|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "aom_dsp/aom_simd.h" | 
|  | #define SIMD_FUNC(name) name##_avx2 | 
|  | #include "av1/common/cdef_block_simd.h" | 
|  |  | 
|  | // Mask used to shuffle the elements present in 256bit register. | 
|  | const int shuffle_reg_256bit[8] = { 0x0b0a0d0c, 0x07060908, 0x03020504, | 
|  | 0x0f0e0100, 0x0b0a0d0c, 0x07060908, | 
|  | 0x03020504, 0x0f0e0100 }; | 
|  |  | 
|  | /* partial A is a 16-bit vector of the form: | 
|  | [x8 - - x1 | x16 - - x9] and partial B has the form: | 
|  | [0  y1 - y7 | 0 y9 - y15]. | 
|  | This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... | 
|  | (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 on each 128-bit lane. Here the C1..C8 constants | 
|  | are in const1 and const2. */ | 
|  | static INLINE __m256i fold_mul_and_sum_avx2(__m256i *partiala, | 
|  | __m256i *partialb, | 
|  | const __m256i *const1, | 
|  | const __m256i *const2) { | 
|  | __m256i tmp; | 
|  | /* Reverse partial B. */ | 
|  | *partialb = _mm256_shuffle_epi8( | 
|  | *partialb, _mm256_loadu_si256((const __m256i *)shuffle_reg_256bit)); | 
|  |  | 
|  | /* Interleave the x and y values of identical indices and pair x8 with 0. */ | 
|  | tmp = *partiala; | 
|  | *partiala = _mm256_unpacklo_epi16(*partiala, *partialb); | 
|  | *partialb = _mm256_unpackhi_epi16(tmp, *partialb); | 
|  |  | 
|  | /* Square and add the corresponding x and y values. */ | 
|  | *partiala = _mm256_madd_epi16(*partiala, *partiala); | 
|  | *partialb = _mm256_madd_epi16(*partialb, *partialb); | 
|  | /* Multiply by constant. */ | 
|  | *partiala = _mm256_mullo_epi32(*partiala, *const1); | 
|  | *partialb = _mm256_mullo_epi32(*partialb, *const2); | 
|  | /* Sum all results. */ | 
|  | *partiala = _mm256_add_epi32(*partiala, *partialb); | 
|  | return *partiala; | 
|  | } | 
|  |  | 
|  | static INLINE __m256i hsum4_avx2(__m256i *x0, __m256i *x1, __m256i *x2, | 
|  | __m256i *x3) { | 
|  | const __m256i t0 = _mm256_unpacklo_epi32(*x0, *x1); | 
|  | const __m256i t1 = _mm256_unpacklo_epi32(*x2, *x3); | 
|  | const __m256i t2 = _mm256_unpackhi_epi32(*x0, *x1); | 
|  | const __m256i t3 = _mm256_unpackhi_epi32(*x2, *x3); | 
|  |  | 
|  | *x0 = _mm256_unpacklo_epi64(t0, t1); | 
|  | *x1 = _mm256_unpackhi_epi64(t0, t1); | 
|  | *x2 = _mm256_unpacklo_epi64(t2, t3); | 
|  | *x3 = _mm256_unpackhi_epi64(t2, t3); | 
|  | return _mm256_add_epi32(_mm256_add_epi32(*x0, *x1), | 
|  | _mm256_add_epi32(*x2, *x3)); | 
|  | } | 
|  |  | 
|  | /* Computes cost for directions 0, 5, 6 and 7. We can call this function again | 
|  | to compute the remaining directions. */ | 
|  | static INLINE __m256i compute_directions_avx2(__m256i *lines, | 
|  | int32_t cost_frist_8x8[4], | 
|  | int32_t cost_second_8x8[4]) { | 
|  | __m256i partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; | 
|  | __m256i partial6; | 
|  | __m256i tmp; | 
|  | /* Partial sums for lines 0 and 1. */ | 
|  | partial4a = _mm256_slli_si256(lines[0], 14); | 
|  | partial4b = _mm256_srli_si256(lines[0], 2); | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[1], 12)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[1], 4)); | 
|  | tmp = _mm256_add_epi16(lines[0], lines[1]); | 
|  | partial5a = _mm256_slli_si256(tmp, 10); | 
|  | partial5b = _mm256_srli_si256(tmp, 6); | 
|  | partial7a = _mm256_slli_si256(tmp, 4); | 
|  | partial7b = _mm256_srli_si256(tmp, 12); | 
|  | partial6 = tmp; | 
|  |  | 
|  | /* Partial sums for lines 2 and 3. */ | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[2], 10)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[2], 6)); | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[3], 8)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[3], 8)); | 
|  | tmp = _mm256_add_epi16(lines[2], lines[3]); | 
|  | partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 8)); | 
|  | partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 8)); | 
|  | partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 6)); | 
|  | partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 10)); | 
|  | partial6 = _mm256_add_epi16(partial6, tmp); | 
|  |  | 
|  | /* Partial sums for lines 4 and 5. */ | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[4], 6)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[4], 10)); | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[5], 4)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[5], 12)); | 
|  | tmp = _mm256_add_epi16(lines[4], lines[5]); | 
|  | partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 6)); | 
|  | partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 10)); | 
|  | partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 8)); | 
|  | partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 8)); | 
|  | partial6 = _mm256_add_epi16(partial6, tmp); | 
|  |  | 
|  | /* Partial sums for lines 6 and 7. */ | 
|  | partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[6], 2)); | 
|  | partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[6], 14)); | 
|  | partial4a = _mm256_add_epi16(partial4a, lines[7]); | 
|  | tmp = _mm256_add_epi16(lines[6], lines[7]); | 
|  | partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 4)); | 
|  | partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 12)); | 
|  | partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 10)); | 
|  | partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 6)); | 
|  | partial6 = _mm256_add_epi16(partial6, tmp); | 
|  |  | 
|  | const __m256i const_reg_1 = | 
|  | _mm256_set_epi32(210, 280, 420, 840, 210, 280, 420, 840); | 
|  | const __m256i const_reg_2 = | 
|  | _mm256_set_epi32(105, 120, 140, 168, 105, 120, 140, 168); | 
|  | const __m256i const_reg_3 = _mm256_set_epi32(210, 420, 0, 0, 210, 420, 0, 0); | 
|  | const __m256i const_reg_4 = | 
|  | _mm256_set_epi32(105, 105, 105, 140, 105, 105, 105, 140); | 
|  |  | 
|  | /* Compute costs in terms of partial sums. */ | 
|  | partial4a = | 
|  | fold_mul_and_sum_avx2(&partial4a, &partial4b, &const_reg_1, &const_reg_2); | 
|  | partial7a = | 
|  | fold_mul_and_sum_avx2(&partial7a, &partial7b, &const_reg_3, &const_reg_4); | 
|  | partial5a = | 
|  | fold_mul_and_sum_avx2(&partial5a, &partial5b, &const_reg_3, &const_reg_4); | 
|  | partial6 = _mm256_madd_epi16(partial6, partial6); | 
|  | partial6 = _mm256_mullo_epi32(partial6, _mm256_set1_epi32(105)); | 
|  |  | 
|  | partial4a = hsum4_avx2(&partial4a, &partial5a, &partial6, &partial7a); | 
|  | _mm_storeu_si128((__m128i *)cost_frist_8x8, | 
|  | _mm256_castsi256_si128(partial4a)); | 
|  | _mm_storeu_si128((__m128i *)cost_second_8x8, | 
|  | _mm256_extractf128_si256(partial4a, 1)); | 
|  |  | 
|  | return partial4a; | 
|  | } | 
|  |  | 
|  | /* transpose and reverse the order of the lines -- equivalent to a 90-degree | 
|  | counter-clockwise rotation of the pixels. */ | 
|  | static INLINE void array_reverse_transpose_8x8_avx2(__m256i *in, __m256i *res) { | 
|  | const __m256i tr0_0 = _mm256_unpacklo_epi16(in[0], in[1]); | 
|  | const __m256i tr0_1 = _mm256_unpacklo_epi16(in[2], in[3]); | 
|  | const __m256i tr0_2 = _mm256_unpackhi_epi16(in[0], in[1]); | 
|  | const __m256i tr0_3 = _mm256_unpackhi_epi16(in[2], in[3]); | 
|  | const __m256i tr0_4 = _mm256_unpacklo_epi16(in[4], in[5]); | 
|  | const __m256i tr0_5 = _mm256_unpacklo_epi16(in[6], in[7]); | 
|  | const __m256i tr0_6 = _mm256_unpackhi_epi16(in[4], in[5]); | 
|  | const __m256i tr0_7 = _mm256_unpackhi_epi16(in[6], in[7]); | 
|  |  | 
|  | const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1); | 
|  | const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_4, tr0_5); | 
|  | const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1); | 
|  | const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_4, tr0_5); | 
|  | const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_2, tr0_3); | 
|  | const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7); | 
|  | const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_2, tr0_3); | 
|  | const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7); | 
|  |  | 
|  | res[7] = _mm256_unpacklo_epi64(tr1_0, tr1_1); | 
|  | res[6] = _mm256_unpackhi_epi64(tr1_0, tr1_1); | 
|  | res[5] = _mm256_unpacklo_epi64(tr1_2, tr1_3); | 
|  | res[4] = _mm256_unpackhi_epi64(tr1_2, tr1_3); | 
|  | res[3] = _mm256_unpacklo_epi64(tr1_4, tr1_5); | 
|  | res[2] = _mm256_unpackhi_epi64(tr1_4, tr1_5); | 
|  | res[1] = _mm256_unpacklo_epi64(tr1_6, tr1_7); | 
|  | res[0] = _mm256_unpackhi_epi64(tr1_6, tr1_7); | 
|  | } | 
|  |  | 
|  | void cdef_find_dir_dual_avx2(const uint16_t *img1, const uint16_t *img2, | 
|  | int stride, int32_t *var_out_1st, | 
|  | int32_t *var_out_2nd, int coeff_shift, | 
|  | int *out_dir_1st_8x8, int *out_dir_2nd_8x8) { | 
|  | int32_t cost_first_8x8[8]; | 
|  | int32_t cost_second_8x8[8]; | 
|  | // Used to store the best cost for 2 8x8's. | 
|  | int32_t best_cost[2] = { 0 }; | 
|  | // Best direction for 2 8x8's. | 
|  | int best_dir[2] = { 0 }; | 
|  |  | 
|  | const __m128i const_coeff_shift_reg = _mm_cvtsi32_si128(coeff_shift); | 
|  | const __m256i const_128_reg = _mm256_set1_epi16(128); | 
|  | __m256i lines[8]; | 
|  | for (int i = 0; i < 8; i++) { | 
|  | const __m128i src_1 = _mm_loadu_si128((const __m128i *)&img1[i * stride]); | 
|  | const __m128i src_2 = _mm_loadu_si128((const __m128i *)&img2[i * stride]); | 
|  |  | 
|  | lines[i] = _mm256_insertf128_si256(_mm256_castsi128_si256(src_1), src_2, 1); | 
|  | lines[i] = _mm256_sub_epi16( | 
|  | _mm256_sra_epi16(lines[i], const_coeff_shift_reg), const_128_reg); | 
|  | } | 
|  |  | 
|  | /* Compute "mostly vertical" directions. */ | 
|  | const __m256i dir47 = | 
|  | compute_directions_avx2(lines, cost_first_8x8 + 4, cost_second_8x8 + 4); | 
|  |  | 
|  | /* Transpose and reverse the order of the lines. */ | 
|  | array_reverse_transpose_8x8_avx2(lines, lines); | 
|  |  | 
|  | /* Compute "mostly horizontal" directions. */ | 
|  | const __m256i dir03 = | 
|  | compute_directions_avx2(lines, cost_first_8x8, cost_second_8x8); | 
|  |  | 
|  | __m256i max = _mm256_max_epi32(dir03, dir47); | 
|  | max = | 
|  | _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 8), | 
|  | _mm256_slli_si256(max, 16 - (8)))); | 
|  | max = | 
|  | _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 4), | 
|  | _mm256_slli_si256(max, 16 - (4)))); | 
|  |  | 
|  | const __m128i first_8x8_output = _mm256_castsi256_si128(max); | 
|  | const __m128i second_8x8_output = _mm256_extractf128_si256(max, 1); | 
|  | const __m128i cmpeg_res_00 = | 
|  | _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir47)); | 
|  | const __m128i cmpeg_res_01 = | 
|  | _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir03)); | 
|  | const __m128i cmpeg_res_10 = | 
|  | _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir47, 1)); | 
|  | const __m128i cmpeg_res_11 = | 
|  | _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir03, 1)); | 
|  | const __m128i t_first_8x8 = _mm_packs_epi32(cmpeg_res_01, cmpeg_res_00); | 
|  | const __m128i t_second_8x8 = _mm_packs_epi32(cmpeg_res_11, cmpeg_res_10); | 
|  |  | 
|  | best_cost[0] = _mm_cvtsi128_si32(_mm256_castsi256_si128(max)); | 
|  | best_cost[1] = _mm_cvtsi128_si32(second_8x8_output); | 
|  | best_dir[0] = _mm_movemask_epi8(_mm_packs_epi16(t_first_8x8, t_first_8x8)); | 
|  | best_dir[0] = | 
|  | get_msb(best_dir[0] ^ (best_dir[0] - 1));  // Count trailing zeros | 
|  | best_dir[1] = _mm_movemask_epi8(_mm_packs_epi16(t_second_8x8, t_second_8x8)); | 
|  | best_dir[1] = | 
|  | get_msb(best_dir[1] ^ (best_dir[1] - 1));  // Count trailing zeros | 
|  |  | 
|  | /* Difference between the optimal variance and the variance along the | 
|  | orthogonal direction. Again, the sum(x^2) terms cancel out. */ | 
|  | *var_out_1st = best_cost[0] - cost_first_8x8[(best_dir[0] + 4) & 7]; | 
|  | *var_out_2nd = best_cost[1] - cost_second_8x8[(best_dir[1] + 4) & 7]; | 
|  |  | 
|  | /* We'd normally divide by 840, but dividing by 1024 is close enough | 
|  | for what we're going to do with this. */ | 
|  | *var_out_1st >>= 10; | 
|  | *var_out_2nd >>= 10; | 
|  | *out_dir_1st_8x8 = best_dir[0]; | 
|  | *out_dir_2nd_8x8 = best_dir[1]; | 
|  | } | 
|  |  | 
|  | void cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t *dst, int dstride, | 
|  | const uint8_t *src, int sstride, | 
|  | int width, int height) { | 
|  | int j = 0; | 
|  | int remaining_width = width; | 
|  | assert(height % 2 == 0); | 
|  | assert(height > 0); | 
|  | assert(width > 0); | 
|  |  | 
|  | // Process multiple 32 pixels at a time. | 
|  | if (remaining_width > 31) { | 
|  | int i = 0; | 
|  | do { | 
|  | j = 0; | 
|  | do { | 
|  | __m128i row00 = | 
|  | _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + (j + 0)]); | 
|  | __m128i row01 = _mm_loadu_si128( | 
|  | (const __m128i *)&src[(i + 0) * sstride + (j + 16)]); | 
|  | __m128i row10 = | 
|  | _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + (j + 0)]); | 
|  | __m128i row11 = _mm_loadu_si128( | 
|  | (const __m128i *)&src[(i + 1) * sstride + (j + 16)]); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 0)], | 
|  | _mm256_cvtepu8_epi16(row00)); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + (j + 16)], | 
|  | _mm256_cvtepu8_epi16(row01)); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 0)], | 
|  | _mm256_cvtepu8_epi16(row10)); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + (j + 16)], | 
|  | _mm256_cvtepu8_epi16(row11)); | 
|  | j += 32; | 
|  | } while (j <= width - 32); | 
|  | i += 2; | 
|  | } while (i < height); | 
|  | remaining_width = width & 31; | 
|  | } | 
|  |  | 
|  | // Process 16 pixels at a time. | 
|  | if (remaining_width > 15) { | 
|  | int i = 0; | 
|  | do { | 
|  | __m128i row0 = | 
|  | _mm_loadu_si128((const __m128i *)&src[(i + 0) * sstride + j]); | 
|  | __m128i row1 = | 
|  | _mm_loadu_si128((const __m128i *)&src[(i + 1) * sstride + j]); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 0) * dstride + j], | 
|  | _mm256_cvtepu8_epi16(row0)); | 
|  | _mm256_storeu_si256((__m256i *)&dst[(i + 1) * dstride + j], | 
|  | _mm256_cvtepu8_epi16(row1)); | 
|  | i += 2; | 
|  | } while (i < height); | 
|  | remaining_width = width & 15; | 
|  | j += 16; | 
|  | } | 
|  |  | 
|  | // Process 8 pixels at a time. | 
|  | if (remaining_width > 7) { | 
|  | int i = 0; | 
|  | do { | 
|  | __m128i row0 = | 
|  | _mm_loadl_epi64((const __m128i *)&src[(i + 0) * sstride + j]); | 
|  | __m128i row1 = | 
|  | _mm_loadl_epi64((const __m128i *)&src[(i + 1) * sstride + j]); | 
|  | _mm_storeu_si128((__m128i *)&dst[(i + 0) * dstride + j], | 
|  | _mm_unpacklo_epi8(row0, _mm_setzero_si128())); | 
|  | _mm_storeu_si128((__m128i *)&dst[(i + 1) * dstride + j], | 
|  | _mm_unpacklo_epi8(row1, _mm_setzero_si128())); | 
|  | i += 2; | 
|  | } while (i < height); | 
|  | remaining_width = width & 7; | 
|  | j += 8; | 
|  | } | 
|  |  | 
|  | // Process 4 pixels at a time. | 
|  | if (remaining_width > 3) { | 
|  | int i = 0; | 
|  | do { | 
|  | __m128i row0 = | 
|  | _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 0) * sstride + j])); | 
|  | __m128i row1 = | 
|  | _mm_cvtsi32_si128(*((const int32_t *)&src[(i + 1) * sstride + j])); | 
|  | _mm_storel_epi64((__m128i *)&dst[(i + 0) * dstride + j], | 
|  | _mm_unpacklo_epi8(row0, _mm_setzero_si128())); | 
|  | _mm_storel_epi64((__m128i *)&dst[(i + 1) * dstride + j], | 
|  | _mm_unpacklo_epi8(row1, _mm_setzero_si128())); | 
|  | i += 2; | 
|  | } while (i < height); | 
|  | remaining_width = width & 3; | 
|  | j += 4; | 
|  | } | 
|  |  | 
|  | // Process the remaining pixels. | 
|  | if (remaining_width) { | 
|  | for (int i = 0; i < height; i++) { | 
|  | for (int k = j; k < width; k++) { | 
|  | dst[i * dstride + k] = src[i * sstride + k]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } |