|  | /* | 
|  | * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #ifndef AOM_AOM_DSP_MATHUTILS_H_ | 
|  | #define AOM_AOM_DSP_MATHUTILS_H_ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | static const double TINY_NEAR_ZERO = 1.0E-16; | 
|  |  | 
|  | // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn | 
|  | static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { | 
|  | int i, j, k; | 
|  | double c; | 
|  | // Forward elimination | 
|  | for (k = 0; k < n - 1; k++) { | 
|  | // Bring the largest magnitude to the diagonal position | 
|  | for (i = n - 1; i > k; i--) { | 
|  | if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { | 
|  | for (j = 0; j < n; j++) { | 
|  | c = A[i * stride + j]; | 
|  | A[i * stride + j] = A[(i - 1) * stride + j]; | 
|  | A[(i - 1) * stride + j] = c; | 
|  | } | 
|  | c = b[i]; | 
|  | b[i] = b[i - 1]; | 
|  | b[i - 1] = c; | 
|  | } | 
|  | } | 
|  | for (i = k; i < n - 1; i++) { | 
|  | if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; | 
|  | c = A[(i + 1) * stride + k] / A[k * stride + k]; | 
|  | for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; | 
|  | b[i + 1] -= c * b[k]; | 
|  | } | 
|  | } | 
|  | // Backward substitution | 
|  | for (i = n - 1; i >= 0; i--) { | 
|  | if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; | 
|  | c = 0; | 
|  | for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; | 
|  | x[i] = (b[i] - c) / A[i * stride + i]; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // Least-squares | 
|  | // Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 | 
|  | // The solution is simply x = (A'A)^-1 A'b or simply the solution for | 
|  | // the system: A'A x = A'b | 
|  | // | 
|  | // This process is split into three steps in order to avoid needing to | 
|  | // explicitly allocate the A matrix, which may be very large if there | 
|  | // are many equations to solve. | 
|  | // | 
|  | // The process for using this is (in pseudocode): | 
|  | // | 
|  | // Allocate mat (size n*n), y (size n), a (size n), x (size n) | 
|  | // least_squares_init(mat, y, n) | 
|  | // for each equation a . x = b { | 
|  | //    least_squares_accumulate(mat, y, a, b, n) | 
|  | // } | 
|  | // least_squares_solve(mat, y, x, n) | 
|  | // | 
|  | // where: | 
|  | // * mat, y are accumulators for the values A'A and A'b respectively, | 
|  | // * a, b are the coefficients of each individual equation, | 
|  | // * x is the result vector | 
|  | // * and n is the problem size | 
|  | static INLINE void least_squares_init(double *mat, double *y, int n) { | 
|  | memset(mat, 0, n * n * sizeof(double)); | 
|  | memset(y, 0, n * sizeof(double)); | 
|  | } | 
|  |  | 
|  | // Round the given positive value to nearest integer | 
|  | static AOM_FORCE_INLINE int iroundpf(float x) { | 
|  | assert(x >= 0.0); | 
|  | return (int)(x + 0.5f); | 
|  | } | 
|  |  | 
|  | static INLINE void least_squares_accumulate(double *mat, double *y, | 
|  | const double *a, double b, int n) { | 
|  | for (int i = 0; i < n; i++) { | 
|  | for (int j = 0; j < n; j++) { | 
|  | mat[i * n + j] += a[i] * a[j]; | 
|  | } | 
|  | } | 
|  | for (int i = 0; i < n; i++) { | 
|  | y[i] += a[i] * b; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int least_squares_solve(double *mat, double *y, double *x, | 
|  | int n) { | 
|  | return linsolve(n, mat, n, y, x); | 
|  | } | 
|  |  | 
|  | // Matrix multiply | 
|  | static INLINE void multiply_mat(const double *m1, const double *m2, double *res, | 
|  | const int m1_rows, const int inner_dim, | 
|  | const int m2_cols) { | 
|  | double sum; | 
|  |  | 
|  | int row, col, inner; | 
|  | for (row = 0; row < m1_rows; ++row) { | 
|  | for (col = 0; col < m2_cols; ++col) { | 
|  | sum = 0; | 
|  | for (inner = 0; inner < inner_dim; ++inner) | 
|  | sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; | 
|  | *(res++) = sum; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE float approx_exp(float y) { | 
|  | #define A ((1 << 23) / 0.69314718056f)  // (1 << 23) / ln(2) | 
|  | #define B \ | 
|  | 127  // Offset for the exponent according to IEEE floating point standard. | 
|  | #define C 60801  // Magic number controls the accuracy of approximation | 
|  | union { | 
|  | float as_float; | 
|  | int32_t as_int32; | 
|  | } container; | 
|  | container.as_int32 = ((int32_t)(y * A)) + ((B << 23) - C); | 
|  | return container.as_float; | 
|  | #undef A | 
|  | #undef B | 
|  | #undef C | 
|  | } | 
|  | #endif  // AOM_AOM_DSP_MATHUTILS_H_ |