[ref_frame_map_idx] = svc->spatial_layer_id;
}
}
}
for (unsigned int i = 0; i < REF_FRAMES; i++) {
if (frame_is_intra_only(cm) ||
cm->current_frame.refresh_frame_flags & (1 << i)) {
svc->spatial_layer_fb[i] = svc->spatial_layer_id;
svc->temporal_layer_fb[i] = svc->temporal_layer_id;
}
}
if (svc->spatial_layer_id == svc->number_spatial_layers - 1)
svc->current_superframe++;
}
int av1_svc_primary_ref_frame(const AV1_COMP *const cpi) {
const SVC *const svc = &cpi->svc;
const AV1_COMMON *const cm = &cpi->common;
int fb_idx = -1;
int primary_ref_frame = PRIMARY_REF_NONE;
if (cpi->svc.number_spatial_layers > 1 ||
cpi->svc.number_temporal_layers > 1) {
// Set the primary_ref_frame to LAST_FRAME if that buffer slot for LAST
// was last updated on a lower temporal layer (or base TL0) and for the
// same spatial layer. For RTC patterns this allows for continued decoding
// when set of enhancement layers are dropped (continued decoding starting
// at next base TL0), so error_resilience can be off/0 for all layers.
fb_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
if (svc->spatial_layer_fb[fb_idx] == svc->spatial_layer_id &&
(svc->temporal_layer_fb[fb_idx] < svc->temporal_layer_id ||
svc->temporal_layer_fb[fb_idx] == 0)) {
primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME
}
} else if (cpi->ppi->rtc_ref.set_ref_frame_config) {
const ExternalFlags *const ext_flags = &cpi->ext_flags;
int flags = ext_flags->ref_frame_flags;
if (flags & AOM_LAST_FLAG) {
primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME
} else if (flags & AOM_GOLD_FLAG) {
primary_ref_frame = GOLDEN_FRAME - LAST_FRAME;
} else if (flags & AOM_ALT_FLAG) {
primary_ref_frame = ALTREF_FRAME - LAST_FRAME;
}
}
return primary_ref_frame;
}
void av1_free_svc_cyclic_refresh(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
if (lc->map) aom_free(lc->map);
}
}
}
void av1_svc_reset_temporal_layers(AV1_COMP *const cpi, int is_key) {
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *lc = NULL;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl];
if (is_key) lc->frames_from_key_frame = 0;
}
}
av1_update_temporal_layer_framerate(cpi);
av1_restore_layer_context(cpi);
}
void av1_get_layer_resolution(const int width_org, const int height_org,
const int num, const int den, int *width_out,
int *height_out) {
int w, h;
if (width_out == NULL || height_out == NULL || den == 0) return;
w = width_org * num / den;
h = height_org * num / den;
// Make height and width even.
w += w % 2;
h += h % 2;
*width_out = w;
*height_out = h;
}
void av1_one_pass_cbr_svc_start_layer(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
LAYER_CONTEXT *lc = NULL;
int width = 0, height = 0;
lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers +
svc->temporal_layer_id];
av1_get_layer_resolution(cpi->oxcf.frm_dim_cfg.width,
cpi->oxcf.frm_dim_cfg.height, lc->scaling_factor_num,
lc->scaling_factor_den, &width, &height);
// Use Eightap_smooth for low resolutions.
if (width * height <= 320 * 240)
svc->downsample_filter_type[svc->spatial_layer_id] = EIGHTTAP_SMOOTH;
cpi->common.width = width;
cpi->common.height = height;
alloc_mb_mode_info_buffers(cpi);
av1_update_frame_size(cpi);
if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
svc->mi_cols_full_resoln = cpi->common.mi_params.mi_cols;
svc->mi_rows_full_resoln = cpi->common.mi_params.mi_rows;
}
}
enum {
SVC_LAST_FRAME = 0,
SVC_LAST2_FRAME,
SVC_LAST3_FRAME,
SVC_GOLDEN_FRAME,
SVC_BWDREF_FRAME,
SVC_ALTREF2_FRAME,
SVC_ALTREF_FRAME
};
// For fixed svc mode: fixed pattern is set based on the number of
// spatial and temporal layers, and the ksvc_fixed_mode.
void av1_set_svc_fixed_mode(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref;
int i;
assert(svc->use_flexible_mode == 0);
// Fixed SVC mode only supports at most 3 spatial or temporal layers.
assert(svc->number_spatial_layers >= 1 && svc->number_spatial_layers <= 3 &&
svc->number_temporal_layers >= 1 && svc->number_temporal_layers <= 3);
rtc_ref->set_ref_frame_config = 1;
int superframe_cnt = svc->current_superframe;
// Set the reference map buffer idx for the 7 references:
// LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
// BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = i;
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->reference[i] = 0;
for (i = 0; i < REF_FRAMES; i++) rtc_ref->refresh[i] = 0;
// Always reference LAST, and reference GOLDEN on SL > 0.
// For KSVC: GOLDEN reference will be removed on INTER_FRAMES later
// when frame_type is set.
rtc_ref->reference[SVC_LAST_FRAME] = 1;
if (svc->spatial_layer_id > 0) rtc_ref->reference[SVC_GOLDEN_FRAME] = 1;
if (svc->temporal_layer_id == 0) {
// Base temporal layer.
if (svc->spatial_layer_id == 0) {
// Set all buffer_idx to 0. Update slot 0 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
rtc_ref->refresh[0] = 1;
} else if (svc->spatial_layer_id == 1) {
// Set buffer_idx for LAST to slot 1, GOLDEN (and all other refs) to
// slot 0. Update slot 1 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 1;
rtc_ref->refresh[1] = 1;
} else if (svc->spatial_layer_id == 2) {
// Set buffer_idx for LAST to slot 2, GOLDEN (and all other refs) to
// slot 1. Update slot 2 (LAST).
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 1;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 2;
rtc_ref->refresh[2] = 1;
}
} else if (svc->temporal_layer_id == 2 && (superframe_cnt - 1) % 4 == 0) {
// First top temporal enhancement layer.
if (svc->spatial_layer_id == 0) {
// Reference LAST (slot 0).
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to slot 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
if (svc->spatial_layer_id < svc->number_spatial_layers - 1) {
rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3;
rtc_ref->refresh[3] = 1;
}
} else if (svc->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 3.
// Set LAST2 to slot 4 and Update slot 4.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 3;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 1;
if (svc->spatial_layer_id < svc->number_spatial_layers - 1) {
rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4;
rtc_ref->refresh[4] = 1;
}
} else if (svc->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 4.
// No update.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 4;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 2;
}
} else if (svc->temporal_layer_id == 1) {
// Middle temporal enhancement layer.
if (svc->spatial_layer_id == 0) {
// Reference LAST.
// Set all buffer_idx to 0.
// Set GOLDEN to slot 5 and update slot 5.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
if (svc->temporal_layer_id < svc->number_temporal_layers - 1) {
rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 5;
rtc_ref->refresh[5] = 1;
}
} else if (svc->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 5.
// Set LAST3 to slot 6 and update slot 6.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 5;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 1;
if (svc->temporal_layer_id < svc->number_temporal_layers - 1) {
rtc_ref->ref_idx[SVC_LAST3_FRAME] = 6;
rtc_ref->refresh[6] = 1;
}
} else if (svc->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 6.
// Set LAST3 to slot 7 and update slot 7.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 6;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 2;
if (svc->temporal_layer_id < svc->number_temporal_layers - 1) {
rtc_ref->ref_idx[SVC_LAST3_FRAME] = 7;
rtc_ref->refresh[7] = 1;
}
}
} else if (svc->temporal_layer_id == 2 && (superframe_cnt - 3) % 4 == 0) {
// Second top temporal enhancement layer.
if (svc->spatial_layer_id == 0) {
// Set LAST to slot 5 and reference LAST.
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to 0.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 5;
if (svc->spatial_layer_id < svc->number_spatial_layers - 1) {
rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3;
rtc_ref->refresh[3] = 1;
}
} else if (svc->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6,
// GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 6;
rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3;
if (svc->spatial_layer_id < svc->number_spatial_layers - 1) {
rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4;
rtc_ref->refresh[4] = 1;
}
} else if (svc->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7,
// GOLDEN to slot 4. No update.
for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0;
rtc_ref->ref_idx[SVC_LAST_FRAME] = 7;
rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 4;
}
}
}
void av1_svc_check_reset_layer_rc_flag(AV1_COMP *const cpi) {
SVC *const svc = &cpi->svc;
for (int sl = 0; sl < svc->number_spatial_layers; ++sl) {
// Check for reset based on avg_frame_bandwidth for spatial layer sl.
int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1,
svc->number_temporal_layers);
LAYER_CONTEXT *lc = &svc->layer_context[layer];
RATE_CONTROL *lrc = &lc->rc;
if (lrc->avg_frame_bandwidth > (3 * lrc->prev_avg_frame_bandwidth >> 1) ||
lrc->avg_frame_bandwidth < (lrc->prev_avg_frame_bandwidth >> 1)) {
// Reset for all temporal layers with spatial layer sl.
for (int tl = 0; tl < svc->number_temporal_layers; ++tl) {
int layer2 = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
LAYER_CONTEXT *lc2 = &svc->layer_context[layer2];
RATE_CONTROL *lrc2 = &lc2->rc;
PRIMARY_RATE_CONTROL *lp_rc2 = &lc2->p_rc;
PRIMARY_RATE_CONTROL *const lp_rc = &lc2->p_rc;
lrc2->rc_1_frame = 0;
lrc2->rc_2_frame = 0;
lp_rc2->bits_off_target = lp_rc->optimal_buffer_level;
lp_rc2->buffer_level = lp_rc->optimal_buffer_level;
}
}
}
}
void av1_svc_set_last_source(AV1_COMP *const cpi, EncodeFrameInput *frame_input,
YV12_BUFFER_CONFIG *prev_source) {
if (cpi->svc.spatial_layer_id == 0) {
// For base spatial layer: if the LAST reference (index 0) is not
// the previous (super)frame set the last_source to the source corresponding
// to the last TL0, otherwise keep it at prev_source.
frame_input->last_source = prev_source != NULL ? prev_source : NULL;
if (cpi->svc.current_superframe > 0) {
const int buffslot_last = cpi->ppi->rtc_ref.ref_idx[0];
if (cpi->svc.buffer_time_index[buffslot_last] <
cpi->svc.current_superframe - 1)
frame_input->last_source = &cpi->svc.source_last_TL0;
}
} else if (cpi->svc.spatial_layer_id > 0) {
// For spatial enhancement layers: the previous source (prev_source)
// corresponds to the lower spatial layer (which is the same source so
// we can't use that), so always set the last_source to the source of the
// last TL0.
if (cpi->svc.current_superframe > 0)
frame_input->last_source = &cpi->svc.source_last_TL0;
else
frame_input->last_source = NULL;
}
}