| /* | 
 |  * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 |  | 
 | #include "aom_dsp/noise_util.h" | 
 | #include "aom_dsp/fft_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | float aom_noise_psd_get_default_value(int block_size, float factor) { | 
 |   return (factor * factor / 10000) * block_size * block_size / 8; | 
 | } | 
 |  | 
 | // Internal representation of noise transform. It keeps track of the | 
 | // transformed data and a temporary working buffer to use during the | 
 | // transform. | 
 | struct aom_noise_tx_t { | 
 |   float *tx_block; | 
 |   float *temp; | 
 |   int block_size; | 
 |   void (*fft)(const float *, float *, float *); | 
 |   void (*ifft)(const float *, float *, float *); | 
 | }; | 
 |  | 
 | struct aom_noise_tx_t *aom_noise_tx_malloc(int block_size) { | 
 |   struct aom_noise_tx_t *noise_tx = | 
 |       (struct aom_noise_tx_t *)aom_malloc(sizeof(struct aom_noise_tx_t)); | 
 |   if (!noise_tx) return NULL; | 
 |   memset(noise_tx, 0, sizeof(*noise_tx)); | 
 |   switch (block_size) { | 
 |     case 2: | 
 |       noise_tx->fft = aom_fft2x2_float; | 
 |       noise_tx->ifft = aom_ifft2x2_float; | 
 |       break; | 
 |     case 4: | 
 |       noise_tx->fft = aom_fft4x4_float; | 
 |       noise_tx->ifft = aom_ifft4x4_float; | 
 |       break; | 
 |     case 8: | 
 |       noise_tx->fft = aom_fft8x8_float; | 
 |       noise_tx->ifft = aom_ifft8x8_float; | 
 |       break; | 
 |     case 16: | 
 |       noise_tx->fft = aom_fft16x16_float; | 
 |       noise_tx->ifft = aom_ifft16x16_float; | 
 |       break; | 
 |     case 32: | 
 |       noise_tx->fft = aom_fft32x32_float; | 
 |       noise_tx->ifft = aom_ifft32x32_float; | 
 |       break; | 
 |     default: | 
 |       aom_free(noise_tx); | 
 |       fprintf(stderr, "Unsupported block size %d\n", block_size); | 
 |       return NULL; | 
 |   } | 
 |   noise_tx->block_size = block_size; | 
 |   noise_tx->tx_block = (float *)aom_memalign( | 
 |       32, 2 * sizeof(*noise_tx->tx_block) * block_size * block_size); | 
 |   noise_tx->temp = (float *)aom_memalign( | 
 |       32, 2 * sizeof(*noise_tx->temp) * block_size * block_size); | 
 |   if (!noise_tx->tx_block || !noise_tx->temp) { | 
 |     aom_noise_tx_free(noise_tx); | 
 |     return NULL; | 
 |   } | 
 |   // Clear the buffers up front. Some outputs of the forward transform are | 
 |   // real only (the imaginary component will never be touched) | 
 |   memset(noise_tx->tx_block, 0, | 
 |          2 * sizeof(*noise_tx->tx_block) * block_size * block_size); | 
 |   memset(noise_tx->temp, 0, | 
 |          2 * sizeof(*noise_tx->temp) * block_size * block_size); | 
 |   return noise_tx; | 
 | } | 
 |  | 
 | void aom_noise_tx_forward(struct aom_noise_tx_t *noise_tx, const float *data) { | 
 |   noise_tx->fft(data, noise_tx->temp, noise_tx->tx_block); | 
 | } | 
 |  | 
 | void aom_noise_tx_filter(struct aom_noise_tx_t *noise_tx, const float *psd) { | 
 |   const int block_size = noise_tx->block_size; | 
 |   const float kBeta = 1.1f; | 
 |   const float kEps = 1e-6f; | 
 |   for (int y = 0; y < block_size; ++y) { | 
 |     for (int x = 0; x < block_size; ++x) { | 
 |       int i = y * block_size + x; | 
 |       float *c = noise_tx->tx_block + 2 * i; | 
 |       const float c0 = AOMMAX((float)fabs(c[0]), 1e-8f); | 
 |       const float c1 = AOMMAX((float)fabs(c[1]), 1e-8f); | 
 |       const float p = c0 * c0 + c1 * c1; | 
 |       if (p > kBeta * psd[i] && p > 1e-6) { | 
 |         noise_tx->tx_block[2 * i + 0] *= (p - psd[i]) / AOMMAX(p, kEps); | 
 |         noise_tx->tx_block[2 * i + 1] *= (p - psd[i]) / AOMMAX(p, kEps); | 
 |       } else { | 
 |         noise_tx->tx_block[2 * i + 0] *= (kBeta - 1.0f) / kBeta; | 
 |         noise_tx->tx_block[2 * i + 1] *= (kBeta - 1.0f) / kBeta; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void aom_noise_tx_inverse(struct aom_noise_tx_t *noise_tx, float *data) { | 
 |   const int n = noise_tx->block_size * noise_tx->block_size; | 
 |   noise_tx->ifft(noise_tx->tx_block, noise_tx->temp, data); | 
 |   for (int i = 0; i < n; ++i) { | 
 |     data[i] /= n; | 
 |   } | 
 | } | 
 |  | 
 | void aom_noise_tx_add_energy(const struct aom_noise_tx_t *noise_tx, | 
 |                              float *psd) { | 
 |   const int block_size = noise_tx->block_size; | 
 |   for (int yb = 0; yb < block_size; ++yb) { | 
 |     for (int xb = 0; xb <= block_size / 2; ++xb) { | 
 |       float *c = noise_tx->tx_block + 2 * (yb * block_size + xb); | 
 |       psd[yb * block_size + xb] += c[0] * c[0] + c[1] * c[1]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void aom_noise_tx_free(struct aom_noise_tx_t *noise_tx) { | 
 |   if (!noise_tx) return; | 
 |   aom_free(noise_tx->tx_block); | 
 |   aom_free(noise_tx->temp); | 
 |   aom_free(noise_tx); | 
 | } | 
 |  | 
 | double aom_normalized_cross_correlation(const double *a, const double *b, | 
 |                                         int n) { | 
 |   double c = 0; | 
 |   double a_len = 0; | 
 |   double b_len = 0; | 
 |   for (int i = 0; i < n; ++i) { | 
 |     a_len += a[i] * a[i]; | 
 |     b_len += b[i] * b[i]; | 
 |     c += a[i] * b[i]; | 
 |   } | 
 |   return c / (sqrt(a_len) * sqrt(b_len)); | 
 | } | 
 |  | 
 | int aom_noise_data_validate(const double *data, int w, int h) { | 
 |   const double kVarianceThreshold = 2; | 
 |   const double kMeanThreshold = 2; | 
 |  | 
 |   int x = 0, y = 0; | 
 |   int ret_value = 1; | 
 |   double var = 0, mean = 0; | 
 |   double *mean_x, *mean_y, *var_x, *var_y; | 
 |  | 
 |   // Check that noise variance is not increasing in x or y | 
 |   // and that the data is zero mean. | 
 |   mean_x = (double *)aom_calloc(w, sizeof(*mean_x)); | 
 |   var_x = (double *)aom_calloc(w, sizeof(*var_x)); | 
 |   mean_y = (double *)aom_calloc(h, sizeof(*mean_x)); | 
 |   var_y = (double *)aom_calloc(h, sizeof(*var_y)); | 
 |   if (!(mean_x && var_x && mean_y && var_y)) { | 
 |     aom_free(mean_x); | 
 |     aom_free(mean_y); | 
 |     aom_free(var_x); | 
 |     aom_free(var_y); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   for (y = 0; y < h; ++y) { | 
 |     for (x = 0; x < w; ++x) { | 
 |       const double d = data[y * w + x]; | 
 |       var_x[x] += d * d; | 
 |       var_y[y] += d * d; | 
 |       mean_x[x] += d; | 
 |       mean_y[y] += d; | 
 |       var += d * d; | 
 |       mean += d; | 
 |     } | 
 |   } | 
 |   mean /= (w * h); | 
 |   var = var / (w * h) - mean * mean; | 
 |  | 
 |   for (y = 0; y < h; ++y) { | 
 |     mean_y[y] /= h; | 
 |     var_y[y] = var_y[y] / h - mean_y[y] * mean_y[y]; | 
 |     if (fabs(var_y[y] - var) >= kVarianceThreshold) { | 
 |       fprintf(stderr, "Variance distance too large %f %f\n", var_y[y], var); | 
 |       ret_value = 0; | 
 |       break; | 
 |     } | 
 |     if (fabs(mean_y[y] - mean) >= kMeanThreshold) { | 
 |       fprintf(stderr, "Mean distance too large %f %f\n", mean_y[y], mean); | 
 |       ret_value = 0; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   for (x = 0; x < w; ++x) { | 
 |     mean_x[x] /= w; | 
 |     var_x[x] = var_x[x] / w - mean_x[x] * mean_x[x]; | 
 |     if (fabs(var_x[x] - var) >= kVarianceThreshold) { | 
 |       fprintf(stderr, "Variance distance too large %f %f\n", var_x[x], var); | 
 |       ret_value = 0; | 
 |       break; | 
 |     } | 
 |     if (fabs(mean_x[x] - mean) >= kMeanThreshold) { | 
 |       fprintf(stderr, "Mean distance too large %f %f\n", mean_x[x], mean); | 
 |       ret_value = 0; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   aom_free(mean_x); | 
 |   aom_free(mean_y); | 
 |   aom_free(var_x); | 
 |   aom_free(var_y); | 
 |  | 
 |   return ret_value; | 
 | } |