|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/entropymode.h" | 
|  |  | 
|  | #include "av1/encoder/cost.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_ports/bitops.h" | 
|  |  | 
|  | static void update_mv_component_stats(int comp, nmv_component *mvcomp, | 
|  | MvSubpelPrecision precision) { | 
|  | assert(comp != 0); | 
|  | int offset; | 
|  | const int sign = comp < 0; | 
|  | const int mag = sign ? -comp : comp; | 
|  | const int mv_class = av1_get_mv_class(mag - 1, &offset); | 
|  | const int d = offset >> 3;         // int mv data | 
|  | const int fr = (offset >> 1) & 3;  // fractional mv data | 
|  | const int hp = offset & 1;         // high precision mv data | 
|  |  | 
|  | // Sign | 
|  | update_cdf(mvcomp->sign_cdf, sign, 2); | 
|  |  | 
|  | // Class | 
|  | update_cdf(mvcomp->classes_cdf, mv_class, MV_CLASSES); | 
|  |  | 
|  | // Integer bits | 
|  | if (mv_class == MV_CLASS_0) { | 
|  | update_cdf(mvcomp->class0_cdf, d, CLASS0_SIZE); | 
|  | } else { | 
|  | const int n = mv_class + CLASS0_BITS - 1;  // number of bits | 
|  | for (int i = 0; i < n; ++i) | 
|  | update_cdf(mvcomp->bits_cdf[i], (d >> i) & 1, 2); | 
|  | } | 
|  | // Fractional bits | 
|  | if (precision > MV_SUBPEL_NONE) { | 
|  | aom_cdf_prob *fp_cdf = | 
|  | mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf; | 
|  | update_cdf(fp_cdf, fr, MV_FP_SIZE); | 
|  | } | 
|  |  | 
|  | // High precision bit | 
|  | if (precision > MV_SUBPEL_LOW_PRECISION) { | 
|  | aom_cdf_prob *hp_cdf = | 
|  | mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf; | 
|  | update_cdf(hp_cdf, hp, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_update_mv_stats(const MV *mv, const MV *ref, nmv_context *mvctx, | 
|  | MvSubpelPrecision precision) { | 
|  | const MV diff = { mv->row - ref->row, mv->col - ref->col }; | 
|  | const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); | 
|  |  | 
|  | update_cdf(mvctx->joints_cdf, j, MV_JOINTS); | 
|  |  | 
|  | if (mv_joint_vertical(j)) | 
|  | update_mv_component_stats(diff.row, &mvctx->comps[0], precision); | 
|  |  | 
|  | if (mv_joint_horizontal(j)) | 
|  | update_mv_component_stats(diff.col, &mvctx->comps[1], precision); | 
|  | } | 
|  |  | 
|  | static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp, | 
|  | MvSubpelPrecision precision) { | 
|  | assert(comp != 0); | 
|  | int offset; | 
|  | const int sign = comp < 0; | 
|  | const int mag = sign ? -comp : comp; | 
|  | const int mv_class = av1_get_mv_class(mag - 1, &offset); | 
|  | const int d = offset >> 3;         // int mv data | 
|  | const int fr = (offset >> 1) & 3;  // fractional mv data | 
|  | const int hp = offset & 1;         // high precision mv data | 
|  |  | 
|  | // Sign | 
|  | aom_write_symbol(w, sign, mvcomp->sign_cdf, 2); | 
|  |  | 
|  | // Class | 
|  | aom_write_symbol(w, mv_class, mvcomp->classes_cdf, MV_CLASSES); | 
|  |  | 
|  | // Integer bits | 
|  | if (mv_class == MV_CLASS_0) { | 
|  | aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE); | 
|  | } else { | 
|  | int i; | 
|  | const int n = mv_class + CLASS0_BITS - 1;  // number of bits | 
|  | for (i = 0; i < n; ++i) | 
|  | aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2); | 
|  | } | 
|  | // Fractional bits | 
|  | if (precision > MV_SUBPEL_NONE) { | 
|  | aom_write_symbol( | 
|  | w, fr, | 
|  | mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, | 
|  | MV_FP_SIZE); | 
|  | } | 
|  |  | 
|  | // High precision bit | 
|  | if (precision > MV_SUBPEL_LOW_PRECISION) | 
|  | aom_write_symbol( | 
|  | w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, | 
|  | 2); | 
|  | } | 
|  |  | 
|  | /* TODO(siekyleb@amazon.com): This function writes MV_VALS ints or 128 KiB. This | 
|  | *   is more than most L1D caches and is a significant chunk of L2. Write | 
|  | *   SIMD that uses streaming writes to avoid loading all of that into L1, or | 
|  | *   just don't update the larger component costs every time this called | 
|  | *   (or both). | 
|  | */ | 
|  | void av1_build_nmv_component_cost_table(int *mvcost, | 
|  | const nmv_component *const mvcomp, | 
|  | MvSubpelPrecision precision) { | 
|  | int i, j, v, o, mantissa; | 
|  | int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; | 
|  | int bits_cost[MV_OFFSET_BITS][2]; | 
|  | int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE] = { 0 }, | 
|  | fp_cost[MV_FP_SIZE] = { 0 }; | 
|  | int class0_hp_cost[2] = { 0 }, hp_cost[2] = { 0 }; | 
|  |  | 
|  | av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL); | 
|  | av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL); | 
|  | av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL); | 
|  | for (i = 0; i < MV_OFFSET_BITS; ++i) { | 
|  | av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | if (precision > MV_SUBPEL_NONE) { | 
|  | for (i = 0; i < CLASS0_SIZE; ++i) | 
|  | av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], | 
|  | NULL); | 
|  | av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL); | 
|  | } | 
|  |  | 
|  | if (precision > MV_SUBPEL_LOW_PRECISION) { | 
|  | av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL); | 
|  | av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL); | 
|  | } | 
|  |  | 
|  | // Instead of accumulating the cost of each vector component's bits | 
|  | //   individually, compute the costs based on smaller vectors. Costs for | 
|  | //   [2^exp, 2 * 2^exp - 1] are calculated based on [0, 2^exp - 1] | 
|  | //   respectively. Offsets are maintained to swap both 1) class costs when | 
|  | //   treated as a complete vector component with the highest set bit when | 
|  | //   treated as a mantissa (significand) and 2) leading zeros to account for | 
|  | //   the current exponent. | 
|  |  | 
|  | // Cost offsets | 
|  | int cost_swap[MV_OFFSET_BITS] = { 0 }; | 
|  | // Delta to convert positive vector to negative vector costs | 
|  | int negate_sign = sign_cost[1] - sign_cost[0]; | 
|  |  | 
|  | // Initialize with offsets to swap the class costs with the costs of the | 
|  | //   highest set bit. | 
|  | for (i = 1; i < MV_OFFSET_BITS; ++i) { | 
|  | cost_swap[i] = bits_cost[i - 1][1]; | 
|  | if (i > CLASS0_BITS) cost_swap[i] -= class_cost[i - CLASS0_BITS]; | 
|  | } | 
|  |  | 
|  | // Seed the fractional costs onto the output (overwritten latter). | 
|  | for (o = 0; o < MV_FP_SIZE; ++o) { | 
|  | int hp; | 
|  | for (hp = 0; hp < 2; ++hp) { | 
|  | v = 2 * o + hp + 1; | 
|  | mvcost[v] = fp_cost[o] + hp_cost[hp] + sign_cost[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | mvcost[0] = 0; | 
|  | // Fill the costs for each exponent's vectors, using the costs set in the | 
|  | //   previous exponents. | 
|  | for (i = 0; i < MV_OFFSET_BITS; ++i) { | 
|  | const int exponent = (2 * MV_FP_SIZE) << i; | 
|  |  | 
|  | int class = 0; | 
|  | if (i >= CLASS0_BITS) { | 
|  | class = class_cost[i - CLASS0_BITS + 1]; | 
|  | } | 
|  |  | 
|  | // Iterate through mantissas, keeping track of the location | 
|  | //   of the highest set bit for the mantissa. | 
|  | // To be clear: in the outer loop, the position of the highest set bit | 
|  | //   (exponent) is tracked and, in this loop, the highest set bit of the | 
|  | //   mantissa is tracked. | 
|  | mantissa = 0; | 
|  | for (j = 0; j <= i; ++j) { | 
|  | for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { | 
|  | int cost = mvcost[mantissa + 1] + class + cost_swap[j]; | 
|  | v = exponent + mantissa + 1; | 
|  | mvcost[v] = cost; | 
|  | mvcost[-v] = cost + negate_sign; | 
|  | } | 
|  | cost_swap[j] += bits_cost[i][0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Special case to avoid buffer overrun | 
|  | { | 
|  | int exponent = (2 * MV_FP_SIZE) << MV_OFFSET_BITS; | 
|  | int class = class_cost[MV_CLASSES - 1]; | 
|  | mantissa = 0; | 
|  | for (j = 0; j < MV_OFFSET_BITS; ++j) { | 
|  | for (; mantissa < (2 * MV_FP_SIZE) << j; ++mantissa) { | 
|  | int cost = mvcost[mantissa + 1] + class + cost_swap[j]; | 
|  | v = exponent + mantissa + 1; | 
|  | mvcost[v] = cost; | 
|  | mvcost[-v] = cost + negate_sign; | 
|  | } | 
|  | } | 
|  | // At this point: mantissa = exponent >> 1 | 
|  |  | 
|  | // Manually calculate the final cost offset | 
|  | int cost_swap_hi = | 
|  | bits_cost[MV_OFFSET_BITS - 1][1] - class_cost[MV_CLASSES - 2]; | 
|  | for (; mantissa < exponent - 1; ++mantissa) { | 
|  | int cost = mvcost[mantissa + 1] + class + cost_swap_hi; | 
|  | v = exponent + mantissa + 1; | 
|  | mvcost[v] = cost; | 
|  | mvcost[-v] = cost + negate_sign; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill costs for class0 vectors, overwriting previous placeholder values | 
|  | //   used for calculating the costs of the larger vectors. | 
|  | for (i = 0; i < CLASS0_SIZE; ++i) { | 
|  | const int top = i * 2 * MV_FP_SIZE; | 
|  | for (o = 0; o < MV_FP_SIZE; ++o) { | 
|  | int hp; | 
|  | int cost = class0_fp_cost[i][o] + class_cost[0] + class0_cost[i]; | 
|  | for (hp = 0; hp < 2; ++hp) { | 
|  | v = top + 2 * o + hp + 1; | 
|  | mvcost[v] = cost + class0_hp_cost[hp] + sign_cost[0]; | 
|  | mvcost[-v] = cost + class0_hp_cost[hp] + sign_cost[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, ThreadData *td, const MV *mv, | 
|  | const MV *ref, nmv_context *mvctx, int usehp) { | 
|  | const MV diff = { mv->row - ref->row, mv->col - ref->col }; | 
|  | const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); | 
|  | // If the mv_diff is zero, then we should have used near or nearest instead. | 
|  | assert(j != MV_JOINT_ZERO); | 
|  | if (cpi->common.features.cur_frame_force_integer_mv) { | 
|  | usehp = MV_SUBPEL_NONE; | 
|  | } | 
|  | aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); | 
|  | if (mv_joint_vertical(j)) | 
|  | encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); | 
|  |  | 
|  | if (mv_joint_horizontal(j)) | 
|  | encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); | 
|  |  | 
|  | // If auto_mv_step_size is enabled then keep track of the largest | 
|  | // motion vector component used. | 
|  | if (cpi->sf.mv_sf.auto_mv_step_size) { | 
|  | int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3; | 
|  | td->max_mv_magnitude = AOMMAX(maxv, td->max_mv_magnitude); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, | 
|  | nmv_context *mvctx) { | 
|  | // DV and ref DV should not have sub-pel. | 
|  | assert((mv->col & 7) == 0); | 
|  | assert((mv->row & 7) == 0); | 
|  | assert((ref->col & 7) == 0); | 
|  | assert((ref->row & 7) == 0); | 
|  | const MV diff = { mv->row - ref->row, mv->col - ref->col }; | 
|  | const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); | 
|  |  | 
|  | aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); | 
|  | if (mv_joint_vertical(j)) | 
|  | encode_mv_component(w, diff.row, &mvctx->comps[0], MV_SUBPEL_NONE); | 
|  |  | 
|  | if (mv_joint_horizontal(j)) | 
|  | encode_mv_component(w, diff.col, &mvctx->comps[1], MV_SUBPEL_NONE); | 
|  | } | 
|  |  | 
|  | void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], | 
|  | const nmv_context *ctx, | 
|  | MvSubpelPrecision precision) { | 
|  | av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL); | 
|  | av1_build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision); | 
|  | av1_build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision); | 
|  | } | 
|  |  | 
|  | int_mv av1_get_ref_mv_from_stack(int ref_idx, | 
|  | const MV_REFERENCE_FRAME *ref_frame, | 
|  | int ref_mv_idx, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext) { | 
|  | const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); | 
|  | const CANDIDATE_MV *curr_ref_mv_stack = | 
|  | mbmi_ext->ref_mv_stack[ref_frame_type]; | 
|  |  | 
|  | if (ref_frame[1] > INTRA_FRAME) { | 
|  | assert(ref_idx == 0 || ref_idx == 1); | 
|  | return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv | 
|  | : curr_ref_mv_stack[ref_mv_idx].this_mv; | 
|  | } | 
|  |  | 
|  | assert(ref_idx == 0); | 
|  | return ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type] | 
|  | ? curr_ref_mv_stack[ref_mv_idx].this_mv | 
|  | : mbmi_ext->global_mvs[ref_frame_type]; | 
|  | } | 
|  |  | 
|  | int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) { | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | int ref_mv_idx = mbmi->ref_mv_idx; | 
|  | if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) { | 
|  | assert(has_second_ref(mbmi)); | 
|  | ref_mv_idx += 1; | 
|  | } | 
|  | return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, | 
|  | &x->mbmi_ext); | 
|  | } | 
|  |  | 
|  | void av1_find_best_ref_mvs_from_stack(int allow_hp, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, | 
|  | MV_REFERENCE_FRAME ref_frame, | 
|  | int_mv *nearest_mv, int_mv *near_mv, | 
|  | int is_integer) { | 
|  | const int ref_idx = 0; | 
|  | MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; | 
|  | *nearest_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext); | 
|  | lower_mv_precision(&nearest_mv->as_mv, allow_hp, is_integer); | 
|  | *near_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 1, mbmi_ext); | 
|  | lower_mv_precision(&near_mv->as_mv, allow_hp, is_integer); | 
|  | } |