|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <float.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "config/aom_scale_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/binary_codes_writer.h" | 
|  | #include "aom_dsp/mathutils.h" | 
|  | #include "aom_dsp/psnr.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/restoration.h" | 
|  |  | 
|  | #include "av1/encoder/av1_quantize.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/picklpf.h" | 
|  | #include "av1/encoder/pickrst.h" | 
|  |  | 
|  | // When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed. | 
|  | // When set to RESTORE_TYPES we allow switchable. | 
|  | static const RestorationType force_restore_type = RESTORE_TYPES; | 
|  |  | 
|  | // Number of Wiener iterations | 
|  | #define NUM_WIENER_ITERS 5 | 
|  |  | 
|  | // Penalty factor for use of dual sgr | 
|  | #define DUAL_SGR_PENALTY_MULT 0.01 | 
|  |  | 
|  | // Working precision for Wiener filter coefficients | 
|  | #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) | 
|  |  | 
|  | #define SGRPROJ_EP_GRP1_START_IDX 0 | 
|  | #define SGRPROJ_EP_GRP1_END_IDX 9 | 
|  | #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4 | 
|  | #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2 | 
|  | static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6, | 
|  | 9 }; | 
|  | static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = { | 
|  | { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 }, | 
|  | { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 } | 
|  | }; | 
|  |  | 
|  | typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | const YV12_BUFFER_CONFIG *b); | 
|  | typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | const YV12_BUFFER_CONFIG *b, | 
|  | int hstart, int width, int vstart, | 
|  | int height); | 
|  | typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, | 
|  | int hstart, int width, int vstart, | 
|  | int height); | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | #define NUM_EXTRACTORS (3 * (1 + 1)) | 
|  | #else | 
|  | #define NUM_EXTRACTORS 3 | 
|  | #endif | 
|  | static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { | 
|  | aom_get_y_sse_part,        aom_get_u_sse_part, | 
|  | aom_get_v_sse_part, | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part, | 
|  | aom_highbd_get_v_sse_part, | 
|  | #endif | 
|  | }; | 
|  | static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = { | 
|  | aom_get_y_var,        aom_get_u_var,        aom_get_v_var, | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int64_t sse_restoration_unit(const RestorationTileLimits *limits, | 
|  | const YV12_BUFFER_CONFIG *src, | 
|  | const YV12_BUFFER_CONFIG *dst, int plane, | 
|  | int highbd) { | 
|  | return sse_part_extractors[3 * highbd + plane]( | 
|  | src, dst, limits->h_start, limits->h_end - limits->h_start, | 
|  | limits->v_start, limits->v_end - limits->v_start); | 
|  | } | 
|  |  | 
|  | static uint64_t var_restoration_unit(const RestorationTileLimits *limits, | 
|  | const YV12_BUFFER_CONFIG *src, int plane, | 
|  | int highbd) { | 
|  | return var_part_extractors[3 * highbd + plane]( | 
|  | src, limits->h_start, limits->h_end - limits->h_start, limits->v_start, | 
|  | limits->v_end - limits->v_start); | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | // The best coefficients for Wiener or Sgrproj restoration | 
|  | WienerInfo wiener; | 
|  | SgrprojInfo sgrproj; | 
|  |  | 
|  | // The sum of squared errors for this rtype. | 
|  | int64_t sse[RESTORE_SWITCHABLE_TYPES]; | 
|  |  | 
|  | // The rtype to use for this unit given a frame rtype as | 
|  | // index. Indices: WIENER, SGRPROJ, SWITCHABLE. | 
|  | RestorationType best_rtype[RESTORE_TYPES - 1]; | 
|  |  | 
|  | // This flag will be set based on the speed feature | 
|  | // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning. | 
|  | uint8_t skip_sgr_eval; | 
|  | } RestUnitSearchInfo; | 
|  |  | 
|  | typedef struct { | 
|  | const YV12_BUFFER_CONFIG *src; | 
|  | YV12_BUFFER_CONFIG *dst; | 
|  |  | 
|  | const AV1_COMMON *cm; | 
|  | const MACROBLOCK *x; | 
|  | int plane; | 
|  | int plane_width; | 
|  | int plane_height; | 
|  | RestUnitSearchInfo *rusi; | 
|  |  | 
|  | // Speed features | 
|  | const LOOP_FILTER_SPEED_FEATURES *lpf_sf; | 
|  |  | 
|  | uint8_t *dgd_buffer; | 
|  | int dgd_stride; | 
|  | const uint8_t *src_buffer; | 
|  | int src_stride; | 
|  |  | 
|  | // sse and bits are initialised by reset_rsc in search_rest_type | 
|  | int64_t sse; | 
|  | int64_t bits; | 
|  | int tile_y0, tile_stripe0; | 
|  |  | 
|  | // sgrproj and wiener are initialised by rsc_on_tile when starting the first | 
|  | // tile in the frame. | 
|  | SgrprojInfo sgrproj; | 
|  | WienerInfo wiener; | 
|  | PixelRect tile_rect; | 
|  | } RestSearchCtxt; | 
|  |  | 
|  | static AOM_INLINE void rsc_on_tile(void *priv) { | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | set_default_sgrproj(&rsc->sgrproj); | 
|  | set_default_wiener(&rsc->wiener); | 
|  | rsc->tile_stripe0 = 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) { | 
|  | rsc->sse = 0; | 
|  | rsc->bits = 0; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src, | 
|  | const AV1_COMMON *cm, const MACROBLOCK *x, | 
|  | const LOOP_FILTER_SPEED_FEATURES *lpf_sf, | 
|  | int plane, RestUnitSearchInfo *rusi, | 
|  | YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) { | 
|  | rsc->src = src; | 
|  | rsc->dst = dst; | 
|  | rsc->cm = cm; | 
|  | rsc->x = x; | 
|  | rsc->plane = plane; | 
|  | rsc->rusi = rusi; | 
|  | rsc->lpf_sf = lpf_sf; | 
|  |  | 
|  | const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; | 
|  | const int is_uv = plane != AOM_PLANE_Y; | 
|  | rsc->plane_width = src->crop_widths[is_uv]; | 
|  | rsc->plane_height = src->crop_heights[is_uv]; | 
|  | rsc->src_buffer = src->buffers[plane]; | 
|  | rsc->src_stride = src->strides[is_uv]; | 
|  | rsc->dgd_buffer = dgd->buffers[plane]; | 
|  | rsc->dgd_stride = dgd->strides[is_uv]; | 
|  | rsc->tile_rect = av1_whole_frame_rect(cm, is_uv); | 
|  | assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); | 
|  | assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); | 
|  | } | 
|  |  | 
|  | static int64_t try_restoration_unit(const RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | const PixelRect *tile_rect, | 
|  | const RestorationUnitInfo *rui) { | 
|  | const AV1_COMMON *const cm = rsc->cm; | 
|  | const int plane = rsc->plane; | 
|  | const int is_uv = plane > 0; | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | RestorationLineBuffers rlbs; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  | const int highbd = cm->seq_params->use_highbitdepth; | 
|  |  | 
|  | const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; | 
|  | // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be | 
|  | // also used in encoder. | 
|  | const int optimized_lr = 0; | 
|  |  | 
|  | av1_loop_restoration_filter_unit( | 
|  | limits, rui, &rsi->boundaries, &rlbs, tile_rect, rsc->tile_stripe0, | 
|  | is_uv && cm->seq_params->subsampling_x, | 
|  | is_uv && cm->seq_params->subsampling_y, highbd, bit_depth, | 
|  | fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], | 
|  | rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr); | 
|  |  | 
|  | return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); | 
|  | } | 
|  |  | 
|  | int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, | 
|  | int src_stride, const uint8_t *dat8, | 
|  | int dat_stride, int32_t *flt0, | 
|  | int flt0_stride, int32_t *flt1, | 
|  | int flt1_stride, int xq[2], | 
|  | const sgr_params_type *params) { | 
|  | int i, j; | 
|  | const uint8_t *src = src8; | 
|  | const uint8_t *dat = dat8; | 
|  | int64_t err = 0; | 
|  | if (params->r[0] > 0 && params->r[1] > 0) { | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); | 
|  | assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); | 
|  | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); | 
|  | int32_t v = u << SGRPROJ_PRJ_BITS; | 
|  | v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); | 
|  | const int32_t e = | 
|  | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | src += src_stride; | 
|  | flt0 += flt0_stride; | 
|  | flt1 += flt1_stride; | 
|  | } | 
|  | } else if (params->r[0] > 0) { | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); | 
|  | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); | 
|  | int32_t v = u << SGRPROJ_PRJ_BITS; | 
|  | v += xq[0] * (flt0[j] - u); | 
|  | const int32_t e = | 
|  | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | src += src_stride; | 
|  | flt0 += flt0_stride; | 
|  | } | 
|  | } else if (params->r[1] > 0) { | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); | 
|  | const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); | 
|  | int32_t v = u << SGRPROJ_PRJ_BITS; | 
|  | v += xq[1] * (flt1[j] - u); | 
|  | const int32_t e = | 
|  | ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | src += src_stride; | 
|  | flt1 += flt1_stride; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int32_t e = (int32_t)(dat[j]) - src[j]; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | src += src_stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width, | 
|  | int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, | 
|  | int32_t *flt0, int flt0_stride, | 
|  | int32_t *flt1, int flt1_stride, int xq[2], | 
|  | const sgr_params_type *params) { | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); | 
|  | int i, j; | 
|  | int64_t err = 0; | 
|  | const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); | 
|  | if (params->r[0] > 0 && params->r[1] > 0) { | 
|  | int xq0 = xq[0]; | 
|  | int xq1 = xq[1]; | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int32_t d = dat[j]; | 
|  | const int32_t s = src[j]; | 
|  | const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); | 
|  | int32_t v0 = flt0[j] - u; | 
|  | int32_t v1 = flt1[j] - u; | 
|  | int32_t v = half; | 
|  | v += xq0 * v0; | 
|  | v += xq1 * v1; | 
|  | const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | flt0 += flt0_stride; | 
|  | flt1 += flt1_stride; | 
|  | src += src_stride; | 
|  | } | 
|  | } else if (params->r[0] > 0 || params->r[1] > 0) { | 
|  | int exq; | 
|  | int32_t *flt; | 
|  | int flt_stride; | 
|  | if (params->r[0] > 0) { | 
|  | exq = xq[0]; | 
|  | flt = flt0; | 
|  | flt_stride = flt0_stride; | 
|  | } else { | 
|  | exq = xq[1]; | 
|  | flt = flt1; | 
|  | flt_stride = flt1_stride; | 
|  | } | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int32_t d = dat[j]; | 
|  | const int32_t s = src[j]; | 
|  | const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); | 
|  | int32_t v = half; | 
|  | v += exq * (flt[j] - u); | 
|  | const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | flt += flt_stride; | 
|  | src += src_stride; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < height; ++i) { | 
|  | for (j = 0; j < width; ++j) { | 
|  | const int32_t d = dat[j]; | 
|  | const int32_t s = src[j]; | 
|  | const int32_t e = d - s; | 
|  | err += ((int64_t)e * e); | 
|  | } | 
|  | dat += dat_stride; | 
|  | src += src_stride; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  |  | 
|  | static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, | 
|  | int src_stride, const uint8_t *dat8, | 
|  | int dat_stride, int use_highbitdepth, | 
|  | int32_t *flt0, int flt0_stride, | 
|  | int32_t *flt1, int flt1_stride, int *xqd, | 
|  | const sgr_params_type *params) { | 
|  | int xq[2]; | 
|  | av1_decode_xq(xqd, xq, params); | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (use_highbitdepth) { | 
|  | return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, xq, params); | 
|  |  | 
|  | } else { | 
|  | return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, xq, params); | 
|  | } | 
|  | #else | 
|  | (void)use_highbitdepth; | 
|  | return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, xq, params); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define USE_SGRPROJ_REFINEMENT_SEARCH 1 | 
|  | static int64_t finer_search_pixel_proj_error( | 
|  | const uint8_t *src8, int width, int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, | 
|  | int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, | 
|  | const sgr_params_type *params) { | 
|  | int64_t err = get_pixel_proj_error( | 
|  | src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, | 
|  | flt0_stride, flt1, flt1_stride, xqd, params); | 
|  | (void)start_step; | 
|  | #if USE_SGRPROJ_REFINEMENT_SEARCH | 
|  | int64_t err2; | 
|  | int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; | 
|  | int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; | 
|  | for (int s = start_step; s >= 1; s >>= 1) { | 
|  | for (int p = 0; p < 2; ++p) { | 
|  | if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { | 
|  | continue; | 
|  | } | 
|  | int skip = 0; | 
|  | do { | 
|  | if (xqd[p] - s >= tap_min[p]) { | 
|  | xqd[p] -= s; | 
|  | err2 = | 
|  | get_pixel_proj_error(src8, width, height, src_stride, dat8, | 
|  | dat_stride, use_highbitdepth, flt0, | 
|  | flt0_stride, flt1, flt1_stride, xqd, params); | 
|  | if (err2 > err) { | 
|  | xqd[p] += s; | 
|  | } else { | 
|  | err = err2; | 
|  | skip = 1; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | if (skip) break; | 
|  | do { | 
|  | if (xqd[p] + s <= tap_max[p]) { | 
|  | xqd[p] += s; | 
|  | err2 = | 
|  | get_pixel_proj_error(src8, width, height, src_stride, dat8, | 
|  | dat_stride, use_highbitdepth, flt0, | 
|  | flt0_stride, flt1, flt1_stride, xqd, params); | 
|  | if (err2 > err) { | 
|  | xqd[p] -= s; | 
|  | } else { | 
|  | err = err2; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | } | 
|  | } | 
|  | #endif  // USE_SGRPROJ_REFINEMENT_SEARCH | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) { | 
|  | if (dividend < 0) | 
|  | return (dividend - divisor / 2) / divisor; | 
|  | else | 
|  | return (dividend + divisor / 2) / divisor; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r0_r1_c( | 
|  | const uint8_t *src8, int width, int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, | 
|  | int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint8_t *src = src8; | 
|  | const uint8_t *dat = dat8; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; | 
|  | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; | 
|  | H[0][0] += (int64_t)f1 * f1; | 
|  | H[1][1] += (int64_t)f2 * f2; | 
|  | H[0][1] += (int64_t)f1 * f2; | 
|  | C[0] += (int64_t)f1 * s; | 
|  | C[1] += (int64_t)f2 * s; | 
|  | } | 
|  | } | 
|  | H[0][0] /= size; | 
|  | H[0][1] /= size; | 
|  | H[1][1] /= size; | 
|  | H[1][0] = H[0][1]; | 
|  | C[0] /= size; | 
|  | C[1] /= size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c( | 
|  | const uint8_t *src8, int width, int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, | 
|  | int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; | 
|  | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; | 
|  | H[0][0] += (int64_t)f1 * f1; | 
|  | H[1][1] += (int64_t)f2 * f2; | 
|  | H[0][1] += (int64_t)f1 * f2; | 
|  | C[0] += (int64_t)f1 * s; | 
|  | C[1] += (int64_t)f2 * s; | 
|  | } | 
|  | } | 
|  | H[0][0] /= size; | 
|  | H[0][1] /= size; | 
|  | H[1][1] /= size; | 
|  | H[1][0] = H[0][1]; | 
|  | C[0] /= size; | 
|  | C[1] /= size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r0_c(const uint8_t *src8, int width, | 
|  | int height, int src_stride, | 
|  | const uint8_t *dat8, | 
|  | int dat_stride, int32_t *flt0, | 
|  | int flt0_stride, int64_t H[2][2], | 
|  | int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint8_t *src = src8; | 
|  | const uint8_t *dat = dat8; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; | 
|  | H[0][0] += (int64_t)f1 * f1; | 
|  | C[0] += (int64_t)f1 * s; | 
|  | } | 
|  | } | 
|  | H[0][0] /= size; | 
|  | C[0] /= size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r0_high_bd_c( | 
|  | const uint8_t *src8, int width, int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, | 
|  | int64_t H[2][2], int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; | 
|  | H[0][0] += (int64_t)f1 * f1; | 
|  | C[0] += (int64_t)f1 * s; | 
|  | } | 
|  | } | 
|  | H[0][0] /= size; | 
|  | C[0] /= size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r1_c(const uint8_t *src8, int width, | 
|  | int height, int src_stride, | 
|  | const uint8_t *dat8, | 
|  | int dat_stride, int32_t *flt1, | 
|  | int flt1_stride, int64_t H[2][2], | 
|  | int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint8_t *src = src8; | 
|  | const uint8_t *dat = dat8; | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; | 
|  | H[1][1] += (int64_t)f2 * f2; | 
|  | C[1] += (int64_t)f2 * s; | 
|  | } | 
|  | } | 
|  | H[1][1] /= size; | 
|  | C[1] /= size; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void calc_proj_params_r1_high_bd_c( | 
|  | const uint8_t *src8, int width, int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, | 
|  | int64_t H[2][2], int64_t C[2]) { | 
|  | const int size = width * height; | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); | 
|  | for (int i = 0; i < height; ++i) { | 
|  | for (int j = 0; j < width; ++j) { | 
|  | const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); | 
|  | const int32_t s = | 
|  | (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; | 
|  | const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; | 
|  | H[1][1] += (int64_t)f2 * f2; | 
|  | C[1] += (int64_t)f2 * s; | 
|  | } | 
|  | } | 
|  | H[1][1] /= size; | 
|  | C[1] /= size; | 
|  | } | 
|  |  | 
|  | // The function calls 3 subfunctions for the following cases : | 
|  | // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements | 
|  | // of C and H need to be computed. | 
|  | // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are | 
|  | // non-zero and need to be computed. | 
|  | // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are | 
|  | // non-zero and need to be computed. | 
|  | void av1_calc_proj_params_c(const uint8_t *src8, int width, int height, | 
|  | int src_stride, const uint8_t *dat8, int dat_stride, | 
|  | int32_t *flt0, int flt0_stride, int32_t *flt1, | 
|  | int flt1_stride, int64_t H[2][2], int64_t C[2], | 
|  | const sgr_params_type *params) { | 
|  | if ((params->r[0] > 0) && (params->r[1] > 0)) { | 
|  | calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride, | 
|  | flt0, flt0_stride, flt1, flt1_stride, H, C); | 
|  | } else if (params->r[0] > 0) { | 
|  | calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride, | 
|  | flt0, flt0_stride, H, C); | 
|  | } else if (params->r[1] > 0) { | 
|  | calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride, | 
|  | flt1, flt1_stride, H, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height, | 
|  | int src_stride, const uint8_t *dat8, | 
|  | int dat_stride, int32_t *flt0, | 
|  | int flt0_stride, int32_t *flt1, | 
|  | int flt1_stride, int64_t H[2][2], | 
|  | int64_t C[2], | 
|  | const sgr_params_type *params) { | 
|  | if ((params->r[0] > 0) && (params->r[1] > 0)) { | 
|  | calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, H, C); | 
|  | } else if (params->r[0] > 0) { | 
|  | calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, H, C); | 
|  | } else if (params->r[1] > 0) { | 
|  | calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt1, flt1_stride, H, C); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_proj_subspace(const uint8_t *src8, int width, | 
|  | int height, int src_stride, | 
|  | const uint8_t *dat8, int dat_stride, | 
|  | int use_highbitdepth, int32_t *flt0, | 
|  | int flt0_stride, int32_t *flt1, | 
|  | int flt1_stride, int *xq, | 
|  | const sgr_params_type *params) { | 
|  | int64_t H[2][2] = { { 0, 0 }, { 0, 0 } }; | 
|  | int64_t C[2] = { 0, 0 }; | 
|  |  | 
|  | // Default values to be returned if the problem becomes ill-posed | 
|  | xq[0] = 0; | 
|  | xq[1] = 0; | 
|  |  | 
|  | if (!use_highbitdepth) { | 
|  | if ((width & 0x7) == 0) { | 
|  | av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride, | 
|  | flt0, flt0_stride, flt1, flt1_stride, H, C, params); | 
|  | } else { | 
|  | av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride, | 
|  | flt0, flt0_stride, flt1, flt1_stride, H, C, | 
|  | params); | 
|  | } | 
|  | } | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | else {  // NOLINT | 
|  | if ((width & 0x7) == 0) { | 
|  | av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, H, C, params); | 
|  | } else { | 
|  | av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8, | 
|  | dat_stride, flt0, flt0_stride, flt1, | 
|  | flt1_stride, H, C, params); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (params->r[0] == 0) { | 
|  | // H matrix is now only the scalar H[1][1] | 
|  | // C vector is now only the scalar C[1] | 
|  | const int64_t Det = H[1][1]; | 
|  | if (Det == 0) return;  // ill-posed, return default values | 
|  | xq[0] = 0; | 
|  | xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det); | 
|  | } else if (params->r[1] == 0) { | 
|  | // H matrix is now only the scalar H[0][0] | 
|  | // C vector is now only the scalar C[0] | 
|  | const int64_t Det = H[0][0]; | 
|  | if (Det == 0) return;  // ill-posed, return default values | 
|  | xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det); | 
|  | xq[1] = 0; | 
|  | } else { | 
|  | const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0]; | 
|  | if (Det == 0) return;  // ill-posed, return default values | 
|  |  | 
|  | // If scaling up dividend would overflow, instead scale down the divisor | 
|  | const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1]; | 
|  | if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) || | 
|  | (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1)) | 
|  | xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS)); | 
|  | else | 
|  | xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det); | 
|  |  | 
|  | const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0]; | 
|  | if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) || | 
|  | (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2)) | 
|  | xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS)); | 
|  | else | 
|  | xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void encode_xq(int *xq, int *xqd, | 
|  | const sgr_params_type *params) { | 
|  | if (params->r[0] == 0) { | 
|  | xqd[0] = 0; | 
|  | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, | 
|  | SGRPROJ_PRJ_MAX1); | 
|  | } else if (params->r[1] == 0) { | 
|  | xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); | 
|  | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, | 
|  | SGRPROJ_PRJ_MAX1); | 
|  | } else { | 
|  | xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); | 
|  | xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, | 
|  | SGRPROJ_PRJ_MAX1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply the self-guided filter across an entire restoration unit. | 
|  | static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint8_t *dat8, | 
|  | int width, int height, int dat_stride, | 
|  | int use_highbd, int bit_depth, int pu_width, | 
|  | int pu_height, int32_t *flt0, int32_t *flt1, | 
|  | int flt_stride) { | 
|  | for (int i = 0; i < height; i += pu_height) { | 
|  | const int h = AOMMIN(pu_height, height - i); | 
|  | int32_t *flt0_row = flt0 + i * flt_stride; | 
|  | int32_t *flt1_row = flt1 + i * flt_stride; | 
|  | const uint8_t *dat8_row = dat8 + i * dat_stride; | 
|  |  | 
|  | // Iterate over the stripe in blocks of width pu_width | 
|  | for (int j = 0; j < width; j += pu_width) { | 
|  | const int w = AOMMIN(pu_width, width - j); | 
|  | const int ret = av1_selfguided_restoration( | 
|  | dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, | 
|  | flt_stride, sgr_params_idx, bit_depth, use_highbd); | 
|  | (void)ret; | 
|  | assert(!ret); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void compute_sgrproj_err( | 
|  | const uint8_t *dat8, const int width, const int height, | 
|  | const int dat_stride, const uint8_t *src8, const int src_stride, | 
|  | const int use_highbitdepth, const int bit_depth, const int pu_width, | 
|  | const int pu_height, const int ep, int32_t *flt0, int32_t *flt1, | 
|  | const int flt_stride, int *exqd, int64_t *err) { | 
|  | int exq[2]; | 
|  | apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, | 
|  | pu_width, pu_height, flt0, flt1, flt_stride); | 
|  | const sgr_params_type *const params = &av1_sgr_params[ep]; | 
|  | get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, | 
|  | use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, | 
|  | params); | 
|  | encode_xq(exq, exqd, params); | 
|  | *err = finer_search_pixel_proj_error( | 
|  | src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, | 
|  | flt_stride, flt1, flt_stride, 2, exqd, params); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err, | 
|  | const int *exqd, int *bestxqd, | 
|  | int *bestep, const int ep) { | 
|  | if (*besterr == -1 || err < *besterr) { | 
|  | *bestep = ep; | 
|  | *besterr = err; | 
|  | bestxqd[0] = exqd[0]; | 
|  | bestxqd[1] = exqd[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SgrprojInfo search_selfguided_restoration( | 
|  | const uint8_t *dat8, int width, int height, int dat_stride, | 
|  | const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, | 
|  | int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning) { | 
|  | int32_t *flt0 = rstbuf; | 
|  | int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; | 
|  | int ep, idx, bestep = 0; | 
|  | int64_t besterr = -1; | 
|  | int exqd[2], bestxqd[2] = { 0, 0 }; | 
|  | int flt_stride = ((width + 7) & ~7) + 8; | 
|  | assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || | 
|  | pu_width == RESTORATION_PROC_UNIT_SIZE); | 
|  | assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || | 
|  | pu_height == RESTORATION_PROC_UNIT_SIZE); | 
|  | if (!enable_sgr_ep_pruning) { | 
|  | for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { | 
|  | int64_t err; | 
|  | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, | 
|  | use_highbitdepth, bit_depth, pu_width, pu_height, ep, | 
|  | flt0, flt1, flt_stride, exqd, &err); | 
|  | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); | 
|  | } | 
|  | } else { | 
|  | // evaluate first four seed ep in first group | 
|  | for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) { | 
|  | ep = sgproj_ep_grp1_seed[idx]; | 
|  | int64_t err; | 
|  | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, | 
|  | use_highbitdepth, bit_depth, pu_width, pu_height, ep, | 
|  | flt0, flt1, flt_stride, exqd, &err); | 
|  | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); | 
|  | } | 
|  | // evaluate left and right ep of winner in seed ep | 
|  | int bestep_ref = bestep; | 
|  | for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) { | 
|  | if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX) | 
|  | continue; | 
|  | int64_t err; | 
|  | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, | 
|  | use_highbitdepth, bit_depth, pu_width, pu_height, ep, | 
|  | flt0, flt1, flt_stride, exqd, &err); | 
|  | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); | 
|  | } | 
|  | // evaluate last two group | 
|  | for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) { | 
|  | ep = sgproj_ep_grp2_3[idx][bestep]; | 
|  | int64_t err; | 
|  | compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, | 
|  | use_highbitdepth, bit_depth, pu_width, pu_height, ep, | 
|  | flt0, flt1, flt_stride, exqd, &err); | 
|  | get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); | 
|  | } | 
|  | } | 
|  |  | 
|  | SgrprojInfo ret; | 
|  | ret.ep = bestep; | 
|  | ret.xqd[0] = bestxqd[0]; | 
|  | ret.xqd[1] = bestxqd[1]; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, | 
|  | SgrprojInfo *ref_sgrproj_info) { | 
|  | int bits = SGRPROJ_PARAMS_BITS; | 
|  | const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; | 
|  | if (params->r[0] > 0) | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
|  | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
|  | if (params->r[1] > 0) | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
|  | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_sgrproj(const RestorationTileLimits *limits, | 
|  | const PixelRect *tile, int rest_unit_idx, | 
|  | void *priv, int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)rlbs; | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const AV1_COMMON *const cm = rsc->cm; | 
|  | const int highbd = cm->seq_params->use_highbitdepth; | 
|  | const int bit_depth = cm->seq_params->bit_depth; | 
|  |  | 
|  | const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0]; | 
|  | // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set | 
|  | if (rusi->skip_sgr_eval) { | 
|  | rsc->bits += bits_none; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE; | 
|  | rusi->sse[RESTORE_SGRPROJ] = INT64_MAX; | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint8_t *dgd_start = | 
|  | rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; | 
|  | const uint8_t *src_start = | 
|  | rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; | 
|  |  | 
|  | const int is_uv = rsc->plane > 0; | 
|  | const int ss_x = is_uv && cm->seq_params->subsampling_x; | 
|  | const int ss_y = is_uv && cm->seq_params->subsampling_y; | 
|  | const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; | 
|  | const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; | 
|  |  | 
|  | rusi->sgrproj = search_selfguided_restoration( | 
|  | dgd_start, limits->h_end - limits->h_start, | 
|  | limits->v_end - limits->v_start, rsc->dgd_stride, src_start, | 
|  | rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, | 
|  | tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning); | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | rui.restoration_type = RESTORE_SGRPROJ; | 
|  | rui.sgrproj_info = rusi->sgrproj; | 
|  |  | 
|  | rusi->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, tile, &rui); | 
|  |  | 
|  | const int64_t bits_sgr = x->mode_costs.sgrproj_restore_cost[1] + | 
|  | (count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj) | 
|  | << AV1_PROB_COST_SHIFT); | 
|  | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], bit_depth); | 
|  | double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_sgr >> 4, rusi->sse[RESTORE_SGRPROJ], bit_depth); | 
|  | if (rusi->sgrproj.ep < 10) | 
|  | cost_sgr *= | 
|  | (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); | 
|  |  | 
|  | RestorationType rtype = | 
|  | (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; | 
|  | rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; | 
|  |  | 
|  | rsc->sse += rusi->sse[rtype]; | 
|  | rsc->bits += (cost_sgr < cost_none) ? bits_sgr : bits_none; | 
|  | if (cost_sgr < cost_none) rsc->sgrproj = rusi->sgrproj; | 
|  | } | 
|  |  | 
|  | void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src, int dgd_stride, | 
|  | int h_start, int h_end, uint8_t avg, | 
|  | const int wiener_halfwin, const int wiener_win2, | 
|  | int32_t *M_int32, int32_t *H_int32, int count) { | 
|  | int j, k, l; | 
|  | int16_t Y[WIENER_WIN2]; | 
|  |  | 
|  | for (j = h_start; j < h_end; j++) { | 
|  | const int16_t X = (int16_t)src[j] - (int16_t)avg; | 
|  | int idx = 0; | 
|  | for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { | 
|  | for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { | 
|  | Y[idx] = | 
|  | (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg; | 
|  | idx++; | 
|  | } | 
|  | } | 
|  | assert(idx == wiener_win2); | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | M_int32[k] += (int32_t)Y[k] * X; | 
|  | for (l = k; l < wiener_win2; ++l) { | 
|  | // H is a symmetric matrix, so we only need to fill out the upper | 
|  | // triangle here. We can copy it down to the lower triangle outside | 
|  | // the (i, j) loops. | 
|  | H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, | 
|  | int h_start, int h_end, int v_start, int v_end, | 
|  | int dgd_stride, int src_stride, int64_t *M, int64_t *H, | 
|  | int use_downsampled_wiener_stats) { | 
|  | int i, k, l; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  | const int wiener_halfwin = (wiener_win >> 1); | 
|  | uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); | 
|  | int32_t M_row[WIENER_WIN2] = { 0 }; | 
|  | int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 }; | 
|  | int downsample_factor = | 
|  | use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; | 
|  |  | 
|  | memset(M, 0, sizeof(*M) * wiener_win2); | 
|  | memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); | 
|  |  | 
|  | for (i = v_start; i < v_end; i = i + downsample_factor) { | 
|  | if (use_downsampled_wiener_stats && | 
|  | (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { | 
|  | downsample_factor = v_end - i; | 
|  | } | 
|  |  | 
|  | memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2); | 
|  | memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2); | 
|  | acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end, | 
|  | avg, wiener_halfwin, wiener_win2, M_row, H_row, i); | 
|  |  | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | // Scale M matrix based on the downsampling factor | 
|  | M[k] += ((int64_t)M_row[k] * downsample_factor); | 
|  | for (l = k; l < wiener_win2; ++l) { | 
|  | // H is a symmetric matrix, so we only need to fill out the upper | 
|  | // triangle here. We can copy it down to the lower triangle outside | 
|  | // the (i, j) loops. | 
|  | // Scale H Matrix based on the downsampling factor | 
|  | H[k * wiener_win2 + l] += | 
|  | ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | for (l = k + 1; l < wiener_win2; ++l) { | 
|  | H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8, | 
|  | const uint8_t *src8, int h_start, int h_end, | 
|  | int v_start, int v_end, int dgd_stride, | 
|  | int src_stride, int64_t *M, int64_t *H, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i, j, k, l; | 
|  | int32_t Y[WIENER_WIN2]; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  | const int wiener_halfwin = (wiener_win >> 1); | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); | 
|  | uint16_t avg = | 
|  | find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); | 
|  |  | 
|  | uint8_t bit_depth_divider = 1; | 
|  | if (bit_depth == AOM_BITS_12) | 
|  | bit_depth_divider = 16; | 
|  | else if (bit_depth == AOM_BITS_10) | 
|  | bit_depth_divider = 4; | 
|  |  | 
|  | memset(M, 0, sizeof(*M) * wiener_win2); | 
|  | memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); | 
|  | for (i = v_start; i < v_end; i++) { | 
|  | for (j = h_start; j < h_end; j++) { | 
|  | const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg; | 
|  | int idx = 0; | 
|  | for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { | 
|  | for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { | 
|  | Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg; | 
|  | idx++; | 
|  | } | 
|  | } | 
|  | assert(idx == wiener_win2); | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | M[k] += (int64_t)Y[k] * X; | 
|  | for (l = k; l < wiener_win2; ++l) { | 
|  | // H is a symmetric matrix, so we only need to fill out the upper | 
|  | // triangle here. We can copy it down to the lower triangle outside | 
|  | // the (i, j) loops. | 
|  | H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | M[k] /= bit_depth_divider; | 
|  | H[k * wiener_win2 + k] /= bit_depth_divider; | 
|  | for (l = k + 1; l < wiener_win2; ++l) { | 
|  | H[k * wiener_win2 + l] /= bit_depth_divider; | 
|  | H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  |  | 
|  | static INLINE int wrap_index(int i, int wiener_win) { | 
|  | const int wiener_halfwin1 = (wiener_win >> 1) + 1; | 
|  | return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); | 
|  | } | 
|  |  | 
|  | // Solve linear equations to find Wiener filter tap values | 
|  | // Taps are output scaled by WIENER_FILT_STEP | 
|  | static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b, | 
|  | int64_t *x) { | 
|  | for (int k = 0; k < n - 1; k++) { | 
|  | // Partial pivoting: bring the row with the largest pivot to the top | 
|  | for (int i = n - 1; i > k; i--) { | 
|  | // If row i has a better (bigger) pivot than row (i-1), swap them | 
|  | if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) { | 
|  | for (int j = 0; j < n; j++) { | 
|  | const int64_t c = A[i * stride + j]; | 
|  | A[i * stride + j] = A[(i - 1) * stride + j]; | 
|  | A[(i - 1) * stride + j] = c; | 
|  | } | 
|  | const int64_t c = b[i]; | 
|  | b[i] = b[i - 1]; | 
|  | b[i - 1] = c; | 
|  | } | 
|  | } | 
|  | // Forward elimination (convert A to row-echelon form) | 
|  | for (int i = k; i < n - 1; i++) { | 
|  | if (A[k * stride + k] == 0) return 0; | 
|  | const int64_t c = A[(i + 1) * stride + k]; | 
|  | const int64_t cd = A[k * stride + k]; | 
|  | for (int j = 0; j < n; j++) { | 
|  | A[(i + 1) * stride + j] -= c / 256 * A[k * stride + j] / cd * 256; | 
|  | } | 
|  | b[i + 1] -= c / 256 * b[k] / cd * 256; | 
|  | } | 
|  | } | 
|  | // Back-substitution | 
|  | for (int i = n - 1; i >= 0; i--) { | 
|  | if (A[i * stride + i] == 0) return 0; | 
|  | int64_t c = 0; | 
|  | for (int j = i + 1; j <= n - 1; j++) { | 
|  | c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR; | 
|  | } | 
|  | // Store filter taps x in scaled form. | 
|  | x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Fix vector b, update vector a | 
|  | static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc, | 
|  | int64_t **Hc, int32_t *a, int32_t *b) { | 
|  | int i, j; | 
|  | int64_t S[WIENER_WIN]; | 
|  | int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  | const int wiener_halfwin1 = (wiener_win >> 1) + 1; | 
|  | memset(A, 0, sizeof(A)); | 
|  | memset(B, 0, sizeof(B)); | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | for (j = 0; j < wiener_win; ++j) { | 
|  | const int jj = wrap_index(j, wiener_win); | 
|  | A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | for (j = 0; j < wiener_win; j++) { | 
|  | int k, l; | 
|  | for (k = 0; k < wiener_win; ++k) { | 
|  | for (l = 0; l < wiener_win; ++l) { | 
|  | const int kk = wrap_index(k, wiener_win); | 
|  | const int ll = wrap_index(l, wiener_win); | 
|  | B[ll * wiener_halfwin1 + kk] += | 
|  | Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / | 
|  | WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Normalization enforcement in the system of equations itself | 
|  | for (i = 0; i < wiener_halfwin1 - 1; ++i) { | 
|  | A[i] -= | 
|  | A[wiener_halfwin1 - 1] * 2 + | 
|  | B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - | 
|  | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; | 
|  | } | 
|  | for (i = 0; i < wiener_halfwin1 - 1; ++i) { | 
|  | for (j = 0; j < wiener_halfwin1 - 1; ++j) { | 
|  | B[i * wiener_halfwin1 + j] -= | 
|  | 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + | 
|  | B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - | 
|  | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + | 
|  | (wiener_halfwin1 - 1)]); | 
|  | } | 
|  | } | 
|  | if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { | 
|  | S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; | 
|  | for (i = wiener_halfwin1; i < wiener_win; ++i) { | 
|  | S[i] = S[wiener_win - 1 - i]; | 
|  | S[wiener_halfwin1 - 1] -= 2 * S[i]; | 
|  | } | 
|  | for (i = 0; i < wiener_win; ++i) { | 
|  | a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), | 
|  | (1 << (WIENER_FILT_BITS - 1)) - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fix vector a, update vector b | 
|  | static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc, | 
|  | int64_t **Hc, int32_t *a, int32_t *b) { | 
|  | int i, j; | 
|  | int64_t S[WIENER_WIN]; | 
|  | int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  | const int wiener_halfwin1 = (wiener_win >> 1) + 1; | 
|  | memset(A, 0, sizeof(A)); | 
|  | memset(B, 0, sizeof(B)); | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | const int ii = wrap_index(i, wiener_win); | 
|  | for (j = 0; j < wiener_win; j++) { | 
|  | A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | for (j = 0; j < wiener_win; j++) { | 
|  | const int ii = wrap_index(i, wiener_win); | 
|  | const int jj = wrap_index(j, wiener_win); | 
|  | int k, l; | 
|  | for (k = 0; k < wiener_win; ++k) { | 
|  | for (l = 0; l < wiener_win; ++l) { | 
|  | B[jj * wiener_halfwin1 + ii] += | 
|  | Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / | 
|  | WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Normalization enforcement in the system of equations itself | 
|  | for (i = 0; i < wiener_halfwin1 - 1; ++i) { | 
|  | A[i] -= | 
|  | A[wiener_halfwin1 - 1] * 2 + | 
|  | B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - | 
|  | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; | 
|  | } | 
|  | for (i = 0; i < wiener_halfwin1 - 1; ++i) { | 
|  | for (j = 0; j < wiener_halfwin1 - 1; ++j) { | 
|  | B[i * wiener_halfwin1 + j] -= | 
|  | 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + | 
|  | B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - | 
|  | 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + | 
|  | (wiener_halfwin1 - 1)]); | 
|  | } | 
|  | } | 
|  | if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { | 
|  | S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; | 
|  | for (i = wiener_halfwin1; i < wiener_win; ++i) { | 
|  | S[i] = S[wiener_win - 1 - i]; | 
|  | S[wiener_halfwin1 - 1] -= 2 * S[i]; | 
|  | } | 
|  | for (i = 0; i < wiener_win; ++i) { | 
|  | b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), | 
|  | (1 << (WIENER_FILT_BITS - 1)) - 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H, | 
|  | int32_t *a, int32_t *b) { | 
|  | static const int32_t init_filt[WIENER_WIN] = { | 
|  | WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, | 
|  | WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, | 
|  | WIENER_FILT_TAP0_MIDV, | 
|  | }; | 
|  | int64_t *Hc[WIENER_WIN2]; | 
|  | int64_t *Mc[WIENER_WIN]; | 
|  | int i, j, iter; | 
|  | const int plane_off = (WIENER_WIN - wiener_win) >> 1; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | a[i] = b[i] = | 
|  | WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off]; | 
|  | } | 
|  | for (i = 0; i < wiener_win; i++) { | 
|  | Mc[i] = M + i * wiener_win; | 
|  | for (j = 0; j < wiener_win; j++) { | 
|  | Hc[i * wiener_win + j] = | 
|  | H + i * wiener_win * wiener_win2 + j * wiener_win; | 
|  | } | 
|  | } | 
|  |  | 
|  | iter = 1; | 
|  | while (iter < NUM_WIENER_ITERS) { | 
|  | update_a_sep_sym(wiener_win, Mc, Hc, a, b); | 
|  | update_b_sep_sym(wiener_win, Mc, Hc, a, b); | 
|  | iter++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares | 
|  | // against identity filters; Final score is defined as the difference between | 
|  | // the function values | 
|  | static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H, | 
|  | InterpKernel vfilt, InterpKernel hfilt) { | 
|  | int32_t ab[WIENER_WIN * WIENER_WIN]; | 
|  | int16_t a[WIENER_WIN], b[WIENER_WIN]; | 
|  | int64_t P = 0, Q = 0; | 
|  | int64_t iP = 0, iQ = 0; | 
|  | int64_t Score, iScore; | 
|  | int i, k, l; | 
|  | const int plane_off = (WIENER_WIN - wiener_win) >> 1; | 
|  | const int wiener_win2 = wiener_win * wiener_win; | 
|  |  | 
|  | a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP; | 
|  | for (i = 0; i < WIENER_HALFWIN; ++i) { | 
|  | a[i] = a[WIENER_WIN - i - 1] = vfilt[i]; | 
|  | b[i] = b[WIENER_WIN - i - 1] = hfilt[i]; | 
|  | a[WIENER_HALFWIN] -= 2 * a[i]; | 
|  | b[WIENER_HALFWIN] -= 2 * b[i]; | 
|  | } | 
|  | memset(ab, 0, sizeof(ab)); | 
|  | for (k = 0; k < wiener_win; ++k) { | 
|  | for (l = 0; l < wiener_win; ++l) | 
|  | ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; | 
|  | } | 
|  | for (k = 0; k < wiener_win2; ++k) { | 
|  | P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP; | 
|  | for (l = 0; l < wiener_win2; ++l) { | 
|  | Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP / | 
|  | WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP; | 
|  | } | 
|  | } | 
|  | Score = Q - 2 * P; | 
|  |  | 
|  | iP = M[wiener_win2 >> 1]; | 
|  | iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; | 
|  | iScore = iQ - 2 * iP; | 
|  |  | 
|  | return Score - iScore; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f, | 
|  | InterpKernel fi) { | 
|  | int i; | 
|  | const int wiener_halfwin = (wiener_win >> 1); | 
|  |  | 
|  | for (i = 0; i < wiener_halfwin; ++i) { | 
|  | const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP; | 
|  | const int64_t divisor = WIENER_TAP_SCALE_FACTOR; | 
|  | // Perform this division with proper rounding rather than truncation | 
|  | if (dividend < 0) { | 
|  | fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor); | 
|  | } else { | 
|  | fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor); | 
|  | } | 
|  | } | 
|  | // Specialize for 7-tap filter | 
|  | if (wiener_win == WIENER_WIN) { | 
|  | fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); | 
|  | fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); | 
|  | fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); | 
|  | } else { | 
|  | fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); | 
|  | fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); | 
|  | fi[0] = 0; | 
|  | } | 
|  | // Satisfy filter constraints | 
|  | fi[WIENER_WIN - 1] = fi[0]; | 
|  | fi[WIENER_WIN - 2] = fi[1]; | 
|  | fi[WIENER_WIN - 3] = fi[2]; | 
|  | // The central element has an implicit +WIENER_FILT_STEP | 
|  | fi[3] = -2 * (fi[0] + fi[1] + fi[2]); | 
|  | } | 
|  |  | 
|  | static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, | 
|  | WienerInfo *ref_wiener_info) { | 
|  | int bits = 0; | 
|  | if (wiener_win == WIENER_WIN) | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | if (wiener_win == WIENER_WIN) | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | bits += aom_count_primitive_refsubexpfin( | 
|  | WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | #define USE_WIENER_REFINEMENT_SEARCH 1 | 
|  | static int64_t finer_tile_search_wiener(const RestSearchCtxt *rsc, | 
|  | const RestorationTileLimits *limits, | 
|  | const PixelRect *tile, | 
|  | RestorationUnitInfo *rui, | 
|  | int wiener_win) { | 
|  | const int plane_off = (WIENER_WIN - wiener_win) >> 1; | 
|  | int64_t err = try_restoration_unit(rsc, limits, tile, rui); | 
|  | #if USE_WIENER_REFINEMENT_SEARCH | 
|  | int64_t err2; | 
|  | int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, | 
|  | WIENER_FILT_TAP2_MINV }; | 
|  | int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, | 
|  | WIENER_FILT_TAP2_MAXV }; | 
|  |  | 
|  | WienerInfo *plane_wiener = &rui->wiener_info; | 
|  |  | 
|  | // printf("err  pre = %"PRId64"\n", err); | 
|  | const int start_step = 4; | 
|  | for (int s = start_step; s >= 1; s >>= 1) { | 
|  | for (int p = plane_off; p < WIENER_HALFWIN; ++p) { | 
|  | int skip = 0; | 
|  | do { | 
|  | if (plane_wiener->hfilter[p] - s >= tap_min[p]) { | 
|  | plane_wiener->hfilter[p] -= s; | 
|  | plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; | 
|  | plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; | 
|  | err2 = try_restoration_unit(rsc, limits, tile, rui); | 
|  | if (err2 > err) { | 
|  | plane_wiener->hfilter[p] += s; | 
|  | plane_wiener->hfilter[WIENER_WIN - p - 1] += s; | 
|  | plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; | 
|  | } else { | 
|  | err = err2; | 
|  | skip = 1; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | if (skip) break; | 
|  | do { | 
|  | if (plane_wiener->hfilter[p] + s <= tap_max[p]) { | 
|  | plane_wiener->hfilter[p] += s; | 
|  | plane_wiener->hfilter[WIENER_WIN - p - 1] += s; | 
|  | plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; | 
|  | err2 = try_restoration_unit(rsc, limits, tile, rui); | 
|  | if (err2 > err) { | 
|  | plane_wiener->hfilter[p] -= s; | 
|  | plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; | 
|  | plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; | 
|  | } else { | 
|  | err = err2; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | } | 
|  | for (int p = plane_off; p < WIENER_HALFWIN; ++p) { | 
|  | int skip = 0; | 
|  | do { | 
|  | if (plane_wiener->vfilter[p] - s >= tap_min[p]) { | 
|  | plane_wiener->vfilter[p] -= s; | 
|  | plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; | 
|  | plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; | 
|  | err2 = try_restoration_unit(rsc, limits, tile, rui); | 
|  | if (err2 > err) { | 
|  | plane_wiener->vfilter[p] += s; | 
|  | plane_wiener->vfilter[WIENER_WIN - p - 1] += s; | 
|  | plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; | 
|  | } else { | 
|  | err = err2; | 
|  | skip = 1; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | if (skip) break; | 
|  | do { | 
|  | if (plane_wiener->vfilter[p] + s <= tap_max[p]) { | 
|  | plane_wiener->vfilter[p] += s; | 
|  | plane_wiener->vfilter[WIENER_WIN - p - 1] += s; | 
|  | plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; | 
|  | err2 = try_restoration_unit(rsc, limits, tile, rui); | 
|  | if (err2 > err) { | 
|  | plane_wiener->vfilter[p] -= s; | 
|  | plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; | 
|  | plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; | 
|  | } else { | 
|  | err = err2; | 
|  | // At the highest step size continue moving in the same direction | 
|  | if (s == start_step) continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } while (1); | 
|  | } | 
|  | } | 
|  | // printf("err post = %"PRId64"\n", err); | 
|  | #endif  // USE_WIENER_REFINEMENT_SEARCH | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_wiener(const RestorationTileLimits *limits, | 
|  | const PixelRect *tile_rect, | 
|  | int rest_unit_idx, void *priv, | 
|  | int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)tmpbuf; | 
|  | (void)rlbs; | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  | const int64_t bits_none = x->mode_costs.wiener_restore_cost[0]; | 
|  |  | 
|  | // Skip Wiener search for low variance contents | 
|  | if (rsc->lpf_sf->prune_wiener_based_on_src_var) { | 
|  | const int scale[3] = { 0, 1, 2 }; | 
|  | // Obtain the normalized Qscale | 
|  | const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0, | 
|  | rsc->cm->seq_params->bit_depth) >> | 
|  | 3; | 
|  | // Derive threshold as sqr(normalized Qscale) * scale / 16, | 
|  | const uint64_t thresh = | 
|  | (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4; | 
|  | const int highbd = rsc->cm->seq_params->use_highbitdepth; | 
|  | const uint64_t src_var = | 
|  | var_restoration_unit(limits, rsc->src, rsc->plane, highbd); | 
|  | // Do not perform Wiener search if source variance is lower than threshold | 
|  | // or if the reconstruction error is zero | 
|  | int prune_wiener = (src_var < thresh) || (rusi->sse[RESTORE_NONE] == 0); | 
|  | if (prune_wiener) { | 
|  | rsc->bits += bits_none; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; | 
|  | rusi->sse[RESTORE_WIENER] = INT64_MAX; | 
|  | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | const int wiener_win = | 
|  | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; | 
|  |  | 
|  | int reduced_wiener_win = wiener_win; | 
|  | if (rsc->lpf_sf->reduce_wiener_window_size) { | 
|  | reduced_wiener_win = | 
|  | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA; | 
|  | } | 
|  |  | 
|  | int64_t M[WIENER_WIN2]; | 
|  | int64_t H[WIENER_WIN2 * WIENER_WIN2]; | 
|  | int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN]; | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | const AV1_COMMON *const cm = rsc->cm; | 
|  | if (cm->seq_params->use_highbitdepth) { | 
|  | // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD | 
|  | // functions | 
|  | av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, | 
|  | rsc->src_buffer, limits->h_start, limits->h_end, | 
|  | limits->v_start, limits->v_end, rsc->dgd_stride, | 
|  | rsc->src_stride, M, H, cm->seq_params->bit_depth); | 
|  | } else { | 
|  | av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, | 
|  | limits->h_start, limits->h_end, limits->v_start, | 
|  | limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H, | 
|  | rsc->lpf_sf->use_downsampled_wiener_stats); | 
|  | } | 
|  | #else | 
|  | av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, | 
|  | limits->h_start, limits->h_end, limits->v_start, | 
|  | limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H, | 
|  | rsc->lpf_sf->use_downsampled_wiener_stats); | 
|  | #endif | 
|  |  | 
|  | wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter); | 
|  |  | 
|  | RestorationUnitInfo rui; | 
|  | memset(&rui, 0, sizeof(rui)); | 
|  | rui.restoration_type = RESTORE_WIENER; | 
|  | finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter); | 
|  | finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter); | 
|  |  | 
|  | // Filter score computes the value of the function x'*A*x - x'*b for the | 
|  | // learned filter and compares it against identity filer. If there is no | 
|  | // reduction in the function, the filter is reverted back to identity | 
|  | if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter, | 
|  | rui.wiener_info.hfilter) > 0) { | 
|  | rsc->bits += bits_none; | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; | 
|  | rusi->sse[RESTORE_WIENER] = INT64_MAX; | 
|  | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rusi->skip_sgr_eval = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | rusi->sse[RESTORE_WIENER] = finer_tile_search_wiener( | 
|  | rsc, limits, tile_rect, &rui, reduced_wiener_win); | 
|  | rusi->wiener = rui.wiener_info; | 
|  |  | 
|  | if (reduced_wiener_win != WIENER_WIN) { | 
|  | assert(rui.wiener_info.vfilter[0] == 0 && | 
|  | rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); | 
|  | assert(rui.wiener_info.hfilter[0] == 0 && | 
|  | rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); | 
|  | } | 
|  |  | 
|  | const int64_t bits_wiener = | 
|  | x->mode_costs.wiener_restore_cost[1] + | 
|  | (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener) | 
|  | << AV1_PROB_COST_SHIFT); | 
|  |  | 
|  | double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE], | 
|  | rsc->cm->seq_params->bit_depth); | 
|  | double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits_wiener >> 4, rusi->sse[RESTORE_WIENER], | 
|  | rsc->cm->seq_params->bit_depth); | 
|  |  | 
|  | RestorationType rtype = | 
|  | (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; | 
|  | rusi->best_rtype[RESTORE_WIENER - 1] = rtype; | 
|  |  | 
|  | // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and | 
|  | // RESTORE_NONE or based on best_rtype | 
|  | if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) { | 
|  | rusi->skip_sgr_eval = cost_wiener > (1.01 * cost_none); | 
|  | } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) { | 
|  | rusi->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE; | 
|  | } | 
|  |  | 
|  | rsc->sse += rusi->sse[rtype]; | 
|  | rsc->bits += (cost_wiener < cost_none) ? bits_wiener : bits_none; | 
|  | if (cost_wiener < cost_none) rsc->wiener = rusi->wiener; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_norestore(const RestorationTileLimits *limits, | 
|  | const PixelRect *tile_rect, | 
|  | int rest_unit_idx, void *priv, | 
|  | int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)tile_rect; | 
|  | (void)tmpbuf; | 
|  | (void)rlbs; | 
|  |  | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const int highbd = rsc->cm->seq_params->use_highbitdepth; | 
|  | rusi->sse[RESTORE_NONE] = sse_restoration_unit( | 
|  | limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd); | 
|  |  | 
|  | rsc->sse += rusi->sse[RESTORE_NONE]; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void search_switchable(const RestorationTileLimits *limits, | 
|  | const PixelRect *tile_rect, | 
|  | int rest_unit_idx, void *priv, | 
|  | int32_t *tmpbuf, | 
|  | RestorationLineBuffers *rlbs) { | 
|  | (void)limits; | 
|  | (void)tile_rect; | 
|  | (void)tmpbuf; | 
|  | (void)rlbs; | 
|  | RestSearchCtxt *rsc = (RestSearchCtxt *)priv; | 
|  | RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; | 
|  |  | 
|  | const MACROBLOCK *const x = rsc->x; | 
|  |  | 
|  | const int wiener_win = | 
|  | (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; | 
|  |  | 
|  | double best_cost = 0; | 
|  | int64_t best_bits = 0; | 
|  | RestorationType best_rtype = RESTORE_NONE; | 
|  |  | 
|  | for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { | 
|  | // Check for the condition that wiener or sgrproj search could not | 
|  | // find a solution or the solution was worse than RESTORE_NONE. | 
|  | // In either case the best_rtype will be set as RESTORE_NONE. These | 
|  | // should be skipped from the test below. | 
|  | if (r > RESTORE_NONE) { | 
|  | if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue; | 
|  | } | 
|  |  | 
|  | const int64_t sse = rusi->sse[r]; | 
|  | int64_t coeff_pcost = 0; | 
|  | switch (r) { | 
|  | case RESTORE_NONE: coeff_pcost = 0; break; | 
|  | case RESTORE_WIENER: | 
|  | coeff_pcost = | 
|  | count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener); | 
|  | break; | 
|  | case RESTORE_SGRPROJ: | 
|  | coeff_pcost = count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj); | 
|  | break; | 
|  | default: assert(0); break; | 
|  | } | 
|  | const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; | 
|  | const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits; | 
|  | double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth); | 
|  | if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) | 
|  | cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); | 
|  | if (r == 0 || cost < best_cost) { | 
|  | best_cost = cost; | 
|  | best_bits = bits; | 
|  | best_rtype = r; | 
|  | } | 
|  | } | 
|  |  | 
|  | rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; | 
|  |  | 
|  | rsc->sse += rusi->sse[best_rtype]; | 
|  | rsc->bits += best_bits; | 
|  | if (best_rtype == RESTORE_WIENER) rsc->wiener = rusi->wiener; | 
|  | if (best_rtype == RESTORE_SGRPROJ) rsc->sgrproj = rusi->sgrproj; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void copy_unit_info(RestorationType frame_rtype, | 
|  | const RestUnitSearchInfo *rusi, | 
|  | RestorationUnitInfo *rui) { | 
|  | assert(frame_rtype > 0); | 
|  | rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; | 
|  | if (rui->restoration_type == RESTORE_WIENER) | 
|  | rui->wiener_info = rusi->wiener; | 
|  | else | 
|  | rui->sgrproj_info = rusi->sgrproj; | 
|  | } | 
|  |  | 
|  | static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) { | 
|  | static const rest_unit_visitor_t funs[RESTORE_TYPES] = { | 
|  | search_norestore, search_wiener, search_sgrproj, search_switchable | 
|  | }; | 
|  |  | 
|  | reset_rsc(rsc); | 
|  | rsc_on_tile(rsc); | 
|  |  | 
|  | av1_foreach_rest_unit_in_plane(rsc->cm, rsc->plane, funs[rtype], rsc, | 
|  | &rsc->tile_rect, rsc->cm->rst_tmpbuf, NULL); | 
|  | return RDCOST_DBL_WITH_NATIVE_BD_DIST( | 
|  | rsc->x->rdmult, rsc->bits >> 4, rsc->sse, rsc->cm->seq_params->bit_depth); | 
|  | } | 
|  |  | 
|  | static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) { | 
|  | const RestorationInfo *rsi = &cm->rst_info[plane]; | 
|  | return rsi->units_per_tile; | 
|  | } | 
|  |  | 
|  | void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | const SequenceHeader *const seq_params = cm->seq_params; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx); | 
|  |  | 
|  | int ntiles[2]; | 
|  | for (int is_uv = 0; is_uv < 2; ++is_uv) | 
|  | ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv); | 
|  |  | 
|  | assert(ntiles[1] <= ntiles[0]); | 
|  | RestUnitSearchInfo *rusi; | 
|  | CHECK_MEM_ERROR( | 
|  | cm, rusi, | 
|  | (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * ntiles[0])); | 
|  |  | 
|  | // If the restoration unit dimensions are not multiples of | 
|  | // rsi->restoration_unit_size then some elements of the rusi array may be | 
|  | // left uninitialised when we reach copy_unit_info(...). This is not a | 
|  | // problem, as these elements are ignored later, but in order to quiet | 
|  | // Valgrind's warnings we initialise the array below. | 
|  | memset(rusi, 0, sizeof(*rusi) * ntiles[0]); | 
|  | x->rdmult = cpi->rd.RDMULT; | 
|  |  | 
|  | // Allocate the frame buffer trial_frame_rst, which is used to temporarily | 
|  | // store the loop restored frame. | 
|  | if (aom_realloc_frame_buffer( | 
|  | &cpi->trial_frame_rst, cm->superres_upscaled_width, | 
|  | cm->superres_upscaled_height, seq_params->subsampling_x, | 
|  | seq_params->subsampling_y, seq_params->use_highbitdepth, | 
|  | AOM_RESTORATION_FRAME_BORDER, cm->features.byte_alignment, NULL, NULL, | 
|  | NULL, 0, 0)) | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate trial restored frame buffer"); | 
|  |  | 
|  | RestSearchCtxt rsc; | 
|  | const int plane_start = AOM_PLANE_Y; | 
|  | const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y; | 
|  | for (int plane = plane_start; plane <= plane_end; ++plane) { | 
|  | init_rsc(src, &cpi->common, x, &cpi->sf.lpf_sf, plane, rusi, | 
|  | &cpi->trial_frame_rst, &rsc); | 
|  |  | 
|  | const int plane_ntiles = ntiles[plane > 0]; | 
|  | const RestorationType num_rtypes = | 
|  | (plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; | 
|  |  | 
|  | double best_cost = 0; | 
|  | RestorationType best_rtype = RESTORE_NONE; | 
|  |  | 
|  | const int highbd = rsc.cm->seq_params->use_highbitdepth; | 
|  | if ((plane && !cpi->sf.lpf_sf.disable_loop_restoration_chroma) || | 
|  | (!plane && !cpi->sf.lpf_sf.disable_loop_restoration_luma)) { | 
|  | av1_extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height, | 
|  | rsc.dgd_stride, RESTORATION_BORDER, RESTORATION_BORDER, | 
|  | highbd); | 
|  |  | 
|  | for (RestorationType r = 0; r < num_rtypes; ++r) { | 
|  | if ((force_restore_type != RESTORE_TYPES) && (r != RESTORE_NONE) && | 
|  | (r != force_restore_type)) | 
|  | continue; | 
|  |  | 
|  | double cost = search_rest_type(&rsc, r); | 
|  |  | 
|  | if (r == 0 || cost < best_cost) { | 
|  | best_cost = cost; | 
|  | best_rtype = r; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | cm->rst_info[plane].frame_restoration_type = best_rtype; | 
|  | if (force_restore_type != RESTORE_TYPES) | 
|  | assert(best_rtype == force_restore_type || best_rtype == RESTORE_NONE); | 
|  |  | 
|  | if (best_rtype != RESTORE_NONE) { | 
|  | for (int u = 0; u < plane_ntiles; ++u) { | 
|  | copy_unit_info(best_rtype, &rusi[u], &cm->rst_info[plane].unit_info[u]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(rusi); | 
|  | } |