blob: 582364703ebfccafd7e32fd906b9d73fbbaa9ee0 [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
namespace {
typedef void (*QuantizeFpFunc)(
const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, int log_scale);
struct QuantizeFuncParams {
QuantizeFuncParams(QuantizeFpFunc qF = nullptr,
QuantizeFpFunc qRefF = nullptr, int count = 16)
: qFunc(qF), qFuncRef(qRefF), coeffCount(count) {}
QuantizeFpFunc qFunc;
QuantizeFpFunc qFuncRef;
int coeffCount;
};
using libaom_test::ACMRandom;
const int numTests = 1000;
const int maxSize = 1024;
const int roundFactorRange = 127;
const int dequantRange = 32768;
const int coeffRange = (1 << 20) - 1;
class AV1QuantizeTest : public ::testing::TestWithParam<QuantizeFuncParams> {
public:
void RunQuantizeTest() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff_ptr[maxSize]);
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, tran_low_t, qcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, ref_qcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, ref_dqcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
uint16_t eob;
uint16_t ref_eob;
int err_count_total = 0;
int first_failure = -1;
int count = params_.coeffCount;
const TX_SIZE txSize = getTxSize(count);
int log_scale = (txSize == TX_32X32);
QuantizeFpFunc quanFunc = params_.qFunc;
QuantizeFpFunc quanFuncRef = params_.qFuncRef;
const SCAN_ORDER scanOrder = av1_scan_orders[txSize][DCT_DCT];
for (int i = 0; i < numTests; i++) {
int err_count = 0;
ref_eob = eob = UINT16_MAX;
for (int j = 0; j < count; j++) {
coeff_ptr[j] = rnd(coeffRange);
}
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.Rand16Signed();
quant_shift_ptr[j] = rnd.Rand16Signed();
// int16_t positive
dequant_ptr[j] = abs(rnd(dequantRange));
quant_ptr[j] = static_cast<int16_t>((1 << 16) / dequant_ptr[j]);
round_ptr[j] = (abs(rnd(roundFactorRange)) * dequant_ptr[j]) >> 7;
}
for (int j = 2; j < 8; ++j) {
zbin_ptr[j] = zbin_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
quant_ptr[j] = quant_ptr[1];
round_ptr[j] = round_ptr[1];
}
quanFuncRef(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff_ptr, ref_dqcoeff_ptr, dequant_ptr,
&ref_eob, scanOrder.scan, scanOrder.iscan, log_scale);
API_REGISTER_STATE_CHECK(
quanFunc(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, &eob,
scanOrder.scan, scanOrder.iscan, log_scale));
for (int j = 0; j < count; ++j) {
err_count += (ref_qcoeff_ptr[j] != qcoeff_ptr[j]) |
(ref_dqcoeff_ptr[j] != dqcoeff_ptr[j]);
ASSERT_EQ(ref_qcoeff_ptr[j], qcoeff_ptr[j])
<< "qcoeff error: i = " << i << " j = " << j << "\n";
EXPECT_EQ(ref_dqcoeff_ptr[j], dqcoeff_ptr[j])
<< "dqcoeff error: i = " << i << " j = " << j << "\n";
}
EXPECT_EQ(ref_eob, eob) << "eob error: "
<< "i = " << i << "\n";
err_count += (ref_eob != eob);
if (err_count && !err_count_total) {
first_failure = i;
}
err_count_total += err_count;
}
EXPECT_EQ(0, err_count_total)
<< "Error: Quantization Test, C output doesn't match SSE2 output. "
<< "First failed at test case " << first_failure;
}
void RunEobTest() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, tran_low_t, coeff_ptr[maxSize]);
DECLARE_ALIGNED(16, int16_t, zbin_ptr[8]);
DECLARE_ALIGNED(16, int16_t, round_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_ptr[8]);
DECLARE_ALIGNED(16, int16_t, quant_shift_ptr[8]);
DECLARE_ALIGNED(16, tran_low_t, qcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, ref_qcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, tran_low_t, ref_dqcoeff_ptr[maxSize]);
DECLARE_ALIGNED(16, int16_t, dequant_ptr[8]);
uint16_t eob;
uint16_t ref_eob;
int count = params_.coeffCount;
const TX_SIZE txSize = getTxSize(count);
int log_scale = (txSize == TX_32X32);
QuantizeFpFunc quanFunc = params_.qFunc;
QuantizeFpFunc quanFuncRef = params_.qFuncRef;
const SCAN_ORDER scanOrder = av1_scan_orders[txSize][DCT_DCT];
for (int i = 0; i < numTests; i++) {
ref_eob = eob = UINT16_MAX;
for (int j = 0; j < count; j++) {
coeff_ptr[j] = 0;
}
coeff_ptr[rnd(count)] = rnd(coeffRange);
coeff_ptr[rnd(count)] = rnd(coeffRange);
coeff_ptr[rnd(count)] = rnd(coeffRange);
for (int j = 0; j < 2; j++) {
zbin_ptr[j] = rnd.Rand16Signed();
quant_shift_ptr[j] = rnd.Rand16Signed();
// int16_t positive
dequant_ptr[j] = abs(rnd(dequantRange));
quant_ptr[j] = (1 << 16) / dequant_ptr[j];
round_ptr[j] = (abs(rnd(roundFactorRange)) * dequant_ptr[j]) >> 7;
}
for (int j = 2; j < 8; ++j) {
zbin_ptr[j] = zbin_ptr[1];
quant_shift_ptr[j] = quant_shift_ptr[1];
dequant_ptr[j] = dequant_ptr[1];
quant_ptr[j] = quant_ptr[1];
round_ptr[j] = round_ptr[1];
}
quanFuncRef(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, ref_qcoeff_ptr, ref_dqcoeff_ptr, dequant_ptr,
&ref_eob, scanOrder.scan, scanOrder.iscan, log_scale);
API_REGISTER_STATE_CHECK(
quanFunc(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, &eob,
scanOrder.scan, scanOrder.iscan, log_scale));
EXPECT_EQ(ref_eob, eob) << "eob error: "
<< "i = " << i << "\n";
}
}
virtual void SetUp() { params_ = GetParam(); }
virtual void TearDown() {}
virtual ~AV1QuantizeTest() {}
private:
TX_SIZE getTxSize(int count) {
switch (count) {
case 16: return TX_4X4;
case 64: return TX_8X8;
case 256: return TX_16X16;
case 1024: return TX_32X32;
default: return TX_4X4;
}
}
QuantizeFuncParams params_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1QuantizeTest);
TEST_P(AV1QuantizeTest, BitExactCheck) { RunQuantizeTest(); }
TEST_P(AV1QuantizeTest, EobVerify) { RunEobTest(); }
TEST(AV1QuantizeTest, QuantizeFpNoQmatrix) {
// Here we use a uniform quantizer as an example
const int16_t dequant_ptr[2] = { 78, 93 }; // quantize step
const int16_t round_ptr[2] = { 39, 46 }; // round ~= dequant / 2
// quant ~= 2^16 / dequant. This is a 16-bit fixed point representation of the
// inverse of quantize step.
const int16_t quant_ptr[2] = { 840, 704 };
int log_scale = 0;
int coeff_count = 4;
const tran_low_t coeff_ptr[4] = { -449, 624, -14, 24 };
const tran_low_t ref_qcoeff_ptr[4] = { -6, 7, 0, 0 };
const tran_low_t ref_dqcoeff_ptr[4] = { -468, 651, 0, 0 };
const int16_t scan[4] = { 0, 1, 2, 3 };
tran_low_t qcoeff_ptr[4];
tran_low_t dqcoeff_ptr[4];
int eob = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr,
log_scale, scan, coeff_count, coeff_ptr,
qcoeff_ptr, dqcoeff_ptr);
EXPECT_EQ(eob, 2);
for (int i = 0; i < coeff_count; ++i) {
EXPECT_EQ(qcoeff_ptr[i], ref_qcoeff_ptr[i]);
EXPECT_EQ(dqcoeff_ptr[i], ref_dqcoeff_ptr[i]);
}
}
#if HAVE_SSE4_1
const QuantizeFuncParams qfps[4] = {
QuantizeFuncParams(&av1_highbd_quantize_fp_sse4_1, &av1_highbd_quantize_fp_c,
16),
QuantizeFuncParams(&av1_highbd_quantize_fp_sse4_1, &av1_highbd_quantize_fp_c,
64),
QuantizeFuncParams(&av1_highbd_quantize_fp_sse4_1, &av1_highbd_quantize_fp_c,
256),
QuantizeFuncParams(&av1_highbd_quantize_fp_sse4_1, &av1_highbd_quantize_fp_c,
1024),
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1QuantizeTest, ::testing::ValuesIn(qfps));
#endif // HAVE_SSE4_1
#if HAVE_AVX2
const QuantizeFuncParams qfps_avx2[4] = {
QuantizeFuncParams(&av1_highbd_quantize_fp_avx2, &av1_highbd_quantize_fp_c,
16),
QuantizeFuncParams(&av1_highbd_quantize_fp_avx2, &av1_highbd_quantize_fp_c,
64),
QuantizeFuncParams(&av1_highbd_quantize_fp_avx2, &av1_highbd_quantize_fp_c,
256),
QuantizeFuncParams(&av1_highbd_quantize_fp_avx2, &av1_highbd_quantize_fp_c,
1024),
};
INSTANTIATE_TEST_SUITE_P(AVX2, AV1QuantizeTest, ::testing::ValuesIn(qfps_avx2));
#endif // HAVE_AVX2
} // namespace