| /* | 
 |  * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconintra.h" | 
 |  | 
 | #include "av1/encoder/encoder.h" | 
 | #include "av1/encoder/encodeframe_utils.h" | 
 | #include "av1/encoder/rdopt.h" | 
 |  | 
 | void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit, | 
 |                          const BLOCK_SIZE bsize, const int mi_row, | 
 |                          const int mi_col, int *const rdmult) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |  | 
 |   const int bsize_base = BLOCK_16X16; | 
 |   const int num_mi_w = mi_size_wide[bsize_base]; | 
 |   const int num_mi_h = mi_size_high[bsize_base]; | 
 |   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; | 
 |   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; | 
 |   const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; | 
 |   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; | 
 |   int row, col; | 
 |   double num_of_mi = 0.0; | 
 |   double geom_mean_of_scale = 1.0; | 
 |  | 
 |   // To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least | 
 |   // BLOCK_8X8. | 
 |   // | 
 |   // For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would | 
 |   // iterate 256 times. Considering the maximum value of | 
 |   // cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()), | 
 |   // geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX | 
 |   // (maximum value a double data type can hold). If bsize_base is modified to | 
 |   // BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up | 
 |   // to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow. | 
 |   assert(bsize_base >= BLOCK_8X8); | 
 |   assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM); | 
 |  | 
 |   for (row = mi_row / num_mi_w; | 
 |        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { | 
 |     for (col = mi_col / num_mi_h; | 
 |          col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { | 
 |       const int index = row * num_cols + col; | 
 |       assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0); | 
 |       geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index]; | 
 |       num_of_mi += 1.0; | 
 |     } | 
 |   } | 
 |   geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi)); | 
 |  | 
 |   *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); | 
 |   *rdmult = AOMMAX(*rdmult, 0); | 
 |   av1_set_error_per_bit(errorperbit, *rdmult); | 
 | } | 
 |  | 
 | #if CONFIG_SALIENCY_MAP | 
 | void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi, | 
 |                                       int *errorperbit, const BLOCK_SIZE bsize, | 
 |                                       const int mi_row, const int mi_col, | 
 |                                       int *const rdmult) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const int num_mi_w = mi_size_wide[bsize]; | 
 |   const int num_mi_h = mi_size_high[bsize]; | 
 |   const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; | 
 |  | 
 |   *rdmult = | 
 |       (int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols + | 
 |                                              (mi_col / num_mi_w)]); | 
 |  | 
 |   *rdmult = AOMMAX(*rdmult, 0); | 
 |   av1_set_error_per_bit(errorperbit, *rdmult); | 
 | } | 
 | #endif | 
 |  | 
 | // TODO(angiebird): Move these function to tpl_model.c | 
 | #if !CONFIG_REALTIME_ONLY | 
 | // Return the end column for the current superblock, in unit of TPL blocks. | 
 | static int get_superblock_tpl_column_end(const AV1_COMMON *const cm, int mi_col, | 
 |                                          int num_mi_w) { | 
 |   // Find the start column of this superblock. | 
 |   const int sb_mi_col_start = (mi_col >> cm->seq_params->mib_size_log2) | 
 |                               << cm->seq_params->mib_size_log2; | 
 |   // Same but in superres upscaled dimension. | 
 |   const int sb_mi_col_start_sr = | 
 |       coded_to_superres_mi(sb_mi_col_start, cm->superres_scale_denominator); | 
 |   // Width of this superblock in mi units. | 
 |   const int sb_mi_width = mi_size_wide[cm->seq_params->sb_size]; | 
 |   // Same but in superres upscaled dimension. | 
 |   const int sb_mi_width_sr = | 
 |       coded_to_superres_mi(sb_mi_width, cm->superres_scale_denominator); | 
 |   // Superblock end in mi units. | 
 |   const int sb_mi_end = sb_mi_col_start_sr + sb_mi_width_sr; | 
 |   // Superblock end in TPL units. | 
 |   return (sb_mi_end + num_mi_w - 1) / num_mi_w; | 
 | } | 
 |  | 
 | int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                       const BLOCK_SIZE bsize, const int mi_row, | 
 |                       const int mi_col) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |   const int tpl_idx = cpi->gf_frame_index; | 
 |   int deltaq_rdmult = set_rdmult(cpi, x, -1); | 
 |   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; | 
 |   if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult; | 
 |   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; | 
 |   if (x->rb == 0) return deltaq_rdmult; | 
 |  | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
 |   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
 |  | 
 |   const int mi_wide = mi_size_wide[bsize]; | 
 |   const int mi_high = mi_size_high[bsize]; | 
 |  | 
 |   int tpl_stride = tpl_frame->stride; | 
 |   double intra_cost_base = 0; | 
 |   double mc_dep_cost_base = 0; | 
 |   double cbcmp_base = 0; | 
 |   const int step = 1 << tpl_data->tpl_stats_block_mis_log2; | 
 |  | 
 |   for (int row = mi_row; row < mi_row + mi_high; row += step) { | 
 |     for (int col = mi_col; col < mi_col + mi_wide; col += step) { | 
 |       if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) | 
 |         continue; | 
 |  | 
 |       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( | 
 |           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; | 
 |  | 
 |       double cbcmp = (double)this_stats->srcrf_dist; | 
 |       int64_t mc_dep_delta = | 
 |           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
 |                  this_stats->mc_dep_dist); | 
 |       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); | 
 |       intra_cost_base += log(dist_scaled) * cbcmp; | 
 |       mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp; | 
 |       cbcmp_base += cbcmp; | 
 |     } | 
 |   } | 
 |  | 
 |   if (cbcmp_base == 0) return deltaq_rdmult; | 
 |  | 
 |   double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base); | 
 |   deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb)); | 
 |  | 
 |   return AOMMAX(deltaq_rdmult, 1); | 
 | } | 
 |  | 
 | int av1_get_hier_tpl_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                             const BLOCK_SIZE bsize, const int mi_row, | 
 |                             const int mi_col, int orig_rdmult) { | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |   const int tpl_idx = cpi->gf_frame_index; | 
 |   const int deltaq_rdmult = set_rdmult(cpi, x, -1); | 
 |   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult; | 
 |   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) | 
 |     return deltaq_rdmult; | 
 |   if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult; | 
 |  | 
 |   const int mi_col_sr = | 
 |       coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
 |   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
 |   const int block_mi_width_sr = | 
 |       coded_to_superres_mi(mi_size_wide[bsize], cm->superres_scale_denominator); | 
 |  | 
 |   const int bsize_base = BLOCK_16X16; | 
 |   const int num_mi_w = mi_size_wide[bsize_base]; | 
 |   const int num_mi_h = mi_size_high[bsize_base]; | 
 |   const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; | 
 |   const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; | 
 |   const int num_bcols = (block_mi_width_sr + num_mi_w - 1) / num_mi_w; | 
 |   const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; | 
 |   // This is required because the end col of superblock may be off by 1 in case | 
 |   // of superres. | 
 |   const int sb_bcol_end = get_superblock_tpl_column_end(cm, mi_col, num_mi_w); | 
 |   int row, col; | 
 |   double base_block_count = 0.0; | 
 |   double geom_mean_of_scale = 0.0; | 
 |   for (row = mi_row / num_mi_w; | 
 |        row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { | 
 |     for (col = mi_col_sr / num_mi_h; | 
 |          col < num_cols && col < mi_col_sr / num_mi_h + num_bcols && | 
 |          col < sb_bcol_end; | 
 |          ++col) { | 
 |       const int index = row * num_cols + col; | 
 |       geom_mean_of_scale += log(cpi->ppi->tpl_sb_rdmult_scaling_factors[index]); | 
 |       base_block_count += 1.0; | 
 |     } | 
 |   } | 
 |   geom_mean_of_scale = exp(geom_mean_of_scale / base_block_count); | 
 |   int rdmult = (int)((double)orig_rdmult * geom_mean_of_scale + 0.5); | 
 |   rdmult = AOMMAX(rdmult, 0); | 
 |   av1_set_error_per_bit(&x->errorperbit, rdmult); | 
 | #if !CONFIG_RD_COMMAND | 
 |   if (bsize == cm->seq_params->sb_size) { | 
 |     const int rdmult_sb = set_rdmult(cpi, x, -1); | 
 |     assert(rdmult_sb == rdmult); | 
 |     (void)rdmult_sb; | 
 |   } | 
 | #endif  // !CONFIG_RD_COMMAND | 
 |   return rdmult; | 
 | } | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | static AOM_INLINE void update_filter_type_count(FRAME_COUNTS *counts, | 
 |                                                 const MACROBLOCKD *xd, | 
 |                                                 const MB_MODE_INFO *mbmi) { | 
 |   int dir; | 
 |   for (dir = 0; dir < 2; ++dir) { | 
 |     const int ctx = av1_get_pred_context_switchable_interp(xd, dir); | 
 |     InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); | 
 |  | 
 |     // Only allow the 3 valid SWITCHABLE_FILTERS. | 
 |     assert(filter < SWITCHABLE_FILTERS); | 
 |     ++counts->switchable_interp[ctx][filter]; | 
 |   } | 
 | } | 
 |  | 
 | // This function will copy the best reference mode information from | 
 | // MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT. | 
 | static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( | 
 |     MB_MODE_INFO_EXT *mbmi_ext, | 
 |     const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) { | 
 |   memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, | 
 |          sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); | 
 |   memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, | 
 |          sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); | 
 |   mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; | 
 |   mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; | 
 |   memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, | 
 |          sizeof(mbmi_ext->global_mvs)); | 
 | } | 
 |  | 
 | void av1_update_state(const AV1_COMP *const cpi, ThreadData *td, | 
 |                       const PICK_MODE_CONTEXT *const ctx, int mi_row, | 
 |                       int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { | 
 |   int i, x_idx, y; | 
 |   const AV1_COMMON *const cm = &cpi->common; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |   struct macroblock_plane *const p = x->plane; | 
 |   struct macroblockd_plane *const pd = xd->plane; | 
 |   const MB_MODE_INFO *const mi = &ctx->mic; | 
 |   MB_MODE_INFO *const mi_addr = xd->mi[0]; | 
 |   const struct segmentation *const seg = &cm->seg; | 
 |   assert(bsize < BLOCK_SIZES_ALL); | 
 |   const int bw = mi_size_wide[mi->bsize]; | 
 |   const int bh = mi_size_high[mi->bsize]; | 
 |   const int mis = mi_params->mi_stride; | 
 |   const int mi_width = mi_size_wide[bsize]; | 
 |   const int mi_height = mi_size_high[bsize]; | 
 |   TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
 |  | 
 |   assert(mi->bsize == bsize); | 
 |  | 
 |   *mi_addr = *mi; | 
 |   copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best, | 
 |                                   av1_ref_frame_type(ctx->mic.ref_frame)); | 
 |  | 
 |   memcpy(txfm_info->blk_skip, ctx->blk_skip, | 
 |          sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); | 
 |  | 
 |   txfm_info->skip_txfm = ctx->rd_stats.skip_txfm; | 
 |  | 
 |   xd->tx_type_map = ctx->tx_type_map; | 
 |   xd->tx_type_map_stride = mi_size_wide[bsize]; | 
 |   // If not dry_run, copy the transform type data into the frame level buffer. | 
 |   // Encoder will fetch tx types when writing bitstream. | 
 |   if (!dry_run) { | 
 |     const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); | 
 |     uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx; | 
 |     const int mi_stride = mi_params->mi_stride; | 
 |     for (int blk_row = 0; blk_row < bh; ++blk_row) { | 
 |       av1_copy_array(tx_type_map + blk_row * mi_stride, | 
 |                      xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw); | 
 |     } | 
 |     xd->tx_type_map = tx_type_map; | 
 |     xd->tx_type_map_stride = mi_stride; | 
 |   } | 
 |  | 
 |   // If segmentation in use | 
 |   if (seg->enabled) { | 
 |     // For in frame complexity AQ copy the segment id from the segment map. | 
 |     if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) { | 
 |       const uint8_t *const map = | 
 |           seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
 |       mi_addr->segment_id = | 
 |           map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0; | 
 |     } | 
 |     // Else for cyclic refresh mode update the segment map, set the segment id | 
 |     // and then update the quantizer. | 
 |     if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
 |         !cpi->rc.rtc_external_ratectrl) { | 
 |       av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize, | 
 |                                         ctx->rd_stats.rate, ctx->rd_stats.dist, | 
 |                                         txfm_info->skip_txfm, dry_run); | 
 |     } | 
 |     if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) | 
 |       mi_addr->uv_mode = UV_DC_PRED; | 
 |  | 
 |     if (!dry_run && !mi_addr->skip_txfm) { | 
 |       int cdf_num; | 
 |       const uint8_t spatial_pred = av1_get_spatial_seg_pred( | 
 |           cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4); | 
 |       const uint8_t coded_id = av1_neg_interleave( | 
 |           mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1); | 
 |       int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id]; | 
 |       td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost; | 
 |  | 
 |       const int pred_segment_id = | 
 |           cm->last_frame_seg_map | 
 |               ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, | 
 |                                mi_col) | 
 |               : 0; | 
 |       const int use_tmp_pred = pred_segment_id == mi_addr->segment_id; | 
 |       const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd); | 
 |       td->rd_counts.seg_tmp_pred_cost[1] += | 
 |           x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred]; | 
 |       if (!use_tmp_pred) { | 
 |         td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Count zero motion vector. | 
 |   if (!dry_run && cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && | 
 |       !frame_is_intra_only(cm)) { | 
 |     const MV mv = mi->mv[0].as_mv; | 
 |     if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME && | 
 |         abs(mv.row) < 8 && abs(mv.col) < 8) { | 
 |       const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh); | 
 |       // Accumulate low_content_frame. | 
 |       for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1; | 
 |     } | 
 |   } | 
 |  | 
 |   for (i = 0; i < num_planes; ++i) { | 
 |     p[i].coeff = ctx->coeff[i]; | 
 |     p[i].qcoeff = ctx->qcoeff[i]; | 
 |     p[i].dqcoeff = ctx->dqcoeff[i]; | 
 |     p[i].eobs = ctx->eobs[i]; | 
 |     p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
 |   } | 
 |   for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; | 
 |   // Restore the coding context of the MB to that that was in place | 
 |   // when the mode was picked for it | 
 |  | 
 |   const int cols = | 
 |       AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width); | 
 |   const int rows = AOMMIN( | 
 |       (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height); | 
 |   for (y = 0; y < rows; y++) { | 
 |     for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr; | 
 |   } | 
 |  | 
 |   if (cpi->oxcf.q_cfg.aq_mode) | 
 |     av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0); | 
 |  | 
 |   if (dry_run) return; | 
 |  | 
 | #if CONFIG_INTERNAL_STATS | 
 |   { | 
 |     unsigned int *const mode_chosen_counts = | 
 |         (unsigned int *)cpi->mode_chosen_counts;  // Cast const away. | 
 |     if (frame_is_intra_only(cm)) { | 
 |       static const int kf_mode_index[] = { | 
 |         THR_DC /*DC_PRED*/, | 
 |         THR_V_PRED /*V_PRED*/, | 
 |         THR_H_PRED /*H_PRED*/, | 
 |         THR_D45_PRED /*D45_PRED*/, | 
 |         THR_D135_PRED /*D135_PRED*/, | 
 |         THR_D113_PRED /*D113_PRED*/, | 
 |         THR_D157_PRED /*D157_PRED*/, | 
 |         THR_D203_PRED /*D203_PRED*/, | 
 |         THR_D67_PRED /*D67_PRED*/, | 
 |         THR_SMOOTH,   /*SMOOTH_PRED*/ | 
 |         THR_SMOOTH_V, /*SMOOTH_V_PRED*/ | 
 |         THR_SMOOTH_H, /*SMOOTH_H_PRED*/ | 
 |         THR_PAETH /*PAETH_PRED*/, | 
 |       }; | 
 |       ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; | 
 |     } else { | 
 |       // Note how often each mode chosen as best | 
 |       ++mode_chosen_counts[ctx->best_mode_index]; | 
 |     } | 
 |   } | 
 | #endif | 
 |   if (!frame_is_intra_only(cm)) { | 
 |     if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) { | 
 |       // When the frame interp filter is SWITCHABLE, several cases that always | 
 |       // use the default type (EIGHTTAP_REGULAR) are described in | 
 |       // av1_is_interp_needed(). Here, we should keep the counts for all | 
 |       // applicable blocks, so the frame filter resetting decision in | 
 |       // fix_interp_filter() is made correctly. | 
 |       update_filter_type_count(td->counts, xd, mi_addr); | 
 |     } | 
 |   } | 
 |  | 
 |   const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col); | 
 |   const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row); | 
 |   if (cm->seq_params->order_hint_info.enable_ref_frame_mvs) | 
 |     av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); | 
 | } | 
 |  | 
 | void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, | 
 |                                  PREDICTION_MODE mode, int16_t mode_context) { | 
 |   (void)counts; | 
 |  | 
 |   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; | 
 |   if (mode == NEWMV) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->newmv_mode[mode_ctx][0]; | 
 | #endif | 
 |     update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); | 
 |     return; | 
 |   } | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |   ++counts->newmv_mode[mode_ctx][1]; | 
 | #endif | 
 |   update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); | 
 |  | 
 |   mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
 |   if (mode == GLOBALMV) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->zeromv_mode[mode_ctx][0]; | 
 | #endif | 
 |     update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); | 
 |     return; | 
 |   } | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |   ++counts->zeromv_mode[mode_ctx][1]; | 
 | #endif | 
 |   update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); | 
 |  | 
 |   mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
 | #if CONFIG_ENTROPY_STATS | 
 |   ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; | 
 | #endif | 
 |   update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); | 
 | } | 
 |  | 
 | static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, | 
 |                                FRAME_COUNTS *counts) { | 
 |   FRAME_CONTEXT *fc = xd->tile_ctx; | 
 |   const BLOCK_SIZE bsize = mbmi->bsize; | 
 |   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
 |   const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); | 
 |  | 
 |   (void)counts; | 
 |  | 
 |   if (mbmi->mode == DC_PRED) { | 
 |     const int n = pmi->palette_size[0]; | 
 |     const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; | 
 | #endif | 
 |     update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], | 
 |                n > 0, 2); | 
 |     if (n > 0) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |       ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; | 
 | #endif | 
 |       update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], | 
 |                  n - PALETTE_MIN_SIZE, PALETTE_SIZES); | 
 |     } | 
 |   } | 
 |  | 
 |   if (mbmi->uv_mode == UV_DC_PRED) { | 
 |     const int n = pmi->palette_size[1]; | 
 |     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; | 
 | #endif | 
 |     update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); | 
 |  | 
 |     if (n > 0) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |       ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; | 
 | #endif | 
 |       update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], | 
 |                  n - PALETTE_MIN_SIZE, PALETTE_SIZES); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, | 
 |                          MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, | 
 |                          const MB_MODE_INFO *above_mi, | 
 |                          const MB_MODE_INFO *left_mi, const int intraonly) { | 
 |   FRAME_CONTEXT *fc = xd->tile_ctx; | 
 |   const PREDICTION_MODE y_mode = mbmi->mode; | 
 |   (void)counts; | 
 |   const BLOCK_SIZE bsize = mbmi->bsize; | 
 |  | 
 |   if (intraonly) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     const PREDICTION_MODE above = av1_above_block_mode(above_mi); | 
 |     const PREDICTION_MODE left = av1_left_block_mode(left_mi); | 
 |     const int above_ctx = intra_mode_context[above]; | 
 |     const int left_ctx = intra_mode_context[left]; | 
 |     ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |     update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); | 
 |   } else { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->y_mode[size_group_lookup[bsize]][y_mode]; | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |     update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); | 
 |   } | 
 |  | 
 |   if (av1_filter_intra_allowed(cm, mbmi)) { | 
 |     const int use_filter_intra_mode = | 
 |         mbmi->filter_intra_mode_info.use_filter_intra; | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->filter_intra[mbmi->bsize][use_filter_intra_mode]; | 
 |     if (use_filter_intra_mode) { | 
 |       ++counts | 
 |             ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; | 
 |     } | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |     update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2); | 
 |     if (use_filter_intra_mode) { | 
 |       update_cdf(fc->filter_intra_mode_cdf, | 
 |                  mbmi->filter_intra_mode_info.filter_intra_mode, | 
 |                  FILTER_INTRA_MODES); | 
 |     } | 
 |   } | 
 |   if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->angle_delta[mbmi->mode - V_PRED] | 
 |                          [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; | 
 | #endif | 
 |     update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], | 
 |                mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, | 
 |                2 * MAX_ANGLE_DELTA + 1); | 
 |   } | 
 |  | 
 |   if (!xd->is_chroma_ref) return; | 
 |  | 
 |   const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
 |   const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); | 
 | #if CONFIG_ENTROPY_STATS | 
 |   ++counts->uv_mode[cfl_allowed][y_mode][uv_mode]; | 
 | #endif  // CONFIG_ENTROPY_STATS | 
 |   update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, | 
 |              UV_INTRA_MODES - !cfl_allowed); | 
 |   if (uv_mode == UV_CFL_PRED) { | 
 |     const int8_t joint_sign = mbmi->cfl_alpha_signs; | 
 |     const uint8_t idx = mbmi->cfl_alpha_idx; | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->cfl_sign[joint_sign]; | 
 | #endif | 
 |     update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); | 
 |     if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { | 
 |       aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |       ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; | 
 | #endif | 
 |       update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); | 
 |     } | 
 |     if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { | 
 |       aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
 |  | 
 | #if CONFIG_ENTROPY_STATS | 
 |       ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; | 
 | #endif | 
 |       update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); | 
 |     } | 
 |   } | 
 |   if (av1_is_directional_mode(get_uv_mode(uv_mode)) && | 
 |       av1_use_angle_delta(bsize)) { | 
 | #if CONFIG_ENTROPY_STATS | 
 |     ++counts->angle_delta[uv_mode - UV_V_PRED] | 
 |                          [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; | 
 | #endif | 
 |     update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], | 
 |                mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, | 
 |                2 * MAX_ANGLE_DELTA + 1); | 
 |   } | 
 |   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { | 
 |     update_palette_cdf(xd, mbmi, counts); | 
 |   } | 
 | } | 
 |  | 
 | void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, | 
 |                          int mi_row, int mi_col, BLOCK_SIZE bsize, | 
 |                          const int num_planes) { | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   int p; | 
 |   const int num_4x4_blocks_wide = mi_size_wide[bsize]; | 
 |   const int num_4x4_blocks_high = mi_size_high[bsize]; | 
 |   int mi_width = mi_size_wide[bsize]; | 
 |   int mi_height = mi_size_high[bsize]; | 
 |   for (p = 0; p < num_planes; p++) { | 
 |     int tx_col = mi_col; | 
 |     int tx_row = mi_row & MAX_MIB_MASK; | 
 |     memcpy( | 
 |         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), | 
 |         ctx->a + num_4x4_blocks_wide * p, | 
 |         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> | 
 |             xd->plane[p].subsampling_x); | 
 |     memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), | 
 |            ctx->l + num_4x4_blocks_high * p, | 
 |            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> | 
 |                xd->plane[p].subsampling_y); | 
 |   } | 
 |   memcpy(xd->above_partition_context + mi_col, ctx->sa, | 
 |          sizeof(*xd->above_partition_context) * mi_width); | 
 |   memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl, | 
 |          sizeof(xd->left_partition_context[0]) * mi_height); | 
 |   xd->above_txfm_context = ctx->p_ta; | 
 |   xd->left_txfm_context = ctx->p_tl; | 
 |   memcpy(xd->above_txfm_context, ctx->ta, | 
 |          sizeof(*xd->above_txfm_context) * mi_width); | 
 |   memcpy(xd->left_txfm_context, ctx->tl, | 
 |          sizeof(*xd->left_txfm_context) * mi_height); | 
 | } | 
 |  | 
 | void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, | 
 |                       int mi_row, int mi_col, BLOCK_SIZE bsize, | 
 |                       const int num_planes) { | 
 |   const MACROBLOCKD *xd = &x->e_mbd; | 
 |   int p; | 
 |   int mi_width = mi_size_wide[bsize]; | 
 |   int mi_height = mi_size_high[bsize]; | 
 |  | 
 |   // buffer the above/left context information of the block in search. | 
 |   for (p = 0; p < num_planes; ++p) { | 
 |     int tx_col = mi_col; | 
 |     int tx_row = mi_row & MAX_MIB_MASK; | 
 |     memcpy( | 
 |         ctx->a + mi_width * p, | 
 |         xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x), | 
 |         (sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x); | 
 |     memcpy(ctx->l + mi_height * p, | 
 |            xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y), | 
 |            (sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y); | 
 |   } | 
 |   memcpy(ctx->sa, xd->above_partition_context + mi_col, | 
 |          sizeof(*xd->above_partition_context) * mi_width); | 
 |   memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK), | 
 |          sizeof(xd->left_partition_context[0]) * mi_height); | 
 |   memcpy(ctx->ta, xd->above_txfm_context, | 
 |          sizeof(*xd->above_txfm_context) * mi_width); | 
 |   memcpy(ctx->tl, xd->left_txfm_context, | 
 |          sizeof(*xd->left_txfm_context) * mi_height); | 
 |   ctx->p_ta = xd->above_txfm_context; | 
 |   ctx->p_tl = xd->left_txfm_context; | 
 | } | 
 |  | 
 | static void set_partial_sb_partition(const AV1_COMMON *const cm, | 
 |                                      MB_MODE_INFO *mi, int bh_in, int bw_in, | 
 |                                      int mi_rows_remaining, | 
 |                                      int mi_cols_remaining, BLOCK_SIZE bsize, | 
 |                                      MB_MODE_INFO **mib) { | 
 |   int bh = bh_in; | 
 |   int r, c; | 
 |   for (r = 0; r < cm->seq_params->mib_size; r += bh) { | 
 |     int bw = bw_in; | 
 |     for (c = 0; c < cm->seq_params->mib_size; c += bw) { | 
 |       const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c); | 
 |       const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c); | 
 |       mib[grid_index] = mi + mi_index; | 
 |       mib[grid_index]->bsize = find_partition_size( | 
 |           bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // This function attempts to set all mode info entries in a given superblock | 
 | // to the same block partition size. | 
 | // However, at the bottom and right borders of the image the requested size | 
 | // may not be allowed in which case this code attempts to choose the largest | 
 | // allowable partition. | 
 | void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, | 
 |                                 MB_MODE_INFO **mib, int mi_row, int mi_col, | 
 |                                 BLOCK_SIZE bsize) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
 |   const int mi_rows_remaining = tile->mi_row_end - mi_row; | 
 |   const int mi_cols_remaining = tile->mi_col_end - mi_col; | 
 |   MB_MODE_INFO *const mi_upper_left = | 
 |       mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col); | 
 |   int bh = mi_size_high[bsize]; | 
 |   int bw = mi_size_wide[bsize]; | 
 |  | 
 |   assert(bsize >= mi_params->mi_alloc_bsize && | 
 |          "Attempted to use bsize < mi_params->mi_alloc_bsize"); | 
 |   assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); | 
 |  | 
 |   // Apply the requested partition size to the SB if it is all "in image" | 
 |   if ((mi_cols_remaining >= cm->seq_params->mib_size) && | 
 |       (mi_rows_remaining >= cm->seq_params->mib_size)) { | 
 |     for (int block_row = 0; block_row < cm->seq_params->mib_size; | 
 |          block_row += bh) { | 
 |       for (int block_col = 0; block_col < cm->seq_params->mib_size; | 
 |            block_col += bw) { | 
 |         const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col); | 
 |         const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col); | 
 |         mib[grid_index] = mi_upper_left + mi_index; | 
 |         mib[grid_index]->bsize = bsize; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Else this is a partial SB. | 
 |     set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, | 
 |                              mi_cols_remaining, bsize, mib); | 
 |   } | 
 | } | 
 |  | 
 | int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                 BLOCK_SIZE bsize) { | 
 |   const int bs = mi_size_wide[bsize]; | 
 |   const int hbs = bs / 2; | 
 |   assert(bsize >= BLOCK_8X8); | 
 |   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |  | 
 |   for (int i = 0; i < 4; i++) { | 
 |     int x_idx = (i & 1) * hbs; | 
 |     int y_idx = (i >> 1) * hbs; | 
 |     if ((mi_row + y_idx >= cm->mi_params.mi_rows) || | 
 |         (mi_col + x_idx >= cm->mi_params.mi_cols)) | 
 |       return 0; | 
 |     if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) != | 
 |             PARTITION_NONE && | 
 |         subsize != BLOCK_8X8) | 
 |       return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | #if !CONFIG_REALTIME_ONLY | 
 | int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, | 
 |                          int mi_col, int orig_rdmult) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |   const int tpl_idx = cpi->gf_frame_index; | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
 |   int64_t intra_cost = 0; | 
 |   int64_t mc_dep_cost = 0; | 
 |   const int mi_wide = mi_size_wide[bsize]; | 
 |   const int mi_high = mi_size_high[bsize]; | 
 |  | 
 |   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
 |   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
 |   int tpl_stride = tpl_frame->stride; | 
 |  | 
 |   if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) { | 
 |     return orig_rdmult; | 
 |   } | 
 |   if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) { | 
 |     return orig_rdmult; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   int mi_count = 0; | 
 | #endif | 
 |   const int mi_col_sr = | 
 |       coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
 |   const int mi_col_end_sr = | 
 |       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); | 
 |   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
 |   const int step = 1 << block_mis_log2; | 
 |   const int row_step = step; | 
 |   const int col_step_sr = | 
 |       coded_to_superres_mi(step, cm->superres_scale_denominator); | 
 |   for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
 |     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
 |       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; | 
 |       TplDepStats *this_stats = | 
 |           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
 |       int64_t mc_dep_delta = | 
 |           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
 |                  this_stats->mc_dep_dist); | 
 |       intra_cost += this_stats->recrf_dist << RDDIV_BITS; | 
 |       mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; | 
 | #ifndef NDEBUG | 
 |       mi_count++; | 
 | #endif | 
 |     } | 
 |   } | 
 |   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
 |  | 
 |   double beta = 1.0; | 
 |   if (mc_dep_cost > 0 && intra_cost > 0) { | 
 |     const double r0 = cpi->rd.r0; | 
 |     const double rk = (double)intra_cost / mc_dep_cost; | 
 |     beta = (r0 / rk); | 
 |   } | 
 |  | 
 |   int rdmult = av1_get_adaptive_rdmult(cpi, beta); | 
 |  | 
 |   rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2); | 
 |   rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2); | 
 |  | 
 |   rdmult = AOMMAX(1, rdmult); | 
 |  | 
 |   return rdmult; | 
 | } | 
 |  | 
 | // Checks to see if a super block is on a horizontal image edge. | 
 | // In most cases this is the "real" edge unless there are formatting | 
 | // bars embedded in the stream. | 
 | int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { | 
 |   int top_edge = 0; | 
 |   int bottom_edge = cpi->common.mi_params.mi_rows; | 
 |   int is_active_h_edge = 0; | 
 |  | 
 |   // For two pass account for any formatting bars detected. | 
 |   if (is_stat_consumption_stage_twopass(cpi)) { | 
 |     const AV1_COMMON *const cm = &cpi->common; | 
 |     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( | 
 |         &cpi->ppi->twopass, cm->current_frame.display_order_hint); | 
 |     if (this_frame_stats == NULL) return AOM_CODEC_ERROR; | 
 |  | 
 |     // The inactive region is specified in MBs not mi units. | 
 |     // The image edge is in the following MB row. | 
 |     top_edge += (int)(this_frame_stats->inactive_zone_rows * 4); | 
 |  | 
 |     bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4); | 
 |     bottom_edge = AOMMAX(top_edge, bottom_edge); | 
 |   } | 
 |  | 
 |   if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || | 
 |       ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { | 
 |     is_active_h_edge = 1; | 
 |   } | 
 |   return is_active_h_edge; | 
 | } | 
 |  | 
 | // Checks to see if a super block is on a vertical image edge. | 
 | // In most cases this is the "real" edge unless there are formatting | 
 | // bars embedded in the stream. | 
 | int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { | 
 |   int left_edge = 0; | 
 |   int right_edge = cpi->common.mi_params.mi_cols; | 
 |   int is_active_v_edge = 0; | 
 |  | 
 |   // For two pass account for any formatting bars detected. | 
 |   if (is_stat_consumption_stage_twopass(cpi)) { | 
 |     const AV1_COMMON *const cm = &cpi->common; | 
 |     const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats( | 
 |         &cpi->ppi->twopass, cm->current_frame.display_order_hint); | 
 |     if (this_frame_stats == NULL) return AOM_CODEC_ERROR; | 
 |  | 
 |     // The inactive region is specified in MBs not mi units. | 
 |     // The image edge is in the following MB row. | 
 |     left_edge += (int)(this_frame_stats->inactive_zone_cols * 4); | 
 |  | 
 |     right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4); | 
 |     right_edge = AOMMAX(left_edge, right_edge); | 
 |   } | 
 |  | 
 |   if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || | 
 |       ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { | 
 |     is_active_v_edge = 1; | 
 |   } | 
 |   return is_active_v_edge; | 
 | } | 
 |  | 
 | void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, | 
 |                           int mi_col, SuperBlockEnc *sb_enc) { | 
 |   sb_enc->tpl_data_count = 0; | 
 |  | 
 |   if (!cpi->oxcf.algo_cfg.enable_tpl_model) return; | 
 |   if (cpi->common.current_frame.frame_type == KEY_FRAME) return; | 
 |   const FRAME_UPDATE_TYPE update_type = | 
 |       get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
 |   if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE) | 
 |     return; | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |  | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int gf_group_index = cpi->gf_frame_index; | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return; | 
 |   const int mi_wide = mi_size_wide[bsize]; | 
 |   const int mi_high = mi_size_high[bsize]; | 
 |  | 
 |   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index]; | 
 |   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
 |   int tpl_stride = tpl_frame->stride; | 
 |  | 
 |   int mi_count = 0; | 
 |   int count = 0; | 
 |   const int mi_col_sr = | 
 |       coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
 |   const int mi_col_end_sr = | 
 |       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); | 
 |   // mi_cols_sr is mi_cols at superres case. | 
 |   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
 |  | 
 |   // TPL store unit size is not the same as the motion estimation unit size. | 
 |   // Here always use motion estimation size to avoid getting repetitive inter/ | 
 |   // intra cost. | 
 |   const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); | 
 |   assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]); | 
 |   const int row_step = mi_size_high[tpl_bsize]; | 
 |   const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize], | 
 |                                                cm->superres_scale_denominator); | 
 |  | 
 |   // Stride is only based on SB size, and we fill in values for every 16x16 | 
 |   // block in a SB. | 
 |   sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr; | 
 |  | 
 |   for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
 |     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
 |       assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
 |       // Handle partial SB, so that no invalid values are used later. | 
 |       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) { | 
 |         sb_enc->tpl_inter_cost[count] = INT64_MAX; | 
 |         sb_enc->tpl_intra_cost[count] = INT64_MAX; | 
 |         for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |           sb_enc->tpl_mv[count][i].as_int = INVALID_MV; | 
 |         } | 
 |         count++; | 
 |         continue; | 
 |       } | 
 |  | 
 |       TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( | 
 |           row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; | 
 |       sb_enc->tpl_inter_cost[count] = this_stats->inter_cost | 
 |                                       << TPL_DEP_COST_SCALE_LOG2; | 
 |       sb_enc->tpl_intra_cost[count] = this_stats->intra_cost | 
 |                                       << TPL_DEP_COST_SCALE_LOG2; | 
 |       memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv)); | 
 |       mi_count++; | 
 |       count++; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
 |   sb_enc->tpl_data_count = mi_count; | 
 | } | 
 |  | 
 | // analysis_type 0: Use mc_dep_cost and intra_cost | 
 | // analysis_type 1: Use count of best inter predictor chosen | 
 | // analysis_type 2: Use cost reduction from intra to inter for best inter | 
 | //                  predictor chosen | 
 | int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td, | 
 |                                    int64_t *delta_dist, BLOCK_SIZE bsize, | 
 |                                    int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
 |                  cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
 |   const int tpl_idx = cpi->gf_frame_index; | 
 |   TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
 |   const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
 |   double intra_cost = 0; | 
 |   double mc_dep_reg = 0; | 
 |   double mc_dep_cost = 0; | 
 |   double cbcmp_base = 1; | 
 |   double srcrf_dist = 0; | 
 |   double srcrf_sse = 0; | 
 |   double srcrf_rate = 0; | 
 |   const int mi_wide = mi_size_wide[bsize]; | 
 |   const int mi_high = mi_size_high[bsize]; | 
 |   const int base_qindex = cm->quant_params.base_qindex; | 
 |  | 
 |   if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex; | 
 |  | 
 |   TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
 |   TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
 |   int tpl_stride = tpl_frame->stride; | 
 |   if (!tpl_frame->is_valid) return base_qindex; | 
 |  | 
 | #ifndef NDEBUG | 
 |   int mi_count = 0; | 
 | #endif | 
 |   const int mi_col_sr = | 
 |       coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
 |   const int mi_col_end_sr = | 
 |       coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); | 
 |   const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
 |   const int step = 1 << block_mis_log2; | 
 |   const int row_step = step; | 
 |   const int col_step_sr = | 
 |       coded_to_superres_mi(step, cm->superres_scale_denominator); | 
 |   for (int row = mi_row; row < mi_row + mi_high; row += row_step) { | 
 |     for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
 |       if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue; | 
 |       TplDepStats *this_stats = | 
 |           &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
 |       double cbcmp = (double)this_stats->srcrf_dist; | 
 |       int64_t mc_dep_delta = | 
 |           RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
 |                  this_stats->mc_dep_dist); | 
 |       double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); | 
 |       intra_cost += log(dist_scaled) * cbcmp; | 
 |       mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp; | 
 |       mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp; | 
 |       srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS); | 
 |       srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS); | 
 |       srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2); | 
 | #ifndef NDEBUG | 
 |       mi_count++; | 
 | #endif | 
 |       cbcmp_base += cbcmp; | 
 |     } | 
 |   } | 
 |   assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB); | 
 |  | 
 |   int offset = 0; | 
 |   double beta = 1.0; | 
 |   double rk; | 
 |   if (mc_dep_cost > 0 && intra_cost > 0) { | 
 |     const double r0 = cpi->rd.r0; | 
 |     rk = exp((intra_cost - mc_dep_cost) / cbcmp_base); | 
 |     td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base); | 
 |     beta = (r0 / rk); | 
 |     assert(beta > 0.0); | 
 |   } else { | 
 |     return base_qindex; | 
 |   } | 
 |   offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta); | 
 |  | 
 |   const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
 |   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); | 
 |   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); | 
 |   int qindex = cm->quant_params.base_qindex + offset; | 
 |   qindex = AOMMIN(qindex, MAXQ); | 
 |   qindex = AOMMAX(qindex, MINQ); | 
 |  | 
 |   int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth); | 
 |   int sbs_qstep = | 
 |       av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth); | 
 |  | 
 |   if (delta_dist) { | 
 |     double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0); | 
 |     double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep); | 
 |     sbs_dist = AOMMIN(sbs_dist, srcrf_sse); | 
 |     *delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk); | 
 |     *delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0); | 
 |     *delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0); | 
 |   } | 
 |   return qindex; | 
 | } | 
 |  | 
 | #if !DISABLE_HDR_LUMA_DELTAQ | 
 | // offset table defined in Table3 of T-REC-H.Sup15 document. | 
 | static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0,   301, 367, 434, 501, 567, | 
 |                                                   634, 701, 767, 834, 1024 }; | 
 |  | 
 | static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3,  2,  1,  0,  -1, | 
 |                                                     -2, -3, -4, -5, -6 }; | 
 | #endif | 
 |  | 
 | int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x, | 
 |                       BLOCK_SIZE bsize, int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   assert(cm->seq_params->bit_depth == AOM_BITS_10); | 
 |  | 
 | #if DISABLE_HDR_LUMA_DELTAQ | 
 |   (void)x; | 
 |   (void)bsize; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   return cm->quant_params.base_qindex; | 
 | #else | 
 |   // calculate pixel average | 
 |   const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col); | 
 |   // adjust offset based on average of the pixel block | 
 |   int offset = 0; | 
 |   for (int i = 0; i < HDR_QP_LEVELS; i++) { | 
 |     if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) { | 
 |       offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
 |   offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1); | 
 |   offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1); | 
 |   int qindex = cm->quant_params.base_qindex + offset; | 
 |   qindex = AOMMIN(qindex, MAXQ); | 
 |   qindex = AOMMAX(qindex, MINQ); | 
 |  | 
 |   return qindex; | 
 | #endif | 
 | } | 
 | #endif  // !CONFIG_REALTIME_ONLY | 
 |  | 
 | void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree, | 
 |                                             BLOCK_SIZE bsize) { | 
 |   if (sms_tree == NULL) return; | 
 |   sms_tree->partitioning = PARTITION_NONE; | 
 |  | 
 |   if (bsize >= BLOCK_8X8) { | 
 |     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |     for (int idx = 0; idx < 4; ++idx) | 
 |       av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize); | 
 |   } | 
 | } | 
 |  | 
 | // Record the ref frames that have been selected by square partition blocks. | 
 | void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type, | 
 |                                        BLOCK_SIZE bsize, int mib_size, | 
 |                                        int mi_row, int mi_col) { | 
 |   assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
 |   const int sb_size_mask = mib_size - 1; | 
 |   const int mi_row_in_sb = mi_row & sb_size_mask; | 
 |   const int mi_col_in_sb = mi_col & sb_size_mask; | 
 |   const int mi_size = mi_size_wide[bsize]; | 
 |   for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) { | 
 |     for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) { | 
 |       x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr, | 
 |                            int num_cdfs, int cdf_stride, int nsymbs, | 
 |                            int wt_left, int wt_tr) { | 
 |   for (int i = 0; i < num_cdfs; i++) { | 
 |     for (int j = 0; j <= nsymbs; j++) { | 
 |       cdf_ptr_left[i * cdf_stride + j] = | 
 |           (aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left + | 
 |                           (int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr + | 
 |                           ((wt_left + wt_tr) / 2)) / | 
 |                          (wt_left + wt_tr)); | 
 |       assert(cdf_ptr_left[i * cdf_stride + j] >= 0 && | 
 |              cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \ | 
 |   AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs)) | 
 |  | 
 | #define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride)           \ | 
 |   do {                                                                     \ | 
 |     aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left;               \ | 
 |     aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr;                   \ | 
 |     int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob);       \ | 
 |     int num_cdfs = array_size / cdf_stride;                                \ | 
 |     avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \ | 
 |                    wt_left, wt_tr);                                        \ | 
 |   } while (0) | 
 |  | 
 | static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left, | 
 |                     int wt_tr) { | 
 |   AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4); | 
 |   for (int i = 0; i < 2; i++) { | 
 |     AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf, | 
 |                 MV_CLASSES); | 
 |     AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf, | 
 |                 nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE); | 
 |     AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE); | 
 |     AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2); | 
 |     AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf, | 
 |                 nmv_tr->comps[i].class0_hp_cdf, 2); | 
 |     AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2); | 
 |     AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf, | 
 |                 CLASS0_SIZE); | 
 |     AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2); | 
 |   } | 
 | } | 
 |  | 
 | // In case of row-based multi-threading of encoder, since we always | 
 | // keep a top - right sync, we can average the top - right SB's CDFs and | 
 | // the left SB's CDFs and use the same for current SB's encoding to | 
 | // improve the performance. This function facilitates the averaging | 
 | // of CDF and used only when row-mt is enabled in encoder. | 
 | void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr, | 
 |                          int wt_left, int wt_tr) { | 
 |   AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10); | 
 |   AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11); | 
 |   AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3); | 
 |   AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4); | 
 |   AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE); | 
 |   AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->inter_compound_mode_cdf, | 
 |               ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES); | 
 |   AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf, | 
 |               MASKED_COMPOUND_TYPES); | 
 |   AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16); | 
 |   AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf, | 
 |               INTERINTRA_MODES); | 
 |   AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES); | 
 |   AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf, | 
 |               PALETTE_SIZES); | 
 |   AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf, | 
 |               PALETTE_SIZES); | 
 |   for (int j = 0; j < PALETTE_SIZES; j++) { | 
 |     int nsymbs = j + PALETTE_MIN_SIZE; | 
 |     AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j], | 
 |                    ctx_tr->palette_y_color_index_cdf[j], nsymbs, | 
 |                    CDF_SIZE(PALETTE_COLORS)); | 
 |     AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j], | 
 |                    ctx_tr->palette_uv_color_index_cdf[j], nsymbs, | 
 |                    CDF_SIZE(PALETTE_COLORS)); | 
 |   } | 
 |   AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2); | 
 |   AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2); | 
 |   AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2); | 
 |   avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr); | 
 |   avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr); | 
 |   AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf, | 
 |               ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS); | 
 |   AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2); | 
 |   AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf, | 
 |               FILTER_INTRA_MODES); | 
 |   AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf, | 
 |               RESTORE_SWITCHABLE_TYPES); | 
 |   AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2); | 
 |   AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES); | 
 |   AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0], | 
 |                  UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES)); | 
 |   AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES); | 
 |   for (int i = 0; i < PARTITION_CONTEXTS; i++) { | 
 |     if (i < 4) { | 
 |       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4, | 
 |                      CDF_SIZE(10)); | 
 |     } else if (i < 16) { | 
 |       AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10); | 
 |     } else { | 
 |       AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8, | 
 |                      CDF_SIZE(10)); | 
 |     } | 
 |   } | 
 |   AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf, | 
 |               SWITCHABLE_FILTERS); | 
 |   AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES); | 
 |   AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf, | 
 |               2 * MAX_ANGLE_DELTA + 1); | 
 |   AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH, | 
 |                  CDF_SIZE(MAX_TX_DEPTH + 1)); | 
 |   AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1], | 
 |               MAX_TX_DEPTH + 1); | 
 |   AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2], | 
 |               MAX_TX_DEPTH + 1); | 
 |   AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3], | 
 |               MAX_TX_DEPTH + 1); | 
 |   AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1); | 
 |   AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1); | 
 |   for (int i = 0; i < FRAME_LF_COUNT; i++) { | 
 |     AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i], | 
 |                 DELTA_LF_PROBS + 1); | 
 |   } | 
 |   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7, | 
 |                  CDF_SIZE(TX_TYPES)); | 
 |   AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5, | 
 |                  CDF_SIZE(TX_TYPES)); | 
 |   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16, | 
 |                  CDF_SIZE(TX_TYPES)); | 
 |   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12, | 
 |                  CDF_SIZE(TX_TYPES)); | 
 |   AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2, | 
 |                  CDF_SIZE(TX_TYPES)); | 
 |   AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS); | 
 |   AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf, | 
 |               CFL_ALPHABET_SIZE); | 
 | } | 
 |  | 
 | // Check neighbor blocks' motion information. | 
 | static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride, | 
 |                                  const TileInfo *const tile_info, int mi_row, | 
 |                                  int mi_col) { | 
 |   int is_above_low_motion = 1; | 
 |   int is_left_low_motion = 1; | 
 |   const int thr = 24; | 
 |  | 
 |   // Check above block. | 
 |   if (mi_row > tile_info->mi_row_start) { | 
 |     const MB_MODE_INFO *above_mbmi = mi[-mi_stride]; | 
 |     const int_mv above_mv = above_mbmi->mv[0]; | 
 |     if (above_mbmi->mode >= INTRA_MODE_END && | 
 |         (abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr)) | 
 |       is_above_low_motion = 0; | 
 |   } | 
 |  | 
 |   // Check left block. | 
 |   if (mi_col > tile_info->mi_col_start) { | 
 |     const MB_MODE_INFO *left_mbmi = mi[-1]; | 
 |     const int_mv left_mv = left_mbmi->mv[0]; | 
 |     if (left_mbmi->mode >= INTRA_MODE_END && | 
 |         (abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr)) | 
 |       is_left_low_motion = 0; | 
 |   } | 
 |  | 
 |   return (is_above_low_motion && is_left_low_motion); | 
 | } | 
 |  | 
 | // Check this block's motion in a fast way. | 
 | static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y, | 
 |                                        int src_ystride, | 
 |                                        const uint8_t *last_src_y, | 
 |                                        int last_src_ystride, int mi_row, | 
 |                                        int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const BLOCK_SIZE bsize = cm->seq_params->sb_size; | 
 |   unsigned int blk_sad = INT_MAX; | 
 |   if (cpi->src_sad_blk_64x64 != NULL) { | 
 |     const int sb_size_by_mb = (bsize == BLOCK_128X128) | 
 |                                   ? (cm->seq_params->mib_size >> 1) | 
 |                                   : cm->seq_params->mib_size; | 
 |     const int sb_cols = | 
 |         (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; | 
 |     const int sbi_col = mi_col / sb_size_by_mb; | 
 |     const int sbi_row = mi_row / sb_size_by_mb; | 
 |     blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; | 
 |   } else { | 
 |     blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, | 
 |                                           last_src_ystride); | 
 |   } | 
 |  | 
 |   // Search 4 1-away points. | 
 |   const uint8_t *const search_pos[4] = { | 
 |     last_src_y - last_src_ystride, | 
 |     last_src_y - 1, | 
 |     last_src_y + 1, | 
 |     last_src_y + last_src_ystride, | 
 |   }; | 
 |   unsigned int sad_arr[4]; | 
 |   cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos, | 
 |                                  last_src_ystride, sad_arr); | 
 |  | 
 |   blk_sad = (blk_sad * 5) >> 3; | 
 |   return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] && | 
 |           blk_sad < sad_arr[2] && blk_sad < sad_arr[3]); | 
 | } | 
 |  | 
 | // Grade the temporal variation of the source by comparing the current sb and | 
 | // its collocated block in the last frame. | 
 | void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data, | 
 |                            int mi_row, int mi_col) { | 
 |   if (cpi->last_source->y_width != cpi->source->y_width || | 
 |       cpi->last_source->y_height != cpi->source->y_height) | 
 |     return; | 
 | #if CONFIG_AV1_HIGHBITDEPTH | 
 |   if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return; | 
 | #endif | 
 |  | 
 |   unsigned int tmp_sse; | 
 |   unsigned int tmp_variance; | 
 |   const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size; | 
 |   uint8_t *src_y = cpi->source->y_buffer; | 
 |   const int src_ystride = cpi->source->y_stride; | 
 |   const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2); | 
 |   uint8_t *last_src_y = cpi->last_source->y_buffer; | 
 |   const int last_src_ystride = cpi->last_source->y_stride; | 
 |   const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2); | 
 |   uint64_t avg_source_sse_threshold_verylow = 10000;     // ~1.5*1.5*(64*64) | 
 |   uint64_t avg_source_sse_threshold_low[2] = { 100000,   // ~5*5*(64*64) | 
 |                                                36000 };  // ~3*3*(64*64) | 
 |  | 
 |   uint64_t avg_source_sse_threshold_high = 1000000;  // ~15*15*(64*64) | 
 |   uint64_t sum_sq_thresh = 10000;  // sum = sqrt(thresh / 64*64)) ~1.5 | 
 |   src_y += src_offset; | 
 |   last_src_y += last_src_offset; | 
 |   tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, | 
 |                                             last_src_ystride, &tmp_sse); | 
 |   // rd thresholds | 
 |   if (tmp_sse < avg_source_sse_threshold_low[1]) | 
 |     x->content_state_sb.source_sad_rd = kLowSad; | 
 |  | 
 |   // nonrd thresholds | 
 |   if (tmp_sse == 0) { | 
 |     x->content_state_sb.source_sad_nonrd = kZeroSad; | 
 |     return; | 
 |   } | 
 |   if (tmp_sse < avg_source_sse_threshold_verylow) | 
 |     x->content_state_sb.source_sad_nonrd = kVeryLowSad; | 
 |   else if (tmp_sse < avg_source_sse_threshold_low[0]) | 
 |     x->content_state_sb.source_sad_nonrd = kLowSad; | 
 |   else if (tmp_sse > avg_source_sse_threshold_high) | 
 |     x->content_state_sb.source_sad_nonrd = kHighSad; | 
 |  | 
 |   // Detect large lighting change. | 
 |   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12) | 
 |   if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh) | 
 |     x->content_state_sb.lighting_change = 1; | 
 |   if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1)) | 
 |     x->content_state_sb.low_sumdiff = 1; | 
 |  | 
 |   if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad || | 
 |       cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1) | 
 |     return; | 
 |  | 
 |   // In-place temporal filter. If psnr calculation is enabled, we store the | 
 |   // source for that. | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   // Calculate n*mean^2 | 
 |   const unsigned int nmean2 = tmp_sse - tmp_variance; | 
 |   const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, | 
 |                                          cm->seq_params->bit_depth); | 
 |   const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; | 
 |   const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME], | 
 |                                           0, cm->seq_params->bit_depth); | 
 |  | 
 |   const unsigned int threshold = | 
 |       (cpi->sf.rt_sf.use_rtc_tf == 1) | 
 |           ? (clamp(avg_q_step, 250, 1000)) * ac_q_step | 
 |           : 250 * ac_q_step; | 
 |  | 
 |   // TODO(yunqing): use a weighted sum instead of averaging in filtering. | 
 |   if (tmp_variance <= threshold && nmean2 <= 15) { | 
 |     // Check neighbor blocks. If neighbor blocks aren't low-motion blocks, | 
 |     // skip temporal filtering for this block. | 
 |     MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + | 
 |                         get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); | 
 |     const TileInfo *const tile_info = &tile_data->tile_info; | 
 |     const int is_neighbor_blocks_low_motion = check_neighbor_blocks( | 
 |         mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col); | 
 |     if (!is_neighbor_blocks_low_motion) return; | 
 |  | 
 |     // Only consider 64x64 SB for now. Need to extend to 128x128 for large SB | 
 |     // size. | 
 |     // Test several nearby points. If non-zero mv exists, don't do temporal | 
 |     // filtering. | 
 |     const int is_this_blk_low_motion = fast_detect_non_zero_motion( | 
 |         cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col); | 
 |  | 
 |     if (!is_this_blk_low_motion) return; | 
 |  | 
 |     const int shift_x[2] = { 0, cpi->source->subsampling_x }; | 
 |     const int shift_y[2] = { 0, cpi->source->subsampling_y }; | 
 |     const uint8_t h = block_size_high[bsize]; | 
 |     const uint8_t w = block_size_wide[bsize]; | 
 |  | 
 |     for (int plane = 0; plane < av1_num_planes(cm); ++plane) { | 
 |       uint8_t *src = cpi->source->buffers[plane]; | 
 |       const int src_stride = cpi->source->strides[plane != 0]; | 
 |       uint8_t *last_src = cpi->last_source->buffers[plane]; | 
 |       const int last_src_stride = cpi->last_source->strides[plane != 0]; | 
 |       src += src_stride * (mi_row << (2 - shift_y[plane != 0])) + | 
 |              (mi_col << (2 - shift_x[plane != 0])); | 
 |       last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) + | 
 |                   (mi_col << (2 - shift_x[plane != 0])); | 
 |  | 
 |       for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) { | 
 |         for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) { | 
 |           src[j] = (last_src[j] + src[j]) >> 1; | 
 |         } | 
 |         src += src_stride; | 
 |         last_src += last_src_stride; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Memset the mbmis at the current superblock to 0 | 
 | void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size, | 
 |                     int mi_row, int mi_col) { | 
 |   // size of sb in unit of mi (BLOCK_4X4) | 
 |   const int sb_size_mi = mi_size_wide[sb_size]; | 
 |   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; | 
 |   // size of sb in unit of allocated mi size | 
 |   const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d; | 
 |   assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 && | 
 |          "mi is not allocated as a multiple of sb!"); | 
 |   assert(mi_params->mi_stride % sb_size_mi == 0 && | 
 |          "mi_grid_base is not allocated as a multiple of sb!"); | 
 |  | 
 |   const int mi_rows = mi_size_high[sb_size]; | 
 |   for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) { | 
 |     assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) < | 
 |            mi_params->mi_stride); | 
 |     const int mi_grid_idx = | 
 |         get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col); | 
 |     const int alloc_mi_idx = | 
 |         get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col); | 
 |     memset(&mi_params->mi_grid_base[mi_grid_idx], 0, | 
 |            sb_size_mi * sizeof(*mi_params->mi_grid_base)); | 
 |     memset(&mi_params->tx_type_map[mi_grid_idx], 0, | 
 |            sb_size_mi * sizeof(*mi_params->tx_type_map)); | 
 |     if (cur_mi_row % mi_alloc_size_1d == 0) { | 
 |       memset(&mi_params->mi_alloc[alloc_mi_idx], 0, | 
 |              sb_size_alloc_mi * sizeof(*mi_params->mi_alloc)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi, | 
 |                          ThreadData *td, const TileDataEnc *tile_data, | 
 |                          int mi_row, int mi_col) { | 
 |   MACROBLOCK *x = &td->mb; | 
 |   MACROBLOCKD *xd = &x->e_mbd; | 
 |   const TileInfo *tile_info = &tile_data->tile_info; | 
 |  | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |  | 
 |   xd->above_txfm_context = | 
 |       cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
 |   xd->left_txfm_context = | 
 |       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
 |   av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes); | 
 |  | 
 |   sb_fp_stats->rd_count = td->rd_counts; | 
 |   sb_fp_stats->split_count = x->txfm_search_info.txb_split_count; | 
 |  | 
 |   sb_fp_stats->fc = *td->counts; | 
 |  | 
 |   // Don't copy in row_mt case, otherwise run into data race. No behavior change | 
 |   // in row_mt case. | 
 |   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { | 
 |     memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models, | 
 |            sizeof(sb_fp_stats->inter_mode_rd_models)); | 
 |   } | 
 |  | 
 |   memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact, | 
 |          sizeof(sb_fp_stats->thresh_freq_fact)); | 
 |  | 
 |   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
 |   sb_fp_stats->current_qindex = | 
 |       cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
 |  | 
 | #if CONFIG_INTERNAL_STATS | 
 |   memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts, | 
 |          sizeof(sb_fp_stats->mode_chosen_counts)); | 
 | #endif  // CONFIG_INTERNAL_STATS | 
 | } | 
 |  | 
 | void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi, | 
 |                           ThreadData *td, TileDataEnc *tile_data, int mi_row, | 
 |                           int mi_col) { | 
 |   MACROBLOCK *x = &td->mb; | 
 |  | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
 |  | 
 |   av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, | 
 |                       num_planes); | 
 |  | 
 |   td->rd_counts = sb_fp_stats->rd_count; | 
 |   x->txfm_search_info.txb_split_count = sb_fp_stats->split_count; | 
 |  | 
 |   *td->counts = sb_fp_stats->fc; | 
 |  | 
 |   if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { | 
 |     memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models, | 
 |            sizeof(sb_fp_stats->inter_mode_rd_models)); | 
 |   } | 
 |  | 
 |   memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact, | 
 |          sizeof(sb_fp_stats->thresh_freq_fact)); | 
 |  | 
 |   const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
 |   cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = | 
 |       sb_fp_stats->current_qindex; | 
 |  | 
 | #if CONFIG_INTERNAL_STATS | 
 |   memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts, | 
 |          sizeof(sb_fp_stats->mode_chosen_counts)); | 
 | #endif  // CONFIG_INTERNAL_STATS | 
 | } | 
 |  | 
 | /*! Checks whether to skip updating the entropy cost based on tile info. | 
 |  * | 
 |  * This function contains the common code used to skip the cost update of coeff, | 
 |  * mode, mv and dv symbols. | 
 |  */ | 
 | static int skip_cost_update(const SequenceHeader *seq_params, | 
 |                             const TileInfo *const tile_info, const int mi_row, | 
 |                             const int mi_col, | 
 |                             INTERNAL_COST_UPDATE_TYPE upd_level) { | 
 |   if (upd_level == INTERNAL_COST_UPD_SB) return 0; | 
 |   if (upd_level == INTERNAL_COST_UPD_OFF) return 1; | 
 |  | 
 |   // upd_level is at most as frequent as each sb_row in a tile. | 
 |   if (mi_col != tile_info->mi_col_start) return 1; | 
 |  | 
 |   if (upd_level == INTERNAL_COST_UPD_SBROW_SET) { | 
 |     const int mib_size_log2 = seq_params->mib_size_log2; | 
 |     const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; | 
 |     const int sb_size = seq_params->mib_size * MI_SIZE; | 
 |     const int tile_height = | 
 |         (tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE; | 
 |     // When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens | 
 |     // once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However, | 
 |     // as the update will not be equally spaced in smaller resolutions making | 
 |     // it equally spaced by calculating (mv_num_rows_cost_update) the number of | 
 |     // rows after which the cost update should happen. | 
 |     const int sb_size_update_freq_map[2] = { 2, 4 }; | 
 |     const int update_freq_sb_rows = | 
 |         sb_size_update_freq_map[sb_size != MAX_SB_SIZE]; | 
 |     const int update_freq_num_rows = sb_size * update_freq_sb_rows; | 
 |     // Round-up the division result to next integer. | 
 |     const int num_updates_per_tile = | 
 |         (tile_height + update_freq_num_rows - 1) / update_freq_num_rows; | 
 |     const int num_rows_update_per_tile = num_updates_per_tile * sb_size; | 
 |     // Round-up the division result to next integer. | 
 |     const int num_sb_rows_per_update = | 
 |         (tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile; | 
 |     if ((sb_row % num_sb_rows_per_update) != 0) return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Checks for skip status of mv cost update. | 
 | static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, | 
 |                                const int mi_row, const int mi_col) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   // For intra frames, mv cdfs are not updated during the encode. Hence, the mv | 
 |   // cost calculation is skipped in this case. | 
 |   if (frame_is_intra_only(cm)) return 1; | 
 |  | 
 |   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, | 
 |                           cpi->sf.inter_sf.mv_cost_upd_level); | 
 | } | 
 |  | 
 | // Checks for skip status of dv cost update. | 
 | static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info, | 
 |                                const int mi_row, const int mi_col) { | 
 |   const AV1_COMMON *cm = &cpi->common; | 
 |   // Intrabc is only applicable to intra frames. So skip if intrabc is not | 
 |   // allowed. | 
 |   if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, | 
 |                           cpi->sf.intra_sf.dv_cost_upd_level); | 
 | } | 
 |  | 
 | // Update the rate costs of some symbols according to the frequency directed | 
 | // by speed features | 
 | void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td, | 
 |                            const TileInfo *const tile_info, const int mi_row, | 
 |                            const int mi_col) { | 
 |   AV1_COMMON *const cm = &cpi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCK *const x = &td->mb; | 
 |   MACROBLOCKD *const xd = &x->e_mbd; | 
 |  | 
 |   if (cm->features.disable_cdf_update) { | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (cpi->sf.inter_sf.coeff_cost_upd_level) { | 
 |     case INTERNAL_COST_UPD_OFF: | 
 |     case INTERNAL_COST_UPD_TILE:  // Tile level | 
 |       break; | 
 |     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile | 
 |     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile | 
 |     case INTERNAL_COST_UPD_SB:         // SB level | 
 |       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, | 
 |                            cpi->sf.inter_sf.coeff_cost_upd_level)) | 
 |         break; | 
 |       av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes); | 
 |       break; | 
 |     default: assert(0); | 
 |   } | 
 |  | 
 |   switch (cpi->sf.inter_sf.mode_cost_upd_level) { | 
 |     case INTERNAL_COST_UPD_OFF: | 
 |     case INTERNAL_COST_UPD_TILE:  // Tile level | 
 |       break; | 
 |     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile | 
 |     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile | 
 |     case INTERNAL_COST_UPD_SB:         // SB level | 
 |       if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col, | 
 |                            cpi->sf.inter_sf.mode_cost_upd_level)) | 
 |         break; | 
 |       av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx); | 
 |       break; | 
 |     default: assert(0); | 
 |   } | 
 |  | 
 |   switch (cpi->sf.inter_sf.mv_cost_upd_level) { | 
 |     case INTERNAL_COST_UPD_OFF: | 
 |     case INTERNAL_COST_UPD_TILE:  // Tile level | 
 |       break; | 
 |     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile | 
 |     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile | 
 |     case INTERNAL_COST_UPD_SB:         // SB level | 
 |       // Checks for skip status of mv cost update. | 
 |       if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break; | 
 |       av1_fill_mv_costs(&xd->tile_ctx->nmvc, | 
 |                         cm->features.cur_frame_force_integer_mv, | 
 |                         cm->features.allow_high_precision_mv, x->mv_costs); | 
 |       break; | 
 |     default: assert(0); | 
 |   } | 
 |  | 
 |   switch (cpi->sf.intra_sf.dv_cost_upd_level) { | 
 |     case INTERNAL_COST_UPD_OFF: | 
 |     case INTERNAL_COST_UPD_TILE:  // Tile level | 
 |       break; | 
 |     case INTERNAL_COST_UPD_SBROW_SET:  // SB row set level in tile | 
 |     case INTERNAL_COST_UPD_SBROW:      // SB row level in tile | 
 |     case INTERNAL_COST_UPD_SB:         // SB level | 
 |       // Checks for skip status of dv cost update. | 
 |       if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break; | 
 |       av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs); | 
 |       break; | 
 |     default: assert(0); | 
 |   } | 
 | } |