| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_COMMON_BLOCKD_H_ | 
 | #define AOM_AV1_COMMON_BLOCKD_H_ | 
 |  | 
 | #include "config/aom_config.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_scale/yv12config.h" | 
 |  | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/mv.h" | 
 | #include "av1/common/scale.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/tile_common.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #define USE_B_QUANT_NO_TRELLIS 1 | 
 |  | 
 | #define MAX_MB_PLANE 3 | 
 |  | 
 | #define MAX_DIFFWTD_MASK_BITS 1 | 
 |  | 
 | #define INTERINTRA_WEDGE_SIGN 0 | 
 |  | 
 | #define DEFAULT_INTER_TX_TYPE DCT_DCT | 
 |  | 
 | #define MAX_PALETTE_BLOCK_WIDTH 64 | 
 |  | 
 | #define MAX_PALETTE_BLOCK_HEIGHT 64 | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS | 
 | enum { | 
 |   DIFFWTD_38 = 0, | 
 |   DIFFWTD_38_INV, | 
 |   DIFFWTD_MASK_TYPES, | 
 | } UENUM1BYTE(DIFFWTD_MASK_TYPE); | 
 |  | 
 | enum { | 
 |   KEY_FRAME = 0, | 
 |   INTER_FRAME = 1, | 
 |   INTRA_ONLY_FRAME = 2,  // replaces intra-only | 
 |   S_FRAME = 3, | 
 |   FRAME_TYPES, | 
 | } UENUM1BYTE(FRAME_TYPE); | 
 |  | 
 | static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { | 
 |   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 | } | 
 |  | 
 | static INLINE int is_inter_mode(PREDICTION_MODE mode) { | 
 |   return mode >= INTER_MODE_START && mode < INTER_MODE_END; | 
 | } | 
 |  | 
 | typedef struct { | 
 |   uint8_t *plane[MAX_MB_PLANE]; | 
 |   int stride[MAX_MB_PLANE]; | 
 | } BUFFER_SET; | 
 |  | 
 | static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { | 
 |   return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END; | 
 | } | 
 | static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { | 
 |   return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { | 
 |   static const PREDICTION_MODE lut[] = { | 
 |     DC_PRED,        // DC_PRED | 
 |     V_PRED,         // V_PRED | 
 |     H_PRED,         // H_PRED | 
 |     D45_PRED,       // D45_PRED | 
 |     D135_PRED,      // D135_PRED | 
 |     D113_PRED,      // D113_PRED | 
 |     D157_PRED,      // D157_PRED | 
 |     D203_PRED,      // D203_PRED | 
 |     D67_PRED,       // D67_PRED | 
 |     SMOOTH_PRED,    // SMOOTH_PRED | 
 |     SMOOTH_V_PRED,  // SMOOTH_V_PRED | 
 |     SMOOTH_H_PRED,  // SMOOTH_H_PRED | 
 |     PAETH_PRED,     // PAETH_PRED | 
 |     NEARESTMV,      // NEARESTMV | 
 |     NEARMV,         // NEARMV | 
 |     GLOBALMV,       // GLOBALMV | 
 |     NEWMV,          // NEWMV | 
 |     NEARESTMV,      // NEAREST_NEARESTMV | 
 |     NEARMV,         // NEAR_NEARMV | 
 |     NEARESTMV,      // NEAREST_NEWMV | 
 |     NEWMV,          // NEW_NEARESTMV | 
 |     NEARMV,         // NEAR_NEWMV | 
 |     NEWMV,          // NEW_NEARMV | 
 |     GLOBALMV,       // GLOBAL_GLOBALMV | 
 |     NEWMV,          // NEW_NEWMV | 
 |   }; | 
 |   assert(NELEMENTS(lut) == MB_MODE_COUNT); | 
 |   assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode)); | 
 |   return lut[mode]; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { | 
 |   static const PREDICTION_MODE lut[] = { | 
 |     MB_MODE_COUNT,  // DC_PRED | 
 |     MB_MODE_COUNT,  // V_PRED | 
 |     MB_MODE_COUNT,  // H_PRED | 
 |     MB_MODE_COUNT,  // D45_PRED | 
 |     MB_MODE_COUNT,  // D135_PRED | 
 |     MB_MODE_COUNT,  // D113_PRED | 
 |     MB_MODE_COUNT,  // D157_PRED | 
 |     MB_MODE_COUNT,  // D203_PRED | 
 |     MB_MODE_COUNT,  // D67_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_V_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_H_PRED | 
 |     MB_MODE_COUNT,  // PAETH_PRED | 
 |     MB_MODE_COUNT,  // NEARESTMV | 
 |     MB_MODE_COUNT,  // NEARMV | 
 |     MB_MODE_COUNT,  // GLOBALMV | 
 |     MB_MODE_COUNT,  // NEWMV | 
 |     NEARESTMV,      // NEAREST_NEARESTMV | 
 |     NEARMV,         // NEAR_NEARMV | 
 |     NEWMV,          // NEAREST_NEWMV | 
 |     NEARESTMV,      // NEW_NEARESTMV | 
 |     NEWMV,          // NEAR_NEWMV | 
 |     NEARMV,         // NEW_NEARMV | 
 |     GLOBALMV,       // GLOBAL_GLOBALMV | 
 |     NEWMV,          // NEW_NEWMV | 
 |   }; | 
 |   assert(NELEMENTS(lut) == MB_MODE_COUNT); | 
 |   assert(is_inter_compound_mode(mode)); | 
 |   return lut[mode]; | 
 | } | 
 |  | 
 | static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { | 
 |   return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || | 
 |           mode == NEW_NEARMV); | 
 | } | 
 |  | 
 | static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { | 
 |   return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || | 
 |           mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); | 
 | } | 
 |  | 
 | static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { | 
 |   return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); | 
 | } | 
 |  | 
 | /* For keyframes, intra block modes are predicted by the (already decoded) | 
 |    modes for the Y blocks to the left and above us; for interframes, there | 
 |    is a single probability table. */ | 
 |  | 
 | typedef struct { | 
 |   // Value of base colors for Y, U, and V | 
 |   uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; | 
 |   // Number of base colors for Y (0) and UV (1) | 
 |   uint8_t palette_size[2]; | 
 | } PALETTE_MODE_INFO; | 
 |  | 
 | typedef struct { | 
 |   FILTER_INTRA_MODE filter_intra_mode; | 
 |   uint8_t use_filter_intra; | 
 | } FILTER_INTRA_MODE_INFO; | 
 |  | 
 | static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { | 
 |   DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED | 
 | }; | 
 |  | 
 | #if CONFIG_RD_DEBUG | 
 | #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) | 
 | #endif | 
 |  | 
 | typedef struct RD_STATS { | 
 |   int rate; | 
 |   int zero_rate; | 
 |   int64_t dist; | 
 |   // Please be careful of using rdcost, it's not guaranteed to be set all the | 
 |   // time. | 
 |   // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In | 
 |   // these functions, make sure rdcost is always up-to-date according to | 
 |   // rate/dist. | 
 |   int64_t rdcost; | 
 |   int64_t sse; | 
 |   uint8_t skip_txfm;  // sse should equal to dist when skip_txfm == 1 | 
 | #if CONFIG_RD_DEBUG | 
 |   int txb_coeff_cost[MAX_MB_PLANE]; | 
 | #endif  // CONFIG_RD_DEBUG | 
 | } RD_STATS; | 
 |  | 
 | // This struct is used to group function args that are commonly | 
 | // sent together in functions related to interinter compound modes | 
 | typedef struct { | 
 |   uint8_t *seg_mask; | 
 |   int8_t wedge_index; | 
 |   int8_t wedge_sign; | 
 |   DIFFWTD_MASK_TYPE mask_type; | 
 |   COMPOUND_TYPE type; | 
 | } INTERINTER_COMPOUND_DATA; | 
 |  | 
 | #define INTER_TX_SIZE_BUF_LEN 16 | 
 | #define TXK_TYPE_BUF_LEN 64 | 
 | /*!\endcond */ | 
 |  | 
 | /*! \brief Stores the prediction/txfm mode of the current coding block | 
 |  */ | 
 | typedef struct MB_MODE_INFO { | 
 |   /***************************************************************************** | 
 |    * \name General Info of the Coding Block | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \brief The block size of the current coding block */ | 
 |   BLOCK_SIZE bsize; | 
 |   /*! \brief The partition type of the current coding block. */ | 
 |   PARTITION_TYPE partition; | 
 |   /*! \brief The prediction mode used */ | 
 |   PREDICTION_MODE mode; | 
 |   /*! \brief The UV mode when intra is used */ | 
 |   UV_PREDICTION_MODE uv_mode; | 
 |   /*! \brief The q index for the current coding block. */ | 
 |   int current_qindex; | 
 |   /**@}*/ | 
 |  | 
 |   /***************************************************************************** | 
 |    * \name Inter Mode Info | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \brief The motion vectors used by the current inter mode */ | 
 |   int_mv mv[2]; | 
 |   /*! \brief The reference frames for the MV */ | 
 |   MV_REFERENCE_FRAME ref_frame[2]; | 
 |   /*! \brief Filter used in subpel interpolation. */ | 
 |   int_interpfilters interp_filters; | 
 |   /*! \brief The motion mode used by the inter prediction. */ | 
 |   MOTION_MODE motion_mode; | 
 |   /*! \brief Number of samples used by warp causal */ | 
 |   uint8_t num_proj_ref; | 
 |   /*! \brief The number of overlapped neighbors above/left for obmc/warp motion | 
 |    * mode. */ | 
 |   uint8_t overlappable_neighbors; | 
 |   /*! \brief The parameters used in warp motion mode. */ | 
 |   WarpedMotionParams wm_params; | 
 |   /*! \brief The type of intra mode used by inter-intra */ | 
 |   INTERINTRA_MODE interintra_mode; | 
 |   /*! \brief The type of wedge used in interintra mode. */ | 
 |   int8_t interintra_wedge_index; | 
 |   /*! \brief Struct that stores the data used in interinter compound mode. */ | 
 |   INTERINTER_COMPOUND_DATA interinter_comp; | 
 |   /**@}*/ | 
 |  | 
 |   /***************************************************************************** | 
 |    * \name Intra Mode Info | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \brief Directional mode delta: the angle is base angle + (angle_delta * | 
 |    * step). */ | 
 |   int8_t angle_delta[PLANE_TYPES]; | 
 |   /*! \brief The type of filter intra mode used (if applicable). */ | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
 |   /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */ | 
 |   int8_t cfl_alpha_signs; | 
 |   /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */ | 
 |   uint8_t cfl_alpha_idx; | 
 |   /*! \brief Stores the size and colors of palette mode */ | 
 |   PALETTE_MODE_INFO palette_mode_info; | 
 |   /**@}*/ | 
 |  | 
 |   /***************************************************************************** | 
 |    * \name Transform Info | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \brief Whether to skip transforming and sending. */ | 
 |   uint8_t skip_txfm; | 
 |   /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */ | 
 |   TX_SIZE tx_size; | 
 |   /*! \brief Transform size when recursive txfm tree is on. */ | 
 |   TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]; | 
 |   /**@}*/ | 
 |  | 
 |   /***************************************************************************** | 
 |    * \name Loop Filter Info | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \copydoc MACROBLOCKD::delta_lf_from_base */ | 
 |   int8_t delta_lf_from_base; | 
 |   /*! \copydoc MACROBLOCKD::delta_lf */ | 
 |   int8_t delta_lf[FRAME_LF_COUNT]; | 
 |   /**@}*/ | 
 |  | 
 |   /***************************************************************************** | 
 |    * \name Bitfield for Memory Reduction | 
 |    ****************************************************************************/ | 
 |   /**@{*/ | 
 |   /*! \brief The segment id */ | 
 |   uint8_t segment_id : 3; | 
 |   /*! \brief Only valid when temporal update if off. */ | 
 |   uint8_t seg_id_predicted : 1; | 
 |   /*! \brief Which ref_mv to use */ | 
 |   uint8_t ref_mv_idx : 2; | 
 |   /*! \brief Inter skip mode */ | 
 |   uint8_t skip_mode : 1; | 
 |   /*! \brief Whether intrabc is used. */ | 
 |   uint8_t use_intrabc : 1; | 
 |   /*! \brief Indicates if masked compound is used(1) or not (0). */ | 
 |   uint8_t comp_group_idx : 1; | 
 |   /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */ | 
 |   uint8_t compound_idx : 1; | 
 |   /*! \brief Whether to use interintra wedge */ | 
 |   uint8_t use_wedge_interintra : 1; | 
 |   /*! \brief CDEF strength per BLOCK_64X64 */ | 
 |   int8_t cdef_strength : 4; | 
 |   /**@}*/ | 
 |  | 
 | #if CONFIG_RD_DEBUG | 
 |   /*! \brief RD info used for debugging */ | 
 |   RD_STATS rd_stats; | 
 |   /*! \brief The current row in unit of 4x4 blocks for debugging */ | 
 |   int mi_row; | 
 |   /*! \brief The current col in unit of 4x4 blocks for debugging */ | 
 |   int mi_col; | 
 | #endif | 
 | #if CONFIG_INSPECTION | 
 |   /*! \brief Whether we are skipping the current rows or columns. */ | 
 |   int16_t tx_skip[TXK_TYPE_BUF_LEN]; | 
 | #endif | 
 | } MB_MODE_INFO; | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->use_intrabc; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { | 
 |   assert(mode < UV_INTRA_MODES); | 
 |   static const PREDICTION_MODE uv2y[] = { | 
 |     DC_PRED,        // UV_DC_PRED | 
 |     V_PRED,         // UV_V_PRED | 
 |     H_PRED,         // UV_H_PRED | 
 |     D45_PRED,       // UV_D45_PRED | 
 |     D135_PRED,      // UV_D135_PRED | 
 |     D113_PRED,      // UV_D113_PRED | 
 |     D157_PRED,      // UV_D157_PRED | 
 |     D203_PRED,      // UV_D203_PRED | 
 |     D67_PRED,       // UV_D67_PRED | 
 |     SMOOTH_PRED,    // UV_SMOOTH_PRED | 
 |     SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED | 
 |     SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED | 
 |     PAETH_PRED,     // UV_PAETH_PRED | 
 |     DC_PRED,        // UV_CFL_PRED | 
 |     INTRA_INVALID,  // UV_INTRA_MODES | 
 |     INTRA_INVALID,  // UV_MODE_INVALID | 
 |   }; | 
 |   return uv2y[mode]; | 
 | } | 
 |  | 
 | static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { | 
 |   return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME; | 
 | } | 
 |  | 
 | static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->ref_frame[1] > INTRA_FRAME; | 
 | } | 
 |  | 
 | static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) { | 
 |   return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^ | 
 |                                     (mbmi->ref_frame[1] >= BWDREF_FRAME))); | 
 | } | 
 |  | 
 | static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { | 
 |   static const MV_REFERENCE_FRAME lut[] = { | 
 |     LAST_FRAME,     // LAST_LAST2_FRAMES, | 
 |     LAST_FRAME,     // LAST_LAST3_FRAMES, | 
 |     LAST_FRAME,     // LAST_GOLDEN_FRAMES, | 
 |     BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES, | 
 |     LAST2_FRAME,    // LAST2_LAST3_FRAMES | 
 |     LAST2_FRAME,    // LAST2_GOLDEN_FRAMES, | 
 |     LAST3_FRAME,    // LAST3_GOLDEN_FRAMES, | 
 |     BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES, | 
 |     ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES, | 
 |   }; | 
 |   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); | 
 |   return lut[ref_idx]; | 
 | } | 
 |  | 
 | static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { | 
 |   static const MV_REFERENCE_FRAME lut[] = { | 
 |     LAST2_FRAME,    // LAST_LAST2_FRAMES, | 
 |     LAST3_FRAME,    // LAST_LAST3_FRAMES, | 
 |     GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES, | 
 |     ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES, | 
 |     LAST3_FRAME,    // LAST2_LAST3_FRAMES | 
 |     GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES, | 
 |     GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES, | 
 |     ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES, | 
 |     ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES, | 
 |   }; | 
 |   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); | 
 |   return lut[ref_idx]; | 
 | } | 
 |  | 
 | PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi); | 
 |  | 
 | PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi); | 
 |  | 
 | static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, | 
 |                                      TransformationType type) { | 
 |   const PREDICTION_MODE mode = mbmi->mode; | 
 |   const BLOCK_SIZE bsize = mbmi->bsize; | 
 |   const int block_size_allowed = | 
 |       AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 |   return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && | 
 |          block_size_allowed; | 
 | } | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 | static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, | 
 |                                    int mi_row, int tx_blk_col, int tx_blk_row, | 
 |                                    int subsampling_x, int subsampling_y) { | 
 |   *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + | 
 |              (tx_blk_col << MI_SIZE_LOG2); | 
 |   *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + | 
 |              (tx_blk_row << MI_SIZE_LOG2); | 
 | } | 
 | #endif | 
 |  | 
 | enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision); | 
 |  | 
 | struct buf_2d { | 
 |   uint8_t *buf; | 
 |   uint8_t *buf0; | 
 |   int width; | 
 |   int height; | 
 |   int stride; | 
 | }; | 
 |  | 
 | typedef struct eob_info { | 
 |   uint16_t eob; | 
 |   uint16_t max_scan_line; | 
 | } eob_info; | 
 |  | 
 | typedef struct { | 
 |   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); | 
 |   eob_info eob_data[MAX_MB_PLANE] | 
 |                    [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; | 
 |   DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); | 
 | } CB_BUFFER; | 
 |  | 
 | typedef struct macroblockd_plane { | 
 |   PLANE_TYPE plane_type; | 
 |   int subsampling_x; | 
 |   int subsampling_y; | 
 |   struct buf_2d dst; | 
 |   struct buf_2d pre[2]; | 
 |   ENTROPY_CONTEXT *above_entropy_context; | 
 |   ENTROPY_CONTEXT *left_entropy_context; | 
 |  | 
 |   // The dequantizers below are true dequantizers used only in the | 
 |   // dequantization process.  They have the same coefficient | 
 |   // shift/scale as TX. | 
 |   int16_t seg_dequant_QTX[MAX_SEGMENTS][2]; | 
 |   // Pointer to color index map of: | 
 |   // - Current coding block, on encoder side. | 
 |   // - Current superblock, on decoder side. | 
 |   uint8_t *color_index_map; | 
 |  | 
 |   // block size in pixels | 
 |   uint8_t width, height; | 
 |  | 
 |   qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 | } MACROBLOCKD_PLANE; | 
 |  | 
 | #define BLOCK_OFFSET(i) ((i) << 4) | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | /*!\brief Parameters related to Wiener Filter */ | 
 | typedef struct { | 
 |   /*! | 
 |    * Vertical filter kernel. | 
 |    */ | 
 |   DECLARE_ALIGNED(16, InterpKernel, vfilter); | 
 |  | 
 |   /*! | 
 |    * Horizontal filter kernel. | 
 |    */ | 
 |   DECLARE_ALIGNED(16, InterpKernel, hfilter); | 
 | } WienerInfo; | 
 |  | 
 | /*!\brief Parameters related to Sgrproj Filter */ | 
 | typedef struct { | 
 |   /*! | 
 |    * Parameter index. | 
 |    */ | 
 |   int ep; | 
 |  | 
 |   /*! | 
 |    * Weights for linear combination of filtered versions | 
 |    */ | 
 |   int xqd[2]; | 
 | } SgrprojInfo; | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | #if CONFIG_DEBUG | 
 | #define CFL_SUB8X8_VAL_MI_SIZE (4) | 
 | #define CFL_SUB8X8_VAL_MI_SQUARE \ | 
 |   (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE) | 
 | #endif  // CONFIG_DEBUG | 
 | #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) | 
 | #define CFL_BUF_LINE (32) | 
 | #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) | 
 | #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) | 
 | #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) | 
 | typedef struct cfl_ctx { | 
 |   // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid | 
 |   // shifts) | 
 |   uint16_t recon_buf_q3[CFL_BUF_SQUARE]; | 
 |   // Q3 AC contributions (reconstructed luma pixels - tx block avg) | 
 |   int16_t ac_buf_q3[CFL_BUF_SQUARE]; | 
 |  | 
 |   // Cache the DC_PRED when performing RDO, so it does not have to be recomputed | 
 |   // for every scaling parameter | 
 |   int dc_pred_is_cached[CFL_PRED_PLANES]; | 
 |   // The DC_PRED cache is disable when decoding | 
 |   int use_dc_pred_cache; | 
 |   // Only cache the first row of the DC_PRED | 
 |   int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; | 
 |  | 
 |   // Height and width currently used in the CfL prediction buffer. | 
 |   int buf_height, buf_width; | 
 |  | 
 |   int are_parameters_computed; | 
 |  | 
 |   // Chroma subsampling | 
 |   int subsampling_x, subsampling_y; | 
 |  | 
 |   // Whether the reconstructed luma pixels need to be stored | 
 |   int store_y; | 
 | } CFL_CTX; | 
 |  | 
 | typedef struct dist_wtd_comp_params { | 
 |   int use_dist_wtd_comp_avg; | 
 |   int fwd_offset; | 
 |   int bck_offset; | 
 | } DIST_WTD_COMP_PARAMS; | 
 |  | 
 | struct scale_factors; | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | /*! \brief Variables related to current coding block. | 
 |  * | 
 |  * This is a common set of variables used by both encoder and decoder. | 
 |  * Most/all of the pointers are mere pointers to actual arrays are allocated | 
 |  * elsewhere. This is mostly for coding convenience. | 
 |  */ | 
 | typedef struct macroblockd { | 
 |   /** | 
 |    * \name Position of current macroblock in mi units | 
 |    */ | 
 |   /**@{*/ | 
 |   int mi_row; /*!< Row position in mi units. */ | 
 |   int mi_col; /*!< Column position in mi units. */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Same as cm->mi_params.mi_stride, copied here for convenience. | 
 |    */ | 
 |   int mi_stride; | 
 |  | 
 |   /*! | 
 |    * True if current block transmits chroma information. | 
 |    * More detail: | 
 |    * Smallest supported block size for both luma and chroma plane is 4x4. Hence, | 
 |    * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma | 
 |    * blocks smaller than 8x8 maybe combined into one chroma block. | 
 |    * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4 | 
 |    * luma blocks. Then, a single chroma block of size 4x4 will cover the area of | 
 |    * these four luma blocks. This is implemented in bitstream as follows: | 
 |    * - There are four MB_MODE_INFO structs for the four luma blocks. | 
 |    * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit | 
 |    * any information for chroma planes. | 
 |    * - Last block will have is_chroma_ref = true and transmits chroma | 
 |    * information for the 4x4 chroma block that covers whole 8x8 area covered by | 
 |    * four luma blocks. | 
 |    * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks. | 
 |    */ | 
 |   bool is_chroma_ref; | 
 |  | 
 |   /*! | 
 |    * Info specific to each plane. | 
 |    */ | 
 |   struct macroblockd_plane plane[MAX_MB_PLANE]; | 
 |  | 
 |   /*! | 
 |    * Tile related info. | 
 |    */ | 
 |   TileInfo tile; | 
 |  | 
 |   /*! | 
 |    * Appropriate offset inside cm->mi_params.mi_grid_base based on current | 
 |    * mi_row and mi_col. | 
 |    */ | 
 |   MB_MODE_INFO **mi; | 
 |  | 
 |   /*! | 
 |    * True if 4x4 block above the current block is available. | 
 |    */ | 
 |   bool up_available; | 
 |   /*! | 
 |    * True if 4x4 block to the left of the current block is available. | 
 |    */ | 
 |   bool left_available; | 
 |   /*! | 
 |    * True if the above chrome reference block is available. | 
 |    */ | 
 |   bool chroma_up_available; | 
 |   /*! | 
 |    * True if the left chrome reference block is available. | 
 |    */ | 
 |   bool chroma_left_available; | 
 |  | 
 |   /*! | 
 |    * MB_MODE_INFO for 4x4 block to the left of the current block, if | 
 |    * left_available == true; otherwise NULL. | 
 |    */ | 
 |   MB_MODE_INFO *left_mbmi; | 
 |   /*! | 
 |    * MB_MODE_INFO for 4x4 block above the current block, if | 
 |    * up_available == true; otherwise NULL. | 
 |    */ | 
 |   MB_MODE_INFO *above_mbmi; | 
 |   /*! | 
 |    * Above chroma reference block if is_chroma_ref == true for the current block | 
 |    * and chroma_up_available == true; otherwise NULL. | 
 |    * See also: the special case logic when current chroma block covers more than | 
 |    * one luma blocks in set_mi_row_col(). | 
 |    */ | 
 |   MB_MODE_INFO *chroma_left_mbmi; | 
 |   /*! | 
 |    * Left chroma reference block if is_chroma_ref == true for the current block | 
 |    * and chroma_left_available == true; otherwise NULL. | 
 |    * See also: the special case logic when current chroma block covers more than | 
 |    * one luma blocks in set_mi_row_col(). | 
 |    */ | 
 |   MB_MODE_INFO *chroma_above_mbmi; | 
 |  | 
 |   /*! | 
 |    * Appropriate offset based on current 'mi_row' and 'mi_col', inside | 
 |    * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or | 
 |    * 'MACROBLOCK' structs. | 
 |    */ | 
 |   uint8_t *tx_type_map; | 
 |   /*! | 
 |    * Stride for 'tx_type_map'. Note that this may / may not be same as | 
 |    * 'mi_stride', depending on which actual array 'tx_type_map' points to. | 
 |    */ | 
 |   int tx_type_map_stride; | 
 |  | 
 |   /** | 
 |    * \name Distance of this macroblock from frame edges in 1/8th pixel units. | 
 |    */ | 
 |   /**@{*/ | 
 |   int mb_to_left_edge;   /*!< Distance from left edge */ | 
 |   int mb_to_right_edge;  /*!< Distance from right edge */ | 
 |   int mb_to_top_edge;    /*!< Distance from top edge */ | 
 |   int mb_to_bottom_edge; /*!< Distance from bottom edge */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Scale factors for reference frames of the current block. | 
 |    * These are pointers into 'cm->ref_scale_factors'. | 
 |    */ | 
 |   const struct scale_factors *block_ref_scale_factors[2]; | 
 |  | 
 |   /*! | 
 |    * - On encoder side: points to cpi->source, which is the buffer containing | 
 |    * the current *source* frame (maybe filtered). | 
 |    * - On decoder side: points to cm->cur_frame->buf, which is the buffer into | 
 |    * which current frame is being *decoded*. | 
 |    */ | 
 |   const YV12_BUFFER_CONFIG *cur_buf; | 
 |  | 
 |   /*! | 
 |    * Entropy contexts for the above blocks. | 
 |    * above_entropy_context[i][j] corresponds to above entropy context for ith | 
 |    * plane and jth mi column of this *frame*, wrt current 'mi_row'. | 
 |    * These are pointers into 'cm->above_contexts.entropy'. | 
 |    */ | 
 |   ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE]; | 
 |   /*! | 
 |    * Entropy contexts for the left blocks. | 
 |    * left_entropy_context[i][j] corresponds to left entropy context for ith | 
 |    * plane and jth mi row of this *superblock*, wrt current 'mi_col'. | 
 |    * Note: These contain actual data, NOT pointers. | 
 |    */ | 
 |   ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE]; | 
 |  | 
 |   /*! | 
 |    * Partition contexts for the above blocks. | 
 |    * above_partition_context[i] corresponds to above partition context for ith | 
 |    * mi column of this *frame*, wrt current 'mi_row'. | 
 |    * This is a pointer into 'cm->above_contexts.partition'. | 
 |    */ | 
 |   PARTITION_CONTEXT *above_partition_context; | 
 |   /*! | 
 |    * Partition contexts for the left blocks. | 
 |    * left_partition_context[i] corresponds to left partition context for ith | 
 |    * mi row of this *superblock*, wrt current 'mi_col'. | 
 |    * Note: These contain actual data, NOT pointers. | 
 |    */ | 
 |   PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]; | 
 |  | 
 |   /*! | 
 |    * Transform contexts for the above blocks. | 
 |    * above_txfm_context[i] corresponds to above transform context for ith mi col | 
 |    * from the current position (mi row and mi column) for this *frame*. | 
 |    * This is a pointer into 'cm->above_contexts.txfm'. | 
 |    */ | 
 |   TXFM_CONTEXT *above_txfm_context; | 
 |   /*! | 
 |    * Transform contexts for the left blocks. | 
 |    * left_txfm_context[i] corresponds to left transform context for ith mi row | 
 |    * from the current position (mi_row and mi_col) for this *superblock*. | 
 |    * This is a pointer into 'left_txfm_context_buffer'. | 
 |    */ | 
 |   TXFM_CONTEXT *left_txfm_context; | 
 |   /*! | 
 |    * left_txfm_context_buffer[i] is the left transform context for ith mi_row | 
 |    * in this *superblock*. | 
 |    * Behaves like an internal actual buffer which 'left_txt_context' points to, | 
 |    * and never accessed directly except to fill in initial default values. | 
 |    */ | 
 |   TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; | 
 |  | 
 |   /** | 
 |    * \name Default values for the two restoration filters for each plane. | 
 |    * Default values for the two restoration filters for each plane. | 
 |    * These values are used as reference values when writing the bitstream. That | 
 |    * is, we transmit the delta between the actual values in | 
 |    * cm->rst_info[plane].unit_info[unit_idx] and these reference values. | 
 |    */ | 
 |   /**@{*/ | 
 |   WienerInfo wiener_info[MAX_MB_PLANE];   /*!< Defaults for Wiener filter*/ | 
 |   SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */ | 
 |   /**@}*/ | 
 |  | 
 |   /** | 
 |    * \name Block dimensions in MB_MODE_INFO units. | 
 |    */ | 
 |   /**@{*/ | 
 |   uint8_t width;  /*!< Block width in MB_MODE_INFO units */ | 
 |   uint8_t height; /*!< Block height in MB_MODE_INFO units */ | 
 |   /**@}*/ | 
 |  | 
 |   /*! | 
 |    * Contains the motion vector candidates found during motion vector prediction | 
 |    * process. ref_mv_stack[i] contains the candidates for ith type of | 
 |    * reference frame (single/compound). The actual number of candidates found in | 
 |    * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side) | 
 |    * or mbmi_ext->ref_mv_count[i] (encoder side). | 
 |    */ | 
 |   CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; | 
 |   /*! | 
 |    * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the | 
 |    * DRL (dynamic reference list) mode contexts. | 
 |    */ | 
 |   uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; | 
 |  | 
 |   /*! | 
 |    * True if this is the last vertical rectangular block in a VERTICAL or | 
 |    * VERTICAL_4 partition. | 
 |    */ | 
 |   bool is_last_vertical_rect; | 
 |   /*! | 
 |    * True if this is the 1st horizontal rectangular block in a HORIZONTAL or | 
 |    * HORIZONTAL_4 partition. | 
 |    */ | 
 |   bool is_first_horizontal_rect; | 
 |  | 
 |   /*! | 
 |    * Counts of each reference frame in the above and left neighboring blocks. | 
 |    * NOTE: Take into account both single and comp references. | 
 |    */ | 
 |   uint8_t neighbors_ref_counts[REF_FRAMES]; | 
 |  | 
 |   /*! | 
 |    * Current CDFs of all the symbols for the current tile. | 
 |    */ | 
 |   FRAME_CONTEXT *tile_ctx; | 
 |  | 
 |   /*! | 
 |    * Bit depth: copied from cm->seq_params->bit_depth for convenience. | 
 |    */ | 
 |   int bd; | 
 |  | 
 |   /*! | 
 |    * Quantizer index for each segment (base qindex + delta for each segment). | 
 |    */ | 
 |   int qindex[MAX_SEGMENTS]; | 
 |   /*! | 
 |    * lossless[s] is true if segment 's' is coded losslessly. | 
 |    */ | 
 |   int lossless[MAX_SEGMENTS]; | 
 |   /*! | 
 |    * Q index for the coding blocks in this superblock will be stored in | 
 |    * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is | 
 |    * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as | 
 |    * the base, and adding any transmitted delta qindex on top of it. | 
 |    * Precisely, this is the latest qindex used by the first coding block of a | 
 |    * non-skip superblock in the current tile; OR | 
 |    * same as cm->quant_params.base_qindex (if not explicitly set yet). | 
 |    * Note: This is 'CurrentQIndex' in the AV1 spec. | 
 |    */ | 
 |   int current_base_qindex; | 
 |  | 
 |   /*! | 
 |    * Same as cm->features.cur_frame_force_integer_mv. | 
 |    */ | 
 |   int cur_frame_force_integer_mv; | 
 |  | 
 |   /*! | 
 |    * Pointer to cm->error. | 
 |    */ | 
 |   struct aom_internal_error_info *error_info; | 
 |  | 
 |   /*! | 
 |    * Same as cm->global_motion. | 
 |    */ | 
 |   const WarpedMotionParams *global_motion; | 
 |  | 
 |   /*! | 
 |    * Since actual frame level loop filtering level value is not available | 
 |    * at the beginning of the tile (only available during actual filtering) | 
 |    * at encoder side.we record the delta_lf (against the frame level loop | 
 |    * filtering level) and code the delta between previous superblock's delta | 
 |    * lf and current delta lf. It is equivalent to the delta between previous | 
 |    * superblock's actual lf and current lf. | 
 |    */ | 
 |   int8_t delta_lf_from_base; | 
 |   /*! | 
 |    * We have four frame filter levels for different plane and direction. So, to | 
 |    * support the per superblock update, we need to add a few more params: | 
 |    * 0. delta loop filter level for y plane vertical | 
 |    * 1. delta loop filter level for y plane horizontal | 
 |    * 2. delta loop filter level for u plane | 
 |    * 3. delta loop filter level for v plane | 
 |    * To make it consistent with the reference to each filter level in segment, | 
 |    * we need to -1, since | 
 |    * - SEG_LVL_ALT_LF_Y_V = 1; | 
 |    * - SEG_LVL_ALT_LF_Y_H = 2; | 
 |    * - SEG_LVL_ALT_LF_U   = 3; | 
 |    * - SEG_LVL_ALT_LF_V   = 4; | 
 |    */ | 
 |   int8_t delta_lf[FRAME_LF_COUNT]; | 
 |   /*! | 
 |    * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the | 
 |    * current superblock has already been read from (decoder) / written to | 
 |    * (encoder) the bitstream; and false otherwise. | 
 |    * More detail: | 
 |    * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st | 
 |    * non-skip coding block. So, we need this array to keep track of whether CDEF | 
 |    * strengths for the given CDEF units have been transmitted yet or not. | 
 |    * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is | 
 |    * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if | 
 |    * superblock size is 128x128). Hence the array size is 4. | 
 |    * 3. In the current implementation, CDEF strength for this CDEF unit is | 
 |    * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside | 
 |    * cm->mi_params.mi_grid_base). | 
 |    */ | 
 |   bool cdef_transmitted[4]; | 
 |  | 
 |   /*! | 
 |    * Mask for this block used for compound prediction. | 
 |    */ | 
 |   uint8_t *seg_mask; | 
 |  | 
 |   /*! | 
 |    * CFL (chroma from luma) related parameters. | 
 |    */ | 
 |   CFL_CTX cfl; | 
 |  | 
 |   /*! | 
 |    * Offset to plane[p].color_index_map. | 
 |    * Currently: | 
 |    * - On encoder side, this is always 0 as 'color_index_map' is allocated per | 
 |    * *coding block* there. | 
 |    * - On decoder side, this may be non-zero, as 'color_index_map' is a (static) | 
 |    * memory pointing to the base of a *superblock* there, and we need an offset | 
 |    * to it to get the color index map for current coding block. | 
 |    */ | 
 |   uint16_t color_index_map_offset[2]; | 
 |  | 
 |   /*! | 
 |    * Temporary buffer used for convolution in case of compound reference only | 
 |    * for (weighted or uniform) averaging operation. | 
 |    * There are pointers to actual buffers allocated elsewhere: e.g. | 
 |    * - In decoder, 'pbi->td.tmp_conv_dst' or | 
 |    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and | 
 |    * - In encoder, 'x->tmp_conv_dst' or | 
 |    * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'. | 
 |    */ | 
 |   CONV_BUF_TYPE *tmp_conv_dst; | 
 |   /*! | 
 |    * Temporary buffers used to build OBMC prediction by above (index 0) and left | 
 |    * (index 1) predictors respectively. | 
 |    * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'. | 
 |    * There are pointers to actual buffers allocated elsewhere: e.g. | 
 |    * - In decoder, 'pbi->td.tmp_obmc_bufs' or | 
 |    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and | 
 |    * -In encoder, 'x->tmp_pred_bufs' or | 
 |    * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'. | 
 |    */ | 
 |   uint8_t *tmp_obmc_bufs[2]; | 
 | } MACROBLOCKD; | 
 |  | 
 | /*!\cond */ | 
 |  | 
 | static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) { | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 |   return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; | 
 | #else | 
 |   (void)xd; | 
 |   return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 |   return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |              ? CONVERT_TO_BYTEPTR(buf16) | 
 |              : buf16; | 
 | #else | 
 |   (void)xd; | 
 |   return buf16; | 
 | #endif | 
 | } | 
 |  | 
 | typedef struct BitDepthInfo { | 
 |   int bit_depth; | 
 |   /*! Is the image buffer high bit depth? | 
 |    * Low bit depth buffer uses uint8_t. | 
 |    * High bit depth buffer uses uint16_t. | 
 |    * Equivalent to cm->seq_params->use_highbitdepth | 
 |    */ | 
 |   int use_highbitdepth_buf; | 
 | } BitDepthInfo; | 
 |  | 
 | static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) { | 
 |   BitDepthInfo bit_depth_info; | 
 |   bit_depth_info.bit_depth = xd->bd; | 
 |   bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd); | 
 |   assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf, | 
 |                  bit_depth_info.bit_depth == 8)); | 
 |   return bit_depth_info; | 
 | } | 
 |  | 
 | static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { | 
 |   switch (bsize) { | 
 |     case BLOCK_4X4: return 0; | 
 |     case BLOCK_8X8: return 1; | 
 |     case BLOCK_16X16: return 2; | 
 |     case BLOCK_32X32: return 3; | 
 |     case BLOCK_64X64: return 4; | 
 |     case BLOCK_128X128: return 5; | 
 |     default: return SQR_BLOCK_SIZES; | 
 |   } | 
 | } | 
 |  | 
 | // For a square block size 'bsize', returns the size of the sub-blocks used by | 
 | // the given partition type. If the partition produces sub-blocks of different | 
 | // sizes, then the function returns the largest sub-block size. | 
 | // Implements the Partition_Subsize lookup table in the spec (Section 9.3. | 
 | // Conversion tables). | 
 | // Note: the input block size should be square. | 
 | // Otherwise it's considered invalid. | 
 | static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, | 
 |                                                PARTITION_TYPE partition) { | 
 |   if (partition == PARTITION_INVALID) { | 
 |     return BLOCK_INVALID; | 
 |   } else { | 
 |     const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); | 
 |     return sqr_bsize_idx >= SQR_BLOCK_SIZES | 
 |                ? BLOCK_INVALID | 
 |                : subsize_lookup[partition][sqr_bsize_idx]; | 
 |   } | 
 | } | 
 |  | 
 | static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, | 
 |                                      PLANE_TYPE plane_type) { | 
 |   static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { | 
 |     DCT_DCT,    // DC_PRED | 
 |     ADST_DCT,   // V_PRED | 
 |     DCT_ADST,   // H_PRED | 
 |     DCT_DCT,    // D45_PRED | 
 |     ADST_ADST,  // D135_PRED | 
 |     ADST_DCT,   // D113_PRED | 
 |     DCT_ADST,   // D157_PRED | 
 |     DCT_ADST,   // D203_PRED | 
 |     ADST_DCT,   // D67_PRED | 
 |     ADST_ADST,  // SMOOTH_PRED | 
 |     ADST_DCT,   // SMOOTH_V_PRED | 
 |     DCT_ADST,   // SMOOTH_H_PRED | 
 |     ADST_ADST,  // PAETH_PRED | 
 |   }; | 
 |   const PREDICTION_MODE mode = | 
 |       (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); | 
 |   assert(mode < INTRA_MODES); | 
 |   return _intra_mode_to_tx_type[mode]; | 
 | } | 
 |  | 
 | static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } | 
 |  | 
 | static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { | 
 |   return bsize > BLOCK_4X4; | 
 | } | 
 |  | 
 | // Number of transform types in each set type | 
 | static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { | 
 |   1, 2, 5, 7, 12, 16, | 
 | }; | 
 |  | 
 | static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { | 
 |   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, | 
 | }; | 
 |  | 
 | // The bitmask corresponds to the transform types as defined in | 
 | // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable | 
 | // the use of the corresponding transform type in that table. | 
 | // The av1_derived_intra_tx_used_flag table is used when | 
 | // use_reduced_intra_txset is set to 2, where one only searches | 
 | // the transform types derived from residual statistics. | 
 | static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = { | 
 |   0x0209,  // DC_PRED:       0000 0010 0000 1001 | 
 |   0x0403,  // V_PRED:        0000 0100 0000 0011 | 
 |   0x0805,  // H_PRED:        0000 1000 0000 0101 | 
 |   0x020F,  // D45_PRED:      0000 0010 0000 1111 | 
 |   0x0009,  // D135_PRED:     0000 0000 0000 1001 | 
 |   0x0009,  // D113_PRED:     0000 0000 0000 1001 | 
 |   0x0009,  // D157_PRED:     0000 0000 0000 1001 | 
 |   0x0805,  // D203_PRED:     0000 1000 0000 0101 | 
 |   0x0403,  // D67_PRED:      0000 0100 0000 0011 | 
 |   0x0205,  // SMOOTH_PRED:   0000 0010 0000 1001 | 
 |   0x0403,  // SMOOTH_V_PRED: 0000 0100 0000 0011 | 
 |   0x0805,  // SMOOTH_H_PRED: 0000 1000 0000 0101 | 
 |   0x0209,  // PAETH_PRED:    0000 0010 0000 1001 | 
 | }; | 
 |  | 
 | static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = { | 
 |   0x080F,  // DC_PRED:       0000 1000 0000 1111 | 
 |   0x040F,  // V_PRED:        0000 0100 0000 1111 | 
 |   0x080F,  // H_PRED:        0000 1000 0000 1111 | 
 |   0x020F,  // D45_PRED:      0000 0010 0000 1111 | 
 |   0x080F,  // D135_PRED:     0000 1000 0000 1111 | 
 |   0x040F,  // D113_PRED:     0000 0100 0000 1111 | 
 |   0x080F,  // D157_PRED:     0000 1000 0000 1111 | 
 |   0x080F,  // D203_PRED:     0000 1000 0000 1111 | 
 |   0x040F,  // D67_PRED:      0000 0100 0000 1111 | 
 |   0x080F,  // SMOOTH_PRED:   0000 1000 0000 1111 | 
 |   0x040F,  // SMOOTH_V_PRED: 0000 0100 0000 1111 | 
 |   0x080F,  // SMOOTH_H_PRED: 0000 1000 0000 1111 | 
 |   0x0C0E,  // PAETH_PRED:    0000 1100 0000 1110 | 
 | }; | 
 |  | 
 | static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { | 
 |   0x0001,  // 0000 0000 0000 0001 | 
 |   0x0201,  // 0000 0010 0000 0001 | 
 |   0x020F,  // 0000 0010 0000 1111 | 
 |   0x0E0F,  // 0000 1110 0000 1111 | 
 |   0x0FFF,  // 0000 1111 1111 1111 | 
 |   0xFFFF,  // 1111 1111 1111 1111 | 
 | }; | 
 |  | 
 | static const TxSetType av1_ext_tx_set_lookup[2][2] = { | 
 |   { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX }, | 
 |   { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }, | 
 | }; | 
 |  | 
 | static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, | 
 |                                                 int use_reduced_set) { | 
 |   const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; | 
 |   if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; | 
 |   if (tx_size_sqr_up == TX_32X32) | 
 |     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; | 
 |   if (use_reduced_set) | 
 |     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; | 
 |   const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; | 
 |   return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16]; | 
 | } | 
 |  | 
 | // Maps tx set types to the indices. | 
 | static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { | 
 |   { // Intra | 
 |     0, -1, 2, 1, -1, -1 }, | 
 |   { // Inter | 
 |     0, 3, -1, -1, 2, 1 }, | 
 | }; | 
 |  | 
 | static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, | 
 |                                  int use_reduced_set) { | 
 |   const TxSetType set_type = | 
 |       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); | 
 |   return ext_tx_set_index[is_inter][set_type]; | 
 | } | 
 |  | 
 | static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, | 
 |                                    int use_reduced_set) { | 
 |   const int set_type = | 
 |       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); | 
 |   return av1_num_ext_tx_set[set_type]; | 
 | } | 
 |  | 
 | #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) | 
 | #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) | 
 |  | 
 | static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { | 
 |   const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; | 
 |   const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; | 
 |   if (bsize == BLOCK_4X4) | 
 |     return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); | 
 |   if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) | 
 |     return max_rect_tx_size; | 
 |   else | 
 |     return largest_tx_size; | 
 | } | 
 |  | 
 | static const uint8_t mode_to_angle_map[] = { | 
 |   0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, | 
 | }; | 
 |  | 
 | // Converts block_index for given transform size to index of the block in raster | 
 | // order. | 
 | static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, | 
 |                                                   int block_idx) { | 
 |   // For transform size 4x8, the possible block_idx values are 0 & 2, because | 
 |   // block_idx values are incremented in steps of size 'tx_width_unit x | 
 |   // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to | 
 |   // block number 1 in raster order, inside an 8x8 MI block. | 
 |   // For any other transform size, the two indices are equivalent. | 
 |   return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; | 
 | } | 
 |  | 
 | // Inverse of above function. | 
 | // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. | 
 | static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, | 
 |                                                   int raster_order) { | 
 |   assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); | 
 |   // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. | 
 |   return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; | 
 | } | 
 |  | 
 | static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, | 
 |                                           const MACROBLOCKD *xd, | 
 |                                           TX_SIZE tx_size, | 
 |                                           int use_screen_content_tools) { | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |  | 
 |   if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y || | 
 |       xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 || | 
 |       use_screen_content_tools) | 
 |     return DEFAULT_INTER_TX_TYPE; | 
 |  | 
 |   return intra_mode_to_tx_type(mbmi, plane_type); | 
 | } | 
 |  | 
 | // Implements the get_plane_residual_size() function in the spec (Section | 
 | // 5.11.38. Get plane residual size function). | 
 | static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, | 
 |                                               int subsampling_x, | 
 |                                               int subsampling_y) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   assert(subsampling_x >= 0 && subsampling_x < 2); | 
 |   assert(subsampling_y >= 0 && subsampling_y < 2); | 
 |   return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y]; | 
 | } | 
 |  | 
 | /* | 
 |  * Logic to generate the lookup tables: | 
 |  * | 
 |  * TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) | 
 |  *   txs = sub_tx_size_map[txs]; | 
 |  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |  * const int bw_uint_log2 = mi_size_wide_log2[bsize]; | 
 |  * const int stride_log2 = bw_uint_log2 - tx_w_log2; | 
 |  */ | 
 | static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, | 
 |                                          int blk_col) { | 
 |   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3, | 
 |   }; | 
 |   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2, | 
 |   }; | 
 |   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1, | 
 |   }; | 
 |   const int index = | 
 |       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + | 
 |       (blk_col >> tw_w_log2_table[bsize]); | 
 |   assert(index < INTER_TX_SIZE_BUF_LEN); | 
 |   return index; | 
 | } | 
 |  | 
 | #if CONFIG_INSPECTION | 
 | /* | 
 |  * Here is the logic to generate the lookup tables: | 
 |  * | 
 |  * TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level) | 
 |  *   txs = sub_tx_size_map[txs]; | 
 |  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |  * const int bw_uint_log2 = mi_size_wide_log2[bsize]; | 
 |  * const int stride_log2 = bw_uint_log2 - tx_w_log2; | 
 |  */ | 
 | static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, | 
 |                                          int blk_col) { | 
 |   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, | 
 |   }; | 
 |   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2, | 
 |   }; | 
 |   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = { | 
 |     0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2, | 
 |   }; | 
 |   const int index = | 
 |       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) + | 
 |       (blk_col >> tw_w_log2_table[bsize]); | 
 |   assert(index < TXK_TYPE_BUF_LEN); | 
 |   return index; | 
 | } | 
 | #endif  // CONFIG_INSPECTION | 
 |  | 
 | static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row, | 
 |                                     int blk_col, TX_SIZE tx_size, | 
 |                                     TX_TYPE tx_type) { | 
 |   const int stride = xd->tx_type_map_stride; | 
 |   xd->tx_type_map[blk_row * stride + blk_col] = tx_type; | 
 |  | 
 |   const int txw = tx_size_wide_unit[tx_size]; | 
 |   const int txh = tx_size_high_unit[tx_size]; | 
 |   // The 16x16 unit is due to the constraint from tx_64x64 which sets the | 
 |   // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block | 
 |   // size, the constraint takes effect in 32x16 / 16x32 size too. To solve | 
 |   // the intricacy, cover all the 16x16 units inside a 64 level transform. | 
 |   if (txw == tx_size_wide_unit[TX_64X64] || | 
 |       txh == tx_size_high_unit[TX_64X64]) { | 
 |     const int tx_unit = tx_size_wide_unit[TX_16X16]; | 
 |     for (int idy = 0; idy < txh; idy += tx_unit) { | 
 |       for (int idx = 0; idx < txw; idx += tx_unit) { | 
 |         xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd, | 
 |                                       PLANE_TYPE plane_type, int blk_row, | 
 |                                       int blk_col, TX_SIZE tx_size, | 
 |                                       int reduced_tx_set) { | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) { | 
 |     return DCT_DCT; | 
 |   } | 
 |  | 
 |   TX_TYPE tx_type; | 
 |   if (plane_type == PLANE_TYPE_Y) { | 
 |     tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; | 
 |   } else { | 
 |     if (is_inter_block(mbmi)) { | 
 |       // scale back to y plane's coordinate | 
 |       const struct macroblockd_plane *const pd = &xd->plane[plane_type]; | 
 |       blk_row <<= pd->subsampling_y; | 
 |       blk_col <<= pd->subsampling_x; | 
 |       tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; | 
 |     } else { | 
 |       // In intra mode, uv planes don't share the same prediction mode as y | 
 |       // plane, so the tx_type should not be shared | 
 |       tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV); | 
 |     } | 
 |     const TxSetType tx_set_type = | 
 |         av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set); | 
 |     if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT; | 
 |   } | 
 |   assert(tx_type < TX_TYPES); | 
 |   assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), | 
 |                                                  reduced_tx_set)][tx_type]); | 
 |   return tx_type; | 
 | } | 
 |  | 
 | void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, | 
 |                             const int num_planes); | 
 |  | 
 | /* | 
 |  * Logic to generate the lookup table: | 
 |  * | 
 |  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; | 
 |  * int depth = 0; | 
 |  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) { | 
 |  *   depth++; | 
 |  *   tx_size = sub_tx_size_map[tx_size]; | 
 |  * } | 
 |  */ | 
 | static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) { | 
 |   static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = { | 
 |     0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | 
 |   }; | 
 |   return bsize_to_max_depth_table[bsize]; | 
 | } | 
 |  | 
 | /* | 
 |  * Logic to generate the lookup table: | 
 |  * | 
 |  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; | 
 |  * assert(tx_size != TX_4X4); | 
 |  * int depth = 0; | 
 |  * while (tx_size != TX_4X4) { | 
 |  *   depth++; | 
 |  *   tx_size = sub_tx_size_map[tx_size]; | 
 |  * } | 
 |  * assert(depth < 10); | 
 |  */ | 
 | static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = { | 
 |     0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, | 
 |   }; | 
 |   const int depth = bsize_to_tx_size_depth_table[bsize]; | 
 |   assert(depth <= MAX_TX_CATS); | 
 |   return depth - 1; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) { | 
 |   TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
 |   TX_SIZE tx_size = max_tx_size; | 
 |   for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size]; | 
 |   return tx_size; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) { | 
 |   switch (tx_size) { | 
 |     case TX_64X64: | 
 |     case TX_64X32: | 
 |     case TX_32X64: return TX_32X32; | 
 |     case TX_64X16: return TX_32X16; | 
 |     case TX_16X64: return TX_16X32; | 
 |     default: return tx_size; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x, | 
 |                                             int subsampling_y) { | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(bsize, subsampling_x, subsampling_y); | 
 |   assert(plane_bsize < BLOCK_SIZES_ALL); | 
 |   const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize]; | 
 |   return av1_get_adjusted_tx_size(uv_tx); | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) { | 
 |   const MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   if (xd->lossless[mbmi->segment_id]) return TX_4X4; | 
 |   if (plane == 0) return mbmi->tx_size; | 
 |   const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; | 
 |   return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, | 
 |                                pd->subsampling_y); | 
 | } | 
 |  | 
 | void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                const int num_planes); | 
 |  | 
 | void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes); | 
 |  | 
 | void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes); | 
 |  | 
 | typedef void (*foreach_transformed_block_visitor)(int plane, int block, | 
 |                                                   int blk_row, int blk_col, | 
 |                                                   BLOCK_SIZE plane_bsize, | 
 |                                                   TX_SIZE tx_size, void *arg); | 
 |  | 
 | void av1_set_entropy_contexts(const MACROBLOCKD *xd, | 
 |                               struct macroblockd_plane *pd, int plane, | 
 |                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
 |                               int has_eob, int aoff, int loff); | 
 |  | 
 | #define MAX_INTERINTRA_SB_SQUARE 32 * 32 | 
 | static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) { | 
 |   return (mbmi->ref_frame[0] > INTRA_FRAME && | 
 |           mbmi->ref_frame[1] == INTRA_FRAME); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) { | 
 |   return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) { | 
 |   return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) { | 
 |   return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) { | 
 |   return is_interintra_allowed_bsize(mbmi->bsize) && | 
 |          is_interintra_allowed_mode(mbmi->mode) && | 
 |          is_interintra_allowed_ref(mbmi->ref_frame); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_bsize_group(int group) { | 
 |   int i; | 
 |   for (i = 0; i < BLOCK_SIZES_ALL; i++) { | 
 |     if (size_group_lookup[i] == group && | 
 |         is_interintra_allowed_bsize((BLOCK_SIZE)i)) { | 
 |       return 1; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->ref_frame[0] > INTRA_FRAME && | 
 |          mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi); | 
 | } | 
 |  | 
 | static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                        int plane) { | 
 |   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; | 
 |   const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize]; | 
 |   if (plane == 0) return max_txsize;            // luma | 
 |   return av1_get_adjusted_tx_size(max_txsize);  // chroma | 
 | } | 
 |  | 
 | static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) { | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 | } | 
 |  | 
 | static INLINE int is_motion_variation_allowed_compound( | 
 |     const MB_MODE_INFO *mbmi) { | 
 |   return !has_second_ref(mbmi); | 
 | } | 
 |  | 
 | // input: log2 of length, 0(4), 1(8), ... | 
 | static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 }; | 
 |  | 
 | static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->overlappable_neighbors != 0; | 
 | } | 
 |  | 
 | static INLINE MOTION_MODE | 
 | motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd, | 
 |                     const MB_MODE_INFO *mbmi, int allow_warped_motion) { | 
 |   if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION; | 
 |   if (xd->cur_frame_force_integer_mv == 0) { | 
 |     const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype; | 
 |     if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION; | 
 |   } | 
 |   if (is_motion_variation_allowed_bsize(mbmi->bsize) && | 
 |       is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME && | 
 |       is_motion_variation_allowed_compound(mbmi)) { | 
 |     assert(!has_second_ref(mbmi)); | 
 |     if (mbmi->num_proj_ref >= 1 && allow_warped_motion && | 
 |         !xd->cur_frame_force_integer_mv && | 
 |         !av1_is_scaled(xd->block_ref_scale_factors[0])) { | 
 |       return WARPED_CAUSAL; | 
 |     } | 
 |     return OBMC_CAUSAL; | 
 |   } | 
 |   return SIMPLE_TRANSLATION; | 
 | } | 
 |  | 
 | static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) { | 
 |   return (is_inter_block(mbmi)); | 
 | } | 
 |  | 
 | static INLINE int av1_allow_palette(int allow_screen_content_tools, | 
 |                                     BLOCK_SIZE sb_type) { | 
 |   assert(sb_type < BLOCK_SIZES_ALL); | 
 |   return allow_screen_content_tools && | 
 |          block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH && | 
 |          block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT && | 
 |          sb_type >= BLOCK_8X8; | 
 | } | 
 |  | 
 | // Returns sub-sampled dimensions of the given block. | 
 | // The output values for 'rows_within_bounds' and 'cols_within_bounds' will | 
 | // differ from 'height' and 'width' when part of the block is outside the | 
 | // right | 
 | // and/or bottom image boundary. | 
 | static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane, | 
 |                                             const MACROBLOCKD *xd, int *width, | 
 |                                             int *height, | 
 |                                             int *rows_within_bounds, | 
 |                                             int *cols_within_bounds) { | 
 |   const int block_height = block_size_high[bsize]; | 
 |   const int block_width = block_size_wide[bsize]; | 
 |   const int block_rows = (xd->mb_to_bottom_edge >= 0) | 
 |                              ? block_height | 
 |                              : (xd->mb_to_bottom_edge >> 3) + block_height; | 
 |   const int block_cols = (xd->mb_to_right_edge >= 0) | 
 |                              ? block_width | 
 |                              : (xd->mb_to_right_edge >> 3) + block_width; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); | 
 |   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); | 
 |   assert(block_width >= block_cols); | 
 |   assert(block_height >= block_rows); | 
 |   const int plane_block_width = block_width >> pd->subsampling_x; | 
 |   const int plane_block_height = block_height >> pd->subsampling_y; | 
 |   // Special handling for chroma sub8x8. | 
 |   const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4; | 
 |   const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4; | 
 |   if (width) { | 
 |     *width = plane_block_width + 2 * is_chroma_sub8_x; | 
 |     assert(*width >= 0); | 
 |   } | 
 |   if (height) { | 
 |     *height = plane_block_height + 2 * is_chroma_sub8_y; | 
 |     assert(*height >= 0); | 
 |   } | 
 |   if (rows_within_bounds) { | 
 |     *rows_within_bounds = | 
 |         (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y; | 
 |     assert(*rows_within_bounds >= 0); | 
 |   } | 
 |   if (cols_within_bounds) { | 
 |     *cols_within_bounds = | 
 |         (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x; | 
 |     assert(*cols_within_bounds >= 0); | 
 |   } | 
 | } | 
 |  | 
 | /* clang-format off */ | 
 | // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES. | 
 | typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS] | 
 |                               [CDF_SIZE(PALETTE_COLORS)]; | 
 | // Pointer to a const three-dimensional array whose first dimension is | 
 | // PALETTE_SIZES. | 
 | typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS]; | 
 | /* clang-format on */ | 
 |  | 
 | typedef struct { | 
 |   int rows; | 
 |   int cols; | 
 |   int n_colors; | 
 |   int plane_width; | 
 |   int plane_height; | 
 |   uint8_t *color_map; | 
 |   MapCdf map_cdf; | 
 |   ColorCost color_cost; | 
 | } Av1ColorMapParam; | 
 |  | 
 | static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd, | 
 |                                             const MB_MODE_INFO *mbmi) { | 
 |   int ref; | 
 |  | 
 |   // First check if all modes are GLOBALMV | 
 |   if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0; | 
 |  | 
 |   if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2) | 
 |     return 0; | 
 |  | 
 |   // Now check if all global motion is non translational | 
 |   for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
 |     if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static INLINE PLANE_TYPE get_plane_type(int plane) { | 
 |   return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; | 
 | } | 
 |  | 
 | static INLINE int av1_get_max_eob(TX_SIZE tx_size) { | 
 |   if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) { | 
 |     return 1024; | 
 |   } | 
 |   if (tx_size == TX_16X64 || tx_size == TX_64X16) { | 
 |     return 512; | 
 |   } | 
 |   return tx_size_2d[tx_size]; | 
 | } | 
 |  | 
 | /*!\endcond */ | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_COMMON_BLOCKD_H_ |