|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <float.h> | 
|  |  | 
|  | #include "aom_dsp/txfm_common.h" | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/reconintra.h" | 
|  |  | 
|  | #include "av1/encoder/aq_complexity.h" | 
|  | #include "av1/encoder/aq_variance.h" | 
|  | #include "av1/encoder/context_tree.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/intra_mode_search_utils.h" | 
|  | #include "av1/encoder/motion_search_facade.h" | 
|  | #include "av1/encoder/nonrd_opt.h" | 
|  | #include "av1/encoder/partition_search.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #include "av1/encoder/reconinter_enc.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  | #include "av1/encoder/var_based_part.h" | 
|  | #include "av1/encoder/av1_ml_partition_models.h" | 
|  |  | 
|  | #if CONFIG_TUNE_VMAF | 
|  | #include "av1/encoder/tune_vmaf.h" | 
|  | #endif | 
|  |  | 
|  | #define COLLECT_MOTION_SEARCH_FEATURE_SB 0 | 
|  |  | 
|  | void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) { | 
|  | part_sf->partition_search_type = SEARCH_PARTITION; | 
|  | part_sf->less_rectangular_check_level = 0; | 
|  | part_sf->use_square_partition_only_threshold = BLOCK_128X128; | 
|  | part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE; | 
|  | part_sf->default_max_partition_size = BLOCK_LARGEST; | 
|  | part_sf->default_min_partition_size = BLOCK_4X4; | 
|  | part_sf->adjust_var_based_rd_partitioning = 0; | 
|  | part_sf->max_intra_bsize = BLOCK_LARGEST; | 
|  | // This setting only takes effect when partition_search_type is set | 
|  | // to FIXED_PARTITION. | 
|  | part_sf->fixed_partition_size = BLOCK_16X16; | 
|  | // Recode loop tolerance %. | 
|  | part_sf->partition_search_breakout_dist_thr = 0; | 
|  | part_sf->partition_search_breakout_rate_thr = 0; | 
|  | part_sf->prune_ext_partition_types_search_level = 0; | 
|  | part_sf->prune_part4_search = 0; | 
|  | part_sf->ml_prune_partition = 0; | 
|  | part_sf->ml_early_term_after_part_split_level = 0; | 
|  | for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) { | 
|  | part_sf->ml_partition_search_breakout_thresh[i] = | 
|  | -1;  // -1 means not enabled. | 
|  | } | 
|  | part_sf->simple_motion_search_prune_agg = SIMPLE_AGG_LVL0; | 
|  | part_sf->simple_motion_search_split = 0; | 
|  | part_sf->simple_motion_search_prune_rect = 0; | 
|  | part_sf->simple_motion_search_early_term_none = 0; | 
|  | part_sf->simple_motion_search_reduce_search_steps = 0; | 
|  | part_sf->intra_cnn_based_part_prune_level = 0; | 
|  | part_sf->ext_partition_eval_thresh = BLOCK_8X8; | 
|  | part_sf->rect_partition_eval_thresh = BLOCK_128X128; | 
|  | part_sf->ext_part_eval_based_on_cur_best = 0; | 
|  | part_sf->prune_ext_part_using_split_info = 0; | 
|  | part_sf->prune_rectangular_split_based_on_qidx = 0; | 
|  | part_sf->early_term_after_none_split = 0; | 
|  | part_sf->ml_predict_breakout_level = 0; | 
|  | part_sf->prune_sub_8x8_partition_level = 0; | 
|  | part_sf->simple_motion_search_rect_split = 0; | 
|  | part_sf->reuse_prev_rd_results_for_part_ab = 0; | 
|  | part_sf->reuse_best_prediction_for_part_ab = 0; | 
|  | part_sf->use_best_rd_for_pruning = 0; | 
|  | part_sf->skip_non_sq_part_based_on_none = 0; | 
|  | } | 
|  |  | 
|  | // Reset speed features that works for the baseline encoding, but | 
|  | // blocks the external partition search. | 
|  | void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) { | 
|  | cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions = 0; | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | // If input |features| is NULL, write tpl stats to file for each super block. | 
|  | // Otherwise, store tpl stats to |features|. | 
|  | // The tpl stats is computed in the unit of tpl_bsize_1d (16x16). | 
|  | // When writing to text file: | 
|  | // The first row contains super block position, super block size, | 
|  | // tpl unit length, number of units in the super block. | 
|  | // The second row contains the intra prediction cost for each unit. | 
|  | // The third row contains the inter prediction cost for each unit. | 
|  | // The forth row contains the motion compensated dependency cost for each unit. | 
|  | static void collect_tpl_stats_sb(const AV1_COMP *const cpi, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col, | 
|  | aom_partition_features_t *features) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || | 
|  | gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | // If tpl stats is not established, early return | 
|  | if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { | 
|  | if (features != NULL) features->sb_features.tpl_features.available = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int tpl_stride = tpl_frame->stride; | 
|  | const int step = 1 << tpl_data->tpl_stats_block_mis_log2; | 
|  | const int mi_width = | 
|  | AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); | 
|  | const int mi_height = | 
|  | AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); | 
|  | const int col_steps = (mi_width / step) + ((mi_width % step) > 0); | 
|  | const int row_steps = (mi_height / step) + ((mi_height % step) > 0); | 
|  | const int num_blocks = col_steps * row_steps; | 
|  |  | 
|  | if (features == NULL) { | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d", | 
|  | cpi->oxcf.partition_info_path, cpi->sb_counter); | 
|  | FILE *pfile = fopen(filename, "w"); | 
|  | fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize, | 
|  | tpl_data->tpl_bsize_1d, num_blocks); | 
|  | int count = 0; | 
|  | for (int row = 0; row < mi_height; row += step) { | 
|  | for (int col = 0; col < mi_width; col += step) { | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, | 
|  | tpl_data->tpl_stats_block_mis_log2)]; | 
|  | fprintf(pfile, "%.0f", (double)this_stats->intra_cost); | 
|  | if (count < num_blocks - 1) fprintf(pfile, ","); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  | count = 0; | 
|  | for (int row = 0; row < mi_height; row += step) { | 
|  | for (int col = 0; col < mi_width; col += step) { | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, | 
|  | tpl_data->tpl_stats_block_mis_log2)]; | 
|  | fprintf(pfile, "%.0f", (double)this_stats->inter_cost); | 
|  | if (count < num_blocks - 1) fprintf(pfile, ","); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  | count = 0; | 
|  | for (int row = 0; row < mi_height; row += step) { | 
|  | for (int col = 0; col < mi_width; col += step) { | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, | 
|  | tpl_data->tpl_stats_block_mis_log2)]; | 
|  | const int64_t mc_dep_delta = | 
|  | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
|  | this_stats->mc_dep_dist); | 
|  | fprintf(pfile, "%.0f", (double)mc_dep_delta); | 
|  | if (count < num_blocks - 1) fprintf(pfile, ","); | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | fclose(pfile); | 
|  | } else { | 
|  | features->sb_features.tpl_features.available = 1; | 
|  | features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d; | 
|  | features->sb_features.tpl_features.num_units = num_blocks; | 
|  | int count = 0; | 
|  | for (int row = 0; row < mi_height; row += step) { | 
|  | for (int col = 0; col < mi_width; col += step) { | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, | 
|  | tpl_data->tpl_stats_block_mis_log2)]; | 
|  | const int64_t mc_dep_delta = | 
|  | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
|  | this_stats->mc_dep_dist); | 
|  | features->sb_features.tpl_features.intra_cost[count] = | 
|  | this_stats->intra_cost; | 
|  | features->sb_features.tpl_features.inter_cost[count] = | 
|  | this_stats->inter_cost; | 
|  | features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta; | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, | 
|  | FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, | 
|  | int blk_row, int blk_col, | 
|  | uint8_t allow_update_cdf) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->bsize; | 
|  | const int max_blocks_high = max_block_high(xd, bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
|  | int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, mbmi->bsize, | 
|  | tx_size); | 
|  | const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); | 
|  | const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  | assert(tx_size > TX_4X4); | 
|  |  | 
|  | if (depth == MAX_VARTX_DEPTH) { | 
|  | // Don't add to counts in this case | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tx_size == plane_tx_size) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->txfm_partition[ctx][0]; | 
|  | #endif | 
|  | if (allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->txfm_partition[ctx][1]; | 
|  | #endif | 
|  | if (allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  |  | 
|  | if (sub_txs == TX_4X4) { | 
|  | mbmi->inter_tx_size[txb_size_index] = TX_4X4; | 
|  | mbmi->tx_size = TX_4X4; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, TX_4X4, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
|  | for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
|  | int offsetr = row; | 
|  | int offsetc = col; | 
|  |  | 
|  | update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, | 
|  | blk_col + offsetc, allow_update_cdf); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, | 
|  | BLOCK_SIZE plane_bsize, | 
|  | FRAME_COUNTS *td_counts, | 
|  | uint8_t allow_update_cdf) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int mi_width = mi_size_wide[plane_bsize]; | 
|  | const int mi_height = mi_size_high[plane_bsize]; | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | for (int idy = 0; idy < mi_height; idy += bh) { | 
|  | for (int idx = 0; idx < mi_width; idx += bw) { | 
|  | update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, | 
|  | allow_update_cdf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, | 
|  | int blk_col) { | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const BLOCK_SIZE bsize = mbmi->bsize; | 
|  | const int max_blocks_high = max_block_high(xd, bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
|  | const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); | 
|  | const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | if (tx_size == plane_tx_size) { | 
|  | mbmi->tx_size = tx_size; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  |  | 
|  | } else { | 
|  | if (tx_size == TX_8X8) { | 
|  | mbmi->inter_tx_size[txb_size_index] = TX_4X4; | 
|  | mbmi->tx_size = TX_4X4; | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, TX_4X4, tx_size); | 
|  | return; | 
|  | } | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  | const int row_end = | 
|  | AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); | 
|  | const int col_end = | 
|  | AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); | 
|  | for (int row = 0; row < row_end; row += bsh) { | 
|  | const int offsetr = blk_row + row; | 
|  | for (int col = 0; col < col_end; col += bsw) { | 
|  | const int offsetc = blk_col + col; | 
|  | set_txfm_context(xd, sub_txs, offsetr, offsetc); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tx_partition_set_contexts(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { | 
|  | const int mi_width = mi_size_wide[plane_bsize]; | 
|  | const int mi_height = mi_size_high[plane_bsize]; | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | for (int idy = 0; idy < mi_height; idy += bh) { | 
|  | for (int idx = 0; idx < mi_width; idx += bw) { | 
|  | set_txfm_context(xd, max_tx_size, idy, idx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_zeromv_cnt(const AV1_COMP *const cpi, | 
|  | const MB_MODE_INFO *const mi, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize) { | 
|  | if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) || | 
|  | mi->segment_id > CR_SEGMENT_ID_BOOST2) { | 
|  | return; | 
|  | } | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const MV mv = mi->mv[0].as_mv; | 
|  | const int bw = mi_size_wide[bsize] >> 1; | 
|  | const int bh = mi_size_high[bsize] >> 1; | 
|  | const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw); | 
|  | const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh); | 
|  | const int block_index = | 
|  | (mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1); | 
|  | for (int y = 0; y < ymis; y++) { | 
|  | for (int x = 0; x < xmis; x++) { | 
|  | // consec_zero_mv is in the scale of 8x8 blocks | 
|  | const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x; | 
|  | if (abs(mv.row) < 10 && abs(mv.col) < 10) { | 
|  | if (cpi->consec_zero_mv[map_offset] < 255) | 
|  | cpi->consec_zero_mv[map_offset]++; | 
|  | } else { | 
|  | cpi->consec_zero_mv[map_offset] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | ThreadData *td, TokenExtra **t, RUN_TYPE dry_run, | 
|  | BLOCK_SIZE bsize, int *rate) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO **mi_4x4 = xd->mi; | 
|  | MB_MODE_INFO *mbmi = mi_4x4[0]; | 
|  | const int seg_skip = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); | 
|  | const int mis = cm->mi_params.mi_stride; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  |  | 
|  | // Initialize tx_mode and tx_size_search_method | 
|  | TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | set_tx_size_search_method( | 
|  | cm, &cpi->winner_mode_params, txfm_params, | 
|  | cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1); | 
|  |  | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | if (!is_inter) { | 
|  | xd->cfl.store_y = store_cfl_required(cm, xd); | 
|  | mbmi->skip_txfm = 1; | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, | 
|  | cpi->optimize_seg_arr[mbmi->segment_id]); | 
|  | } | 
|  |  | 
|  | // If there is at least one lossless segment, force the skip for intra | 
|  | // block to be 0, in order to avoid the segment_id to be changed by in | 
|  | // write_segment_id(). | 
|  | if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && | 
|  | cpi->enc_seg.has_lossless_segment) | 
|  | mbmi->skip_txfm = 0; | 
|  |  | 
|  | xd->cfl.store_y = 0; | 
|  | if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { | 
|  | for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { | 
|  | if (mbmi->palette_mode_info.palette_size[plane] > 0) { | 
|  | if (!dry_run) { | 
|  | av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, | 
|  | PALETTE_MAP, tile_data->allow_update_cdf, | 
|  | td->counts); | 
|  | } else if (dry_run == DRY_RUN_COSTCOEFFS) { | 
|  | *rate += | 
|  | av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize, | 
|  | tile_data->allow_update_cdf); | 
|  | } else { | 
|  | int ref; | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  |  | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | for (ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | const YV12_BUFFER_CONFIG *cfg = | 
|  | get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); | 
|  | assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); | 
|  | av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, | 
|  | xd->block_ref_scale_factors[ref], num_planes); | 
|  | } | 
|  | // Predicted sample of inter mode (for Luma plane) cannot be reused if | 
|  | // nonrd_check_partition_split speed feature is enabled, Since in such cases | 
|  | // the buffer may not contain the predicted sample of best mode. | 
|  | const int start_plane = | 
|  | (x->reuse_inter_pred && (!cpi->sf.rt_sf.nonrd_check_partition_split) && | 
|  | cm->seq_params->bit_depth == AOM_BITS_8) | 
|  | ? 1 | 
|  | : 0; | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, | 
|  | start_plane, av1_num_planes(cm) - 1); | 
|  | if (mbmi->motion_mode == OBMC_CAUSAL) { | 
|  | assert(cpi->oxcf.motion_mode_cfg.enable_obmc); | 
|  | av1_build_obmc_inter_predictors_sb(cm, xd); | 
|  | } | 
|  |  | 
|  | #if CONFIG_MISMATCH_DEBUG | 
|  | if (dry_run == OUTPUT_ENABLED) { | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | const struct macroblockd_plane *pd = &xd->plane[plane]; | 
|  | int pixel_c, pixel_r; | 
|  | mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, | 
|  | pd->subsampling_x, pd->subsampling_y); | 
|  | if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, | 
|  | pd->subsampling_y)) | 
|  | continue; | 
|  | mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, | 
|  | cm->current_frame.order_hint, plane, pixel_c, | 
|  | pixel_r, pd->width, pd->height, | 
|  | xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)num_planes; | 
|  | #endif | 
|  |  | 
|  | av1_encode_sb(cpi, x, bsize, dry_run); | 
|  | av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, | 
|  | tile_data->allow_update_cdf); | 
|  | } | 
|  |  | 
|  | if (!dry_run) { | 
|  | if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1; | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | !xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 && | 
|  | !(is_inter && (mbmi->skip_txfm || seg_skip))) { | 
|  | if (is_inter) { | 
|  | tx_partition_count_update(cm, x, bsize, td->counts, | 
|  | tile_data->allow_update_cdf); | 
|  | } else { | 
|  | if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  | if (block_signals_txsize(bsize)) { | 
|  | const int tx_size_ctx = get_tx_size_context(xd); | 
|  | const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); | 
|  | const int depth = tx_size_to_depth(mbmi->tx_size, bsize); | 
|  | const int max_depths = bsize_to_max_depth(bsize); | 
|  |  | 
|  | if (tile_data->allow_update_cdf) | 
|  | update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], | 
|  | depth, max_depths + 1); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); | 
|  | } else { | 
|  | int i, j; | 
|  | TX_SIZE intra_tx_size; | 
|  | // The new intra coding scheme requires no change of transform size | 
|  | if (is_inter) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | intra_tx_size = TX_4X4; | 
|  | } else { | 
|  | intra_tx_size = | 
|  | tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); | 
|  | } | 
|  | } else { | 
|  | intra_tx_size = mbmi->tx_size; | 
|  | } | 
|  |  | 
|  | const int cols = AOMMIN(cm->mi_params.mi_cols - mi_col, mi_width); | 
|  | const int rows = AOMMIN(cm->mi_params.mi_rows - mi_row, mi_height); | 
|  | for (j = 0; j < rows; j++) { | 
|  | for (i = 0; i < cols; i++) mi_4x4[mis * j + i]->tx_size = intra_tx_size; | 
|  | } | 
|  |  | 
|  | if (intra_tx_size != max_txsize_rect_lookup[bsize]) | 
|  | ++x->txfm_search_info.txb_split_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | block_signals_txsize(mbmi->bsize) && is_inter && | 
|  | !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) { | 
|  | if (dry_run) tx_partition_set_contexts(cm, xd, bsize); | 
|  | } else { | 
|  | TX_SIZE tx_size = mbmi->tx_size; | 
|  | // The new intra coding scheme requires no change of transform size | 
|  | if (is_inter) { | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | tx_size = TX_4X4; | 
|  | } else { | 
|  | tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); | 
|  | } | 
|  | } else { | 
|  | tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; | 
|  | } | 
|  | mbmi->tx_size = tx_size; | 
|  | set_txfm_ctxs(tx_size, xd->width, xd->height, | 
|  | (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd); | 
|  | } | 
|  |  | 
|  | if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) { | 
|  | cfl_store_block(xd, mbmi->bsize, mbmi->tx_size); | 
|  | } | 
|  | if (!dry_run) { | 
|  | if (cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->svc.temporal_layer_id == 0 && | 
|  | cpi->sf.rt_sf.use_temporal_noise_estimate && | 
|  | (!cpi->ppi->use_svc || | 
|  | (cpi->ppi->use_svc && | 
|  | !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && | 
|  | cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1))) | 
|  | update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { | 
|  | x->rdmult = cpi->rd.RDMULT; | 
|  |  | 
|  | if (aq_mode != NO_AQ) { | 
|  | assert(mbmi != NULL); | 
|  | if (aq_mode == VARIANCE_AQ) { | 
|  | if (cpi->vaq_refresh) { | 
|  | const int energy = bsize <= BLOCK_16X16 | 
|  | ? x->mb_energy | 
|  | : av1_log_block_var(cpi, x, bsize); | 
|  | mbmi->segment_id = energy; | 
|  | } | 
|  | x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); | 
|  | } else if (aq_mode == COMPLEXITY_AQ) { | 
|  | x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); | 
|  | } else if (aq_mode == CYCLIC_REFRESH_AQ) { | 
|  | // If segment is boosted, use rdmult for that segment. | 
|  | if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) | 
|  | x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | if (cpi->common.delta_q_info.delta_q_present_flag && | 
|  | !cpi->sf.rt_sf.use_nonrd_pick_mode) { | 
|  | x->rdmult = av1_get_cb_rdmult(cpi, x, bsize, mi_row, mi_col); | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) { | 
|  | av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col, | 
|  | &x->rdmult); | 
|  | } | 
|  | #if CONFIG_SALIENCY_MAP | 
|  | else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP) { | 
|  | av1_set_saliency_map_vmaf_rdmult(cpi, &x->errorperbit, | 
|  | cpi->common.seq_params->sb_size, mi_row, | 
|  | mi_col, &x->rdmult); | 
|  | } | 
|  | #endif | 
|  | #if CONFIG_TUNE_VMAF | 
|  | else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || | 
|  | cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || | 
|  | cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { | 
|  | av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); | 
|  | } | 
|  | #endif | 
|  | #if CONFIG_TUNE_BUTTERAUGLI | 
|  | else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { | 
|  | av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); | 
|  | } | 
|  | #endif | 
|  | if (cpi->oxcf.mode == ALLINTRA) { | 
|  | x->rdmult = (int)(((int64_t)x->rdmult * x->intra_sb_rdmult_modifier) >> 7); | 
|  | } | 
|  |  | 
|  | // Check to make sure that the adjustments above have not caused the | 
|  | // rd multiplier to be truncated to 0. | 
|  | x->rdmult = (x->rdmult > 0) ? x->rdmult : 1; | 
|  | } | 
|  |  | 
|  | void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi, | 
|  | const TileInfo *const tile, | 
|  | MACROBLOCK *const x, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  |  | 
|  | set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, | 
|  | mi_row, mi_col); | 
|  |  | 
|  | set_entropy_context(xd, mi_row, mi_col, num_planes); | 
|  | xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | // Set up destination pointers. | 
|  | av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
|  | num_planes); | 
|  |  | 
|  | // Set up limit values for MV components. | 
|  | // Mv beyond the range do not produce new/different prediction block. | 
|  | av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, | 
|  | mi_width, cpi->oxcf.border_in_pixels); | 
|  |  | 
|  | set_plane_n4(xd, mi_width, mi_height, num_planes); | 
|  |  | 
|  | // Set up distance of MB to edge of frame in 1/8th pel units. | 
|  | assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); | 
|  | set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, | 
|  | cm->mi_params.mi_rows, cm->mi_params.mi_cols); | 
|  |  | 
|  | // Set up source buffers. | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); | 
|  |  | 
|  | // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() | 
|  | xd->tile = *tile; | 
|  | } | 
|  |  | 
|  | void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, | 
|  | MACROBLOCK *const x, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi; | 
|  |  | 
|  | av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | // Setup segment ID. | 
|  | mbmi = xd->mi[0]; | 
|  | mbmi->segment_id = 0; | 
|  | if (seg->enabled) { | 
|  | if (seg->enabled && !cpi->vaq_refresh) { | 
|  | const uint8_t *const map = | 
|  | seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
|  | mbmi->segment_id = | 
|  | map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; | 
|  | } | 
|  | av1_init_plane_quantizers(cpi, x, mbmi->segment_id, 0); | 
|  | } | 
|  | #ifndef NDEBUG | 
|  | x->last_set_offsets_loc.mi_row = mi_row; | 
|  | x->last_set_offsets_loc.mi_col = mi_col; | 
|  | x->last_set_offsets_loc.bsize = bsize; | 
|  | #endif  // NDEBUG | 
|  | } | 
|  |  | 
|  | /*!\brief Hybrid intra mode search. | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * This is top level function for mode search for intra frames in non-RD | 
|  | * optimized case. Depending on speed feature and block size it calls | 
|  | * either non-RD or RD optimized intra mode search. | 
|  | * | 
|  | * \param[in]    cpi            Top-level encoder structure | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | the current macroblock | 
|  | * \param[in]    rd_cost        Struct to keep track of the RD information | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    ctx            Structure to hold snapshot of coding context | 
|  | during the mode picking process | 
|  | * | 
|  | * \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x | 
|  | * is modified to store information about the best mode computed | 
|  | * in this function. The rd_cost struct is also updated with the RD stats | 
|  | * corresponding to the best mode found. | 
|  | */ | 
|  |  | 
|  | static AOM_INLINE void hybrid_intra_mode_search(AV1_COMP *cpi, | 
|  | MACROBLOCK *const x, | 
|  | RD_STATS *rd_cost, | 
|  | BLOCK_SIZE bsize, | 
|  | PICK_MODE_CONTEXT *ctx) { | 
|  | int use_rdopt = 0; | 
|  | const int hybrid_intra_pickmode = cpi->sf.rt_sf.hybrid_intra_pickmode; | 
|  | // Use rd pick for intra mode search based on block size and variance. | 
|  | if (hybrid_intra_pickmode && bsize < BLOCK_16X16) { | 
|  | unsigned int var_thresh[3] = { 0, 101, 201 }; | 
|  | assert(hybrid_intra_pickmode <= 3); | 
|  | if (x->source_variance >= var_thresh[hybrid_intra_pickmode - 1]) | 
|  | use_rdopt = 1; | 
|  | } | 
|  |  | 
|  | if (use_rdopt) | 
|  | av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); | 
|  | else | 
|  | av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); | 
|  | } | 
|  |  | 
|  | // For real time/allintra row-mt enabled multi-threaded encoding with cost | 
|  | // update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated | 
|  | // at superblock level. Thus, it is not required for the encoding of top-right | 
|  | // superblock be complete for updating tile ctxt. However, when encoding a block | 
|  | // whose right edge is also the superblock edge, intra and inter mode evaluation | 
|  | // (ref mv list population) require the encoding of the top-right superblock to | 
|  | // be complete. So, here, we delay the waiting of threads until the need for the | 
|  | // data from the top-right superblock region. | 
|  | static AOM_INLINE void wait_for_top_right_sb( | 
|  | AV1EncRowMultiThreadInfo *enc_row_mt, AV1EncRowMultiThreadSync *row_mt_sync, | 
|  | TileInfo *tile_info, BLOCK_SIZE sb_size, int sb_mi_size_log2, | 
|  | BLOCK_SIZE bsize, int mi_row, int mi_col) { | 
|  | const int sb_size_in_mi = mi_size_wide[sb_size]; | 
|  | const int bw_in_mi = mi_size_wide[bsize]; | 
|  | const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1); | 
|  | const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1); | 
|  | const int top_right_block_in_sb = | 
|  | (blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi); | 
|  |  | 
|  | // Don't wait if the block is the not the top-right block in the superblock. | 
|  | if (!top_right_block_in_sb) return; | 
|  |  | 
|  | // Wait for the top-right superblock to finish encoding. | 
|  | const int sb_row_in_tile = | 
|  | (mi_row - tile_info->mi_row_start) >> sb_mi_size_log2; | 
|  | const int sb_col_in_tile = | 
|  | (mi_col - tile_info->mi_col_start) >> sb_mi_size_log2; | 
|  |  | 
|  | enc_row_mt->sync_read_ptr(row_mt_sync, sb_row_in_tile, sb_col_in_tile); | 
|  | } | 
|  |  | 
|  | /*!\brief Interface for AV1 mode search for an individual coding block | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Searches prediction modes, transform, and coefficient coding modes for an | 
|  | * individual coding block. This function is the top-level interface that | 
|  | * directs the encoder to the proper mode search function, among these | 
|  | * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment. | 
|  | * | 
|  | * \param[in]    cpi            Top-level encoder structure | 
|  | * \param[in]    tile_data      Pointer to struct holding adaptive | 
|  | *                              data/contexts/models for the tile during | 
|  | *                              encoding | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | *                              the current macroblock | 
|  | * \param[in]    mi_row         Row coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    mi_col         Column coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    rd_cost        Pointer to structure holding rate and distortion | 
|  | *                              stats for the current block | 
|  | * \param[in]    partition      Partition mode of the parent block | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    ctx            Pointer to structure holding coding contexts and | 
|  | *                              chosen modes for the current block | 
|  | * \param[in]    best_rd        Upper bound of rd cost of a valid partition | 
|  | * | 
|  | * \remark Nothing is returned. Instead, the chosen modes and contexts necessary | 
|  | * for reconstruction are stored in ctx, the rate-distortion stats are stored in | 
|  | * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be | 
|  | * signalled by an INT64_MAX rd_cost->rdcost. | 
|  | */ | 
|  | static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *const x, int mi_row, int mi_col, | 
|  | RD_STATS *rd_cost, PARTITION_TYPE partition, | 
|  | BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, | 
|  | RD_STATS best_rd) { | 
|  | if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) { | 
|  | ctx->rd_stats.rdcost = INT64_MAX; | 
|  | ctx->rd_stats.skip_txfm = 0; | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return; | 
|  | } | 
|  |  | 
|  | av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab && | 
|  | ctx->rd_mode_is_ready) { | 
|  | assert(ctx->mic.bsize == bsize); | 
|  | assert(ctx->mic.partition == partition); | 
|  | rd_cost->rate = ctx->rd_stats.rate; | 
|  | rd_cost->dist = ctx->rd_stats.dist; | 
|  | rd_cost->rdcost = ctx->rd_stats.rdcost; | 
|  | return; | 
|  | } | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi; | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | // This is only needed for real time/allintra row-mt enabled multi-threaded | 
|  | // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. | 
|  | wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, | 
|  | &tile_data->tile_info, cm->seq_params->sb_size, | 
|  | cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rd_pick_sb_modes_time); | 
|  | #endif | 
|  |  | 
|  | mbmi = xd->mi[0]; | 
|  | mbmi->bsize = bsize; | 
|  | mbmi->partition = partition; | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | mbmi->mi_row = mi_row; | 
|  | mbmi->mi_col = mi_col; | 
|  | #endif | 
|  |  | 
|  | // Sets up the tx_type_map buffer in MACROBLOCKD. | 
|  | xd->tx_type_map = txfm_info->tx_type_map_; | 
|  | xd->tx_type_map_stride = mi_size_wide[bsize]; | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | p[i].coeff = ctx->coeff[i]; | 
|  | p[i].qcoeff = ctx->qcoeff[i]; | 
|  | p[i].dqcoeff = ctx->dqcoeff[i]; | 
|  | p[i].eobs = ctx->eobs[i]; | 
|  | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; | 
|  |  | 
|  | ctx->skippable = 0; | 
|  | // Set to zero to make sure we do not use the previous encoded frame stats | 
|  | mbmi->skip_txfm = 0; | 
|  | // Reset skip mode flag. | 
|  | mbmi->skip_mode = 0; | 
|  |  | 
|  | x->source_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); | 
|  |  | 
|  | // Initialize default mode evaluation params | 
|  | set_mode_eval_params(cpi, x, DEFAULT_EVAL); | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); | 
|  | // Set error per bit for current rdmult | 
|  | av1_set_error_per_bit(&x->errorperbit, x->rdmult); | 
|  | av1_rd_cost_update(x->rdmult, &best_rd); | 
|  |  | 
|  | // If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous | 
|  | // rdcost information for the following mode search. | 
|  | // Disabling the feature could get some coding gain, with encoder slowdown. | 
|  | if (!cpi->sf.part_sf.use_best_rd_for_pruning) { | 
|  | av1_invalid_rd_stats(&best_rd); | 
|  | } | 
|  |  | 
|  | // Find best coding mode & reconstruct the MB so it is available | 
|  | // as a predictor for MBs that follow in the SB | 
|  | if (frame_is_intra_only(cm)) { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_rd_pick_intra_mode_sb_time); | 
|  | #endif | 
|  | av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_rd_pick_intra_mode_sb_time); | 
|  | #endif | 
|  | } else { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_rd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, | 
|  | rd_cost, bsize, ctx, best_rd.rdcost); | 
|  | } else { | 
|  | av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx, | 
|  | best_rd.rdcost); | 
|  | } | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_rd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Examine the resulting rate and for AQ mode 2 make a segment choice. | 
|  | if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && | 
|  | bsize >= BLOCK_16X16) { | 
|  | av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); | 
|  | } | 
|  |  | 
|  | x->rdmult = orig_rdmult; | 
|  |  | 
|  | // TODO(jingning) The rate-distortion optimization flow needs to be | 
|  | // refactored to provide proper exit/return handle. | 
|  | if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; | 
|  |  | 
|  | ctx->rd_stats.rate = rd_cost->rate; | 
|  | ctx->rd_stats.dist = rd_cost->dist; | 
|  | ctx->rd_stats.rdcost = rd_cost->rdcost; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rd_pick_sb_modes_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void update_stats(const AV1_COMMON *const cm, ThreadData *td) { | 
|  | MACROBLOCK *x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; | 
|  | const CurrentFrame *const current_frame = &cm->current_frame; | 
|  | const BLOCK_SIZE bsize = mbmi->bsize; | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  | const int seg_ref_active = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); | 
|  |  | 
|  | if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && | 
|  | is_comp_ref_allowed(bsize)) { | 
|  | const int skip_mode_ctx = av1_get_skip_mode_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); | 
|  | } | 
|  |  | 
|  | if (!mbmi->skip_mode && !seg_ref_active) { | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++; | 
|  | #endif | 
|  | update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2); | 
|  | } | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | // delta quant applies to both intra and inter | 
|  | const int super_block_upper_left = | 
|  | ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) && | 
|  | ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | if (delta_q_info->delta_q_present_flag && | 
|  | (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && | 
|  | super_block_upper_left) { | 
|  | const int dq = (mbmi->current_qindex - xd->current_base_qindex) / | 
|  | delta_q_info->delta_q_res; | 
|  | const int absdq = abs(dq); | 
|  | for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { | 
|  | td->counts->delta_q[i][1]++; | 
|  | } | 
|  | if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | if (delta_q_info->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / | 
|  | delta_q_info->delta_lf_res; | 
|  | const int abs_delta_lf = abs(delta_lf); | 
|  | for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { | 
|  | td->counts->delta_lf_multi[lf_id][i][1]++; | 
|  | } | 
|  | if (abs_delta_lf < DELTA_LF_SMALL) | 
|  | td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; | 
|  | } | 
|  | } else { | 
|  | const int delta_lf = | 
|  | (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / | 
|  | delta_q_info->delta_lf_res; | 
|  | const int abs_delta_lf = abs(delta_lf); | 
|  | for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { | 
|  | td->counts->delta_lf[i][1]++; | 
|  | } | 
|  | if (abs_delta_lf < DELTA_LF_SMALL) | 
|  | td->counts->delta_lf[abs_delta_lf][0]++; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!is_inter_block(mbmi)) { | 
|  | av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, | 
|  | frame_is_intra_only(cm)); | 
|  | } | 
|  |  | 
|  | if (av1_allow_intrabc(cm)) { | 
|  | const int is_intrabc = is_intrabc_block(mbmi); | 
|  | update_cdf(fc->intrabc_cdf, is_intrabc, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++td->counts->intrabc[is_intrabc]; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (is_intrabc) { | 
|  | const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
|  | const int_mv dv_ref = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; | 
|  | av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc, | 
|  | MV_SUBPEL_NONE); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (frame_is_intra_only(cm) || mbmi->skip_mode) return; | 
|  |  | 
|  | FRAME_COUNTS *const counts = td->counts; | 
|  | const int inter_block = is_inter_block(mbmi); | 
|  |  | 
|  | if (!seg_ref_active) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; | 
|  | #endif | 
|  | update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], | 
|  | inter_block, 2); | 
|  | // If the segment reference feature is enabled we have only a single | 
|  | // reference frame allowed for the segment so exclude it from | 
|  | // the reference frame counts used to work out probabilities. | 
|  | if (inter_block) { | 
|  | const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; | 
|  | const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; | 
|  | if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { | 
|  | if (is_comp_ref_allowed(bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_inter[av1_get_reference_mode_context(xd)] | 
|  | [has_second_ref(mbmi)]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_second_ref(mbmi)) { | 
|  | const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) | 
|  | ? UNIDIR_COMP_REFERENCE | 
|  | : BIDIR_COMP_REFERENCE; | 
|  | update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, | 
|  | COMP_REFERENCE_TYPES); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] | 
|  | [comp_ref_type]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  |  | 
|  | if (comp_ref_type == UNIDIR_COMP_REFERENCE) { | 
|  | const int bit = (ref0 == BWDREF_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts | 
|  | ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (!bit) { | 
|  | const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] | 
|  | [bit1]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (bit1) { | 
|  | update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), | 
|  | ref1 == GOLDEN_FRAME, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2] | 
|  | [ref1 == GOLDEN_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } | 
|  | } else { | 
|  | const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (!bit) { | 
|  | update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] | 
|  | [ref0 == LAST2_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } else { | 
|  | update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] | 
|  | [ref0 == GOLDEN_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] | 
|  | [ref1 == ALTREF_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (ref1 != ALTREF_FRAME) { | 
|  | update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), | 
|  | ref1 == ALTREF2_FRAME, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] | 
|  | [ref1 == ALTREF2_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } | 
|  | } else { | 
|  | const int bit = (ref0 >= BWDREF_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (bit) { | 
|  | assert(ref0 <= ALTREF_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] | 
|  | [ref0 == ALTREF_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (ref0 != ALTREF_FRAME) { | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p6(xd), | 
|  | ref0 == ALTREF2_FRAME, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] | 
|  | [ref0 == ALTREF2_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } else { | 
|  | const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | if (!bit1) { | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] | 
|  | [ref0 != LAST_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } else { | 
|  | update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME, | 
|  | 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] | 
|  | [ref0 != LAST3_FRAME]++; | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->seq_params->enable_interintra_compound && | 
|  | is_interintra_allowed(mbmi)) { | 
|  | const int bsize_group = size_group_lookup[bsize]; | 
|  | if (mbmi->ref_frame[1] == INTRA_FRAME) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra[bsize_group][1]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_cdf[bsize_group], 1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_mode_cdf[bsize_group], | 
|  | mbmi->interintra_mode, INTERINTRA_MODES); | 
|  | if (av1_is_wedge_used(bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_interintra_cdf[bsize], | 
|  | mbmi->use_wedge_interintra, 2); | 
|  | if (mbmi->use_wedge_interintra) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, | 
|  | 16); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->interintra[bsize_group][0]++; | 
|  | #endif | 
|  | update_cdf(fc->interintra_cdf[bsize_group], 0, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | const MOTION_MODE motion_allowed = | 
|  | cm->features.switchable_motion_mode | 
|  | ? motion_mode_allowed(xd->global_motion, xd, mbmi, | 
|  | cm->features.allow_warped_motion) | 
|  | : SIMPLE_TRANSLATION; | 
|  | if (mbmi->ref_frame[1] != INTRA_FRAME) { | 
|  | if (motion_allowed == WARPED_CAUSAL) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->motion_mode[bsize][mbmi->motion_mode]++; | 
|  | #endif | 
|  | update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, | 
|  | MOTION_MODES); | 
|  | } else if (motion_allowed == OBMC_CAUSAL) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; | 
|  | #endif | 
|  | update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (has_second_ref(mbmi)) { | 
|  | assert(current_frame->reference_mode != SINGLE_REFERENCE && | 
|  | is_inter_compound_mode(mbmi->mode) && | 
|  | mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  |  | 
|  | const int masked_compound_used = is_any_masked_compound_used(bsize) && | 
|  | cm->seq_params->enable_masked_compound; | 
|  | if (masked_compound_used) { | 
|  | const int comp_group_idx_ctx = get_comp_group_idx_context(xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; | 
|  | #endif | 
|  | update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], | 
|  | mbmi->comp_group_idx, 2); | 
|  | } | 
|  |  | 
|  | if (mbmi->comp_group_idx == 0) { | 
|  | const int comp_index_ctx = get_comp_index_context(cm, xd); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; | 
|  | #endif | 
|  | update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx, | 
|  | 2); | 
|  | } else { | 
|  | assert(masked_compound_used); | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->compound_type[bsize][mbmi->interinter_comp.type - | 
|  | COMPOUND_WEDGE]; | 
|  | #endif | 
|  | update_cdf(fc->compound_type_cdf[bsize], | 
|  | mbmi->interinter_comp.type - COMPOUND_WEDGE, | 
|  | MASKED_COMPOUND_TYPES); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; | 
|  | #endif | 
|  | update_cdf(fc->wedge_idx_cdf[bsize], | 
|  | mbmi->interinter_comp.wedge_index, 16); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (inter_block && cm->features.interp_filter == SWITCHABLE && | 
|  | av1_is_interp_needed(xd)) { | 
|  | update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter); | 
|  | } | 
|  | if (inter_block && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const int16_t mode_ctx = | 
|  | av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); | 
|  | if (has_second_ref(mbmi)) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; | 
|  | #endif | 
|  | update_cdf(fc->inter_compound_mode_cdf[mode_ctx], | 
|  | INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); | 
|  | } else { | 
|  | av1_update_inter_mode_stats(fc, counts, mode, mode_ctx); | 
|  | } | 
|  |  | 
|  | const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; | 
|  | if (new_mv) { | 
|  | const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
|  | for (int idx = 0; idx < 2; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | const uint8_t drl_ctx = | 
|  | av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); | 
|  | update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; | 
|  | #endif | 
|  | if (mbmi->ref_mv_idx == idx) break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_nearmv_in_inter_mode(mbmi->mode)) { | 
|  | const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
|  | for (int idx = 1; idx < 3; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | const uint8_t drl_ctx = | 
|  | av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); | 
|  | update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2); | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; | 
|  | #endif | 
|  | if (mbmi->ref_mv_idx == idx - 1) break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (have_newmv_in_inter_mode(mbmi->mode)) { | 
|  | const int allow_hp = cm->features.cur_frame_force_integer_mv | 
|  | ? MV_SUBPEL_NONE | 
|  | : cm->features.allow_high_precision_mv; | 
|  | if (new_mv) { | 
|  | for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, ref); | 
|  | av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | allow_hp); | 
|  | } | 
|  | } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) { | 
|  | const int ref = 1; | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, ref); | 
|  | av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | allow_hp); | 
|  | } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) { | 
|  | const int ref = 0; | 
|  | const int_mv ref_mv = av1_get_ref_mv(x, ref); | 
|  | av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, | 
|  | allow_hp); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Reconstructs an individual coding block | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Reconstructs an individual coding block by applying the chosen modes stored | 
|  | * in ctx, also updates mode counts and entropy models. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | *                         data/contexts/models for the tile during encoding | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | *                         MI_SIZE | 
|  | * \param[in]    dry_run   A code indicating whether it is part of the final | 
|  | *                         pass for reconstructing the superblock | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    partition Partition mode of the parent block | 
|  | * \param[in]    ctx       Pointer to structure holding coding contexts and the | 
|  | *                         chosen modes for the current block | 
|  | * \param[in]    rate      Pointer to the total rate for the current block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) | 
|  | * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes | 
|  | * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0]. | 
|  | */ | 
|  | static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, | 
|  | RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx, | 
|  | int *rate) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | TileInfo *const tile = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int subsampling_x = cm->seq_params->subsampling_x; | 
|  | const int subsampling_y = cm->seq_params->subsampling_y; | 
|  |  | 
|  | av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); | 
|  | const int origin_mult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | mbmi->partition = partition; | 
|  | av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); | 
|  |  | 
|  | if (!dry_run) { | 
|  | set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], | 
|  | x->cb_offset[PLANE_TYPE_UV]); | 
|  | assert(x->cb_offset[PLANE_TYPE_Y] < | 
|  | (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); | 
|  | assert(x->cb_offset[PLANE_TYPE_UV] < | 
|  | ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> | 
|  | (subsampling_x + subsampling_y))); | 
|  | } | 
|  |  | 
|  | encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); | 
|  |  | 
|  | if (!dry_run) { | 
|  | update_cb_offsets(x, bsize, subsampling_x, subsampling_y); | 
|  | if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 && | 
|  | cm->delta_q_info.delta_lf_present_flag) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; | 
|  | mbmi->delta_lf_from_base = xd->delta_lf_from_base; | 
|  | } | 
|  | if (has_second_ref(mbmi)) { | 
|  | if (mbmi->compound_idx == 0 || | 
|  | mbmi->interinter_comp.type == COMPOUND_AVERAGE) | 
|  | mbmi->comp_group_idx = 0; | 
|  | else | 
|  | mbmi->comp_group_idx = 1; | 
|  | } | 
|  |  | 
|  | // delta quant applies to both intra and inter | 
|  | const int super_block_upper_left = | 
|  | ((mi_row & (cm->seq_params->mib_size - 1)) == 0) && | 
|  | ((mi_col & (cm->seq_params->mib_size - 1)) == 0); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | if (delta_q_info->delta_q_present_flag && | 
|  | (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && | 
|  | super_block_upper_left) { | 
|  | xd->current_base_qindex = mbmi->current_qindex; | 
|  | if (delta_q_info->delta_lf_present_flag) { | 
|  | if (delta_q_info->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; | 
|  | } | 
|  | } else { | 
|  | xd->delta_lf_from_base = mbmi->delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | RD_COUNTS *rdc = &td->rd_counts; | 
|  | if (mbmi->skip_mode) { | 
|  | assert(!frame_is_intra_only(cm)); | 
|  | rdc->skip_mode_used_flag = 1; | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { | 
|  | assert(has_second_ref(mbmi)); | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } else { | 
|  | const int seg_ref_active = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); | 
|  | if (!seg_ref_active) { | 
|  | // If the segment reference feature is enabled we have only a single | 
|  | // reference frame allowed for the segment so exclude it from | 
|  | // the reference frame counts used to work out probabilities. | 
|  | if (is_inter_block(mbmi)) { | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { | 
|  | if (has_second_ref(mbmi)) { | 
|  | // This flag is also updated for 4x4 blocks | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); | 
|  |  | 
|  | // Gather obmc and warped motion count to update the probability. | 
|  | if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && | 
|  | cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) || | 
|  | (cm->features.allow_warped_motion && | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { | 
|  | const int inter_block = is_inter_block(mbmi); | 
|  | const int seg_ref_active = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); | 
|  | if (!seg_ref_active && inter_block) { | 
|  | const MOTION_MODE motion_allowed = | 
|  | cm->features.switchable_motion_mode | 
|  | ? motion_mode_allowed(xd->global_motion, xd, mbmi, | 
|  | cm->features.allow_warped_motion) | 
|  | : SIMPLE_TRANSLATION; | 
|  |  | 
|  | if (mbmi->ref_frame[1] != INTRA_FRAME) { | 
|  | if (motion_allowed >= OBMC_CAUSAL) { | 
|  | td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; | 
|  | } | 
|  | if (motion_allowed == WARPED_CAUSAL) { | 
|  | td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // TODO(Ravi/Remya): Move this copy function to a better logical place | 
|  | // This function will copy the best mode information from block | 
|  | // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This | 
|  | // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during | 
|  | // bitstream preparation. | 
|  | av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, | 
|  | av1_ref_frame_type(xd->mi[0]->ref_frame)); | 
|  | x->rdmult = origin_mult; | 
|  | } | 
|  |  | 
|  | /*!\brief Reconstructs a partition (may contain multiple coding blocks) | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Reconstructs a sub-partition of the superblock by applying the chosen modes | 
|  | * and partition trees stored in pc_tree. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | *                         data/contexts/models for the tile during encoding | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | *                         MI_SIZE | 
|  | * \param[in]    dry_run   A code indicating whether it is part of the final | 
|  | *                         pass for reconstructing the superblock | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    pc_tree   Pointer to the PC_TREE node storing the picked | 
|  | *                         partitions and mode info for the current block | 
|  | * \param[in]    rate      Pointer to the total rate for the current block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) | 
|  | * will be updated in the pixel buffers in td->mb.e_mbd. | 
|  | */ | 
|  | static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | PC_TREE *pc_tree, int *rate) { | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | const int is_partition_root = bsize >= BLOCK_8X8; | 
|  | const int ctx = is_partition_root | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : -1; | 
|  | const PARTITION_TYPE partition = pc_tree->partitioning; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | int quarter_step = mi_size_wide[bsize] / 4; | 
|  | int i; | 
|  | BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | #endif | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  | if (subsize == BLOCK_INVALID) return; | 
|  |  | 
|  | if (!dry_run && ctx >= 0) { | 
|  | const int has_rows = (mi_row + hbs) < mi_params->mi_rows; | 
|  | const int has_cols = (mi_col + hbs) < mi_params->mi_cols; | 
|  |  | 
|  | if (has_rows && has_cols) { | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | td->counts->partition[ctx][partition]++; | 
|  | #endif | 
|  |  | 
|  | if (tile_data->allow_update_cdf) { | 
|  | FRAME_CONTEXT *fc = xd->tile_ctx; | 
|  | update_cdf(fc->partition_cdf[ctx], partition, | 
|  | partition_cdf_length(bsize)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->none, rate); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->vertical[0], rate); | 
|  | if (mi_col + hbs < mi_params->mi_cols) { | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, | 
|  | partition, pc_tree->vertical[1], rate); | 
|  | } | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontal[0], rate); | 
|  | if (mi_row + hbs < mi_params->mi_rows) { | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontal[1], rate); | 
|  | } | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, | 
|  | pc_tree->split[0], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, | 
|  | pc_tree->split[1], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, | 
|  | pc_tree->split[2], rate); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, | 
|  | subsize, pc_tree->split[3], rate); | 
|  | break; | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | case PARTITION_HORZ_A: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->horizontala[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, | 
|  | partition, pc_tree->horizontala[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontala[2], rate); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontalb[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->horizontalb[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, | 
|  | bsize2, partition, pc_tree->horizontalb[2], rate); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->verticala[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, | 
|  | partition, pc_tree->verticala[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, | 
|  | partition, pc_tree->verticala[2], rate); | 
|  |  | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->verticalb[0], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, | 
|  | partition, pc_tree->verticalb[1], rate); | 
|  | encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, | 
|  | bsize2, partition, pc_tree->verticalb[2], rate); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | int this_mi_row = mi_row + i * quarter_step; | 
|  | if (i > 0 && this_mi_row >= mi_params->mi_rows) break; | 
|  |  | 
|  | encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, | 
|  | partition, pc_tree->horizontal4[i], rate); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_4: | 
|  | for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | int this_mi_col = mi_col + i * quarter_step; | 
|  | if (i > 0 && this_mi_col >= mi_params->mi_cols) break; | 
|  | encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, | 
|  | partition, pc_tree->vertical4[i], rate); | 
|  | } | 
|  | break; | 
|  | #endif | 
|  | default: assert(0 && "Invalid partition type."); break; | 
|  | } | 
|  |  | 
|  | update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int is_adjust_var_based_part_enabled( | 
|  | AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf, | 
|  | BLOCK_SIZE bsize) { | 
|  | if (part_sf->partition_search_type != VAR_BASED_PARTITION) return 0; | 
|  | if (part_sf->adjust_var_based_rd_partitioning == 0 || | 
|  | part_sf->adjust_var_based_rd_partitioning > 2) | 
|  | return 0; | 
|  |  | 
|  | if (bsize <= BLOCK_32X32) return 1; | 
|  | if (part_sf->adjust_var_based_rd_partitioning == 2) { | 
|  | const int is_larger_qindex = cm->quant_params.base_qindex > 190; | 
|  | const int is_360p_or_larger = AOMMIN(cm->width, cm->height) >= 360; | 
|  | return is_360p_or_larger && is_larger_qindex && bsize == BLOCK_64X64; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 block partition search (partition estimation and partial search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Encode the block by applying pre-calculated partition patterns that are | 
|  | * represented by coding block sizes stored in the mbmi array. Minor partition | 
|  | * adjustments are tested and applied if they lead to lower rd costs. The | 
|  | * partition types are limited to a basic set: none, horz, vert, and split. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during encoding | 
|  | * \param[in]    mib       Array representing MB_MODE_INFO pointers for mi | 
|  | blocks starting from the first pixel of the current | 
|  | block | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | MI_SIZE | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    rate      Pointer to the final rate for encoding the current | 
|  | block | 
|  | * \param[in]    dist      Pointer to the final distortion of the current block | 
|  | * \param[in]    do_recon  Whether the reconstruction function needs to be run, | 
|  | either for finalizing a superblock or providing | 
|  | reference for future sub-partitions | 
|  | * \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked | 
|  | partitions and mode info for the current block | 
|  | * | 
|  | * \remark Nothing is returned. The pc_tree struct is modified to store the | 
|  | * picked partition and modes. The rate and dist are also updated with those | 
|  | * corresponding to the best partition found. | 
|  | */ | 
|  | void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | MB_MODE_INFO **mib, TokenExtra **tp, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, int *rate, | 
|  | int64_t *dist, int do_recon, PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int bs = mi_size_wide[bsize]; | 
|  | const int hbs = bs / 2; | 
|  | const int pl = (bsize >= BLOCK_8X8) | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : 0; | 
|  | const PARTITION_TYPE partition = | 
|  | (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) | 
|  | : PARTITION_NONE; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc; | 
|  | BLOCK_SIZE bs_type = mib[0]->bsize; | 
|  | int use_partition_none = 0; | 
|  | x->try_merge_partition = 0; | 
|  |  | 
|  | if (pc_tree->none == NULL) { | 
|  | pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | PICK_MODE_CONTEXT *ctx_none = pc_tree->none; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  | // In rt mode, currently the min partition size is BLOCK_8X8. | 
|  | assert(bsize >= cpi->sf.part_sf.default_min_partition_size); | 
|  |  | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | av1_invalid_rd_stats(&none_rdc); | 
|  | av1_invalid_rd_stats(&chosen_rdc); | 
|  | av1_invalid_rd_stats(&invalid_rdc); | 
|  |  | 
|  | pc_tree->partitioning = partition; | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  | x->mb_energy = av1_log_block_var(cpi, x, bsize); | 
|  | } | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  |  | 
|  | if (partition != PARTITION_NONE && | 
|  | is_adjust_var_based_part_enabled(cm, &cpi->sf.part_sf, bsize) && | 
|  | (mi_row + hbs < mi_params->mi_rows && | 
|  | mi_col + hbs < mi_params->mi_cols)) { | 
|  | assert(bsize > cpi->sf.part_sf.default_min_partition_size); | 
|  | mib[0]->bsize = bsize; | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | x->try_merge_partition = 1; | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE, | 
|  | bsize, ctx_none, invalid_rdc); | 
|  |  | 
|  | if (none_rdc.rate < INT_MAX) { | 
|  | none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; | 
|  | none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); | 
|  | } | 
|  |  | 
|  | // Try to skip split partition evaluation based on none partition | 
|  | // characteristics. | 
|  | if (none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) { | 
|  | use_partition_none = 1; | 
|  | } | 
|  |  | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | mib[0]->bsize = bs_type; | 
|  | pc_tree->partitioning = partition; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_NONE, bsize, ctx_none, invalid_rdc); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | if (use_partition_none) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | pc_tree->horizontal[i] = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->horizontal[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_HORZ, subsize, pc_tree->horizontal[0], | 
|  | invalid_rdc); | 
|  | if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && | 
|  | mi_row + hbs < mi_params->mi_rows) { | 
|  | RD_STATS tmp_rdc; | 
|  | const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, | 
|  | NULL); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, | 
|  | PARTITION_HORZ, subsize, pc_tree->horizontal[1], | 
|  | invalid_rdc); | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | last_part_rdc.rdcost += tmp_rdc.rdcost; | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | if (use_partition_none) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | pc_tree->vertical[i] = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->vertical[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, | 
|  | PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc); | 
|  | if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && | 
|  | mi_col + hbs < mi_params->mi_cols) { | 
|  | RD_STATS tmp_rdc; | 
|  | const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0]; | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, | 
|  | NULL); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, | 
|  | PARTITION_VERT, subsize, | 
|  | pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc); | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | last_part_rdc.rdcost += tmp_rdc.rdcost; | 
|  | } | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | if (use_partition_none) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | last_part_rdc.rate = 0; | 
|  | last_part_rdc.dist = 0; | 
|  | last_part_rdc.rdcost = 0; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | int jj = i >> 1, ii = i & 0x01; | 
|  | RD_STATS tmp_rdc; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  |  | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | av1_rd_use_partition( | 
|  | cpi, td, tile_data, | 
|  | mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, | 
|  | mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, | 
|  | &tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]); | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&last_part_rdc); | 
|  | break; | 
|  | } | 
|  | last_part_rdc.rate += tmp_rdc.rate; | 
|  | last_part_rdc.dist += tmp_rdc.dist; | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | case PARTITION_VERT_B: | 
|  | case PARTITION_HORZ_A: | 
|  | case PARTITION_HORZ_B: | 
|  | case PARTITION_HORZ_4: | 
|  | case PARTITION_VERT_4: | 
|  | assert(0 && "Cannot handle extended partition types"); | 
|  | default: assert(0); break; | 
|  | } | 
|  |  | 
|  | if (last_part_rdc.rate < INT_MAX) { | 
|  | last_part_rdc.rate += mode_costs->partition_cost[pl][partition]; | 
|  | last_part_rdc.rdcost = | 
|  | RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); | 
|  | } | 
|  |  | 
|  | if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION && | 
|  | cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) && | 
|  | partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && | 
|  | (mi_row + bs < mi_params->mi_rows || | 
|  | mi_row + hbs == mi_params->mi_rows) && | 
|  | (mi_col + bs < mi_params->mi_cols || | 
|  | mi_col + hbs == mi_params->mi_cols)) { | 
|  | BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | chosen_rdc.rate = 0; | 
|  | chosen_rdc.dist = 0; | 
|  |  | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  |  | 
|  | // Split partition. | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | RD_STATS tmp_rdc; | 
|  |  | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  |  | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | pc_tree->split[i]->partitioning = PARTITION_NONE; | 
|  | if (pc_tree->split[i]->none == NULL) | 
|  | pc_tree->split[i]->none = | 
|  | av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->split[i]->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, | 
|  | PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none, | 
|  | invalid_rdc); | 
|  |  | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { | 
|  | av1_invalid_rd_stats(&chosen_rdc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | chosen_rdc.rate += tmp_rdc.rate; | 
|  | chosen_rdc.dist += tmp_rdc.dist; | 
|  |  | 
|  | if (i != SUB_PARTITIONS_SPLIT - 1) | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, | 
|  | OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); | 
|  |  | 
|  | chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; | 
|  | } | 
|  | if (chosen_rdc.rate < INT_MAX) { | 
|  | chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; | 
|  | chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If last_part is better set the partitioning to that. | 
|  | if (last_part_rdc.rdcost < chosen_rdc.rdcost) { | 
|  | mib[0]->bsize = bs_type; | 
|  | if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; | 
|  |  | 
|  | chosen_rdc = last_part_rdc; | 
|  | } | 
|  | // If none was better set the partitioning to that. | 
|  | if (none_rdc.rdcost < INT64_MAX && | 
|  | none_rdc.rdcost - (none_rdc.rdcost >> 9) < chosen_rdc.rdcost) { | 
|  | mib[0]->bsize = bsize; | 
|  | if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; | 
|  | chosen_rdc = none_rdc; | 
|  | } | 
|  |  | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | // We must have chosen a partitioning and encoding or we'll fail later on. | 
|  | // No other opportunities for success. | 
|  | if (bsize == cm->seq_params->sb_size) | 
|  | assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, encode_sb_time); | 
|  | #endif | 
|  | if (do_recon) { | 
|  | if (bsize == cm->seq_params->sb_size) { | 
|  | // NOTE: To get estimate for rate due to the tokens, use: | 
|  | // int rate_coeffs = 0; | 
|  | // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, | 
|  | //           bsize, pc_tree, &rate_coeffs); | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | pc_tree, NULL); | 
|  | } else { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL); | 
|  | } | 
|  | } | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, encode_sb_time); | 
|  | #endif | 
|  |  | 
|  | *rate = chosen_rdc.rate; | 
|  | *dist = chosen_rdc.dist; | 
|  | x->rdmult = orig_rdmult; | 
|  | } | 
|  |  | 
|  | static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | ThreadData *td, TokenExtra **tp, int mi_row, | 
|  | int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition, | 
|  | PICK_MODE_CONTEXT *const ctx, int *rate) { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing((AV1_COMP *)cpi, encode_b_nonrd_time); | 
|  | #endif | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | TileInfo *const tile = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); | 
|  | const int origin_mult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | mbmi->partition = partition; | 
|  | av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); | 
|  | const int subsampling_x = cpi->common.seq_params->subsampling_x; | 
|  | const int subsampling_y = cpi->common.seq_params->subsampling_y; | 
|  | if (!dry_run) { | 
|  | set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], | 
|  | x->cb_offset[PLANE_TYPE_UV]); | 
|  | assert(x->cb_offset[PLANE_TYPE_Y] < | 
|  | (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); | 
|  | assert(x->cb_offset[PLANE_TYPE_UV] < | 
|  | ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> | 
|  | (subsampling_x + subsampling_y))); | 
|  | } | 
|  |  | 
|  | encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); | 
|  | if (!dry_run) { | 
|  | update_cb_offsets(x, bsize, subsampling_x, subsampling_y); | 
|  | if (has_second_ref(mbmi)) { | 
|  | if (mbmi->compound_idx == 0 || | 
|  | mbmi->interinter_comp.type == COMPOUND_AVERAGE) | 
|  | mbmi->comp_group_idx = 0; | 
|  | else | 
|  | mbmi->comp_group_idx = 1; | 
|  | mbmi->compound_idx = 1; | 
|  | } | 
|  | RD_COUNTS *const rdc = &td->rd_counts; | 
|  | if (mbmi->skip_mode) { | 
|  | assert(!frame_is_intra_only(cm)); | 
|  | rdc->skip_mode_used_flag = 1; | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && | 
|  | has_second_ref(mbmi)) { | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } else { | 
|  | const int seg_ref_active = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); | 
|  | if (!seg_ref_active) { | 
|  | // If the segment reference feature is enabled we have only a single | 
|  | // reference frame allowed for the segment so exclude it from | 
|  | // the reference frame counts used to work out probabilities. | 
|  | if (is_inter_block(mbmi)) { | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  | if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && | 
|  | has_second_ref(mbmi)) { | 
|  | // This flag is also updated for 4x4 blocks | 
|  | rdc->compound_ref_used_flag = 1; | 
|  | } | 
|  | set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY && | 
|  | (mbmi->mode == NEWMV || mbmi->mode < INTRA_MODE_END)) { | 
|  | int32_t blocks = mi_size_high[bsize] * mi_size_wide[bsize]; | 
|  | rdc->newmv_or_intra_blocks += blocks; | 
|  | } | 
|  | if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); | 
|  | } | 
|  | if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ || | 
|  | cpi->active_map.enabled) && | 
|  | mbmi->skip_txfm && !cpi->rc.rtc_external_ratectrl && cm->seg.enabled) | 
|  | av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run); | 
|  | // TODO(Ravi/Remya): Move this copy function to a better logical place | 
|  | // This function will copy the best mode information from block | 
|  | // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This | 
|  | // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during | 
|  | // bitstream preparation. | 
|  | av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, | 
|  | av1_ref_frame_type(xd->mi[0]->ref_frame)); | 
|  | x->rdmult = origin_mult; | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing((AV1_COMP *)cpi, encode_b_nonrd_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi, | 
|  | const MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize) { | 
|  | // Force zero MV skip based on SB level decision | 
|  | if (x->force_zeromv_skip_for_sb < 2) return x->force_zeromv_skip_for_sb; | 
|  |  | 
|  | // For blocks of size equal to superblock size, the decision would have been | 
|  | // already done at superblock level. Hence zeromv-skip decision is skipped. | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | if (bsize == cm->seq_params->sb_size) return 0; | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const unsigned int thresh_exit_part_y = | 
|  | cpi->zeromv_skip_thresh_exit_part[bsize]; | 
|  | const unsigned int thresh_exit_part_uv = | 
|  | CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y); | 
|  | const unsigned int thresh_exit_part[MAX_MB_PLANE] = { thresh_exit_part_y, | 
|  | thresh_exit_part_uv, | 
|  | thresh_exit_part_uv }; | 
|  | const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); | 
|  | const struct scale_factors *const sf = | 
|  | get_ref_scale_factors_const(cm, LAST_FRAME); | 
|  |  | 
|  | struct buf_2d yv12_mb[MAX_MB_PLANE]; | 
|  | av1_setup_pred_block(xd, yv12_mb, yv12, sf, sf, num_planes); | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bs = | 
|  | get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); | 
|  | const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( | 
|  | p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride); | 
|  | assert(plane < MAX_MB_PLANE); | 
|  | if (plane_sad >= thresh_exit_part[plane]) return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /*!\brief Top level function to pick block mode for non-RD optimized case | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Searches prediction modes, transform, and coefficient coding modes for an | 
|  | * individual coding block. This function is the top-level function that is | 
|  | * used for non-RD optimized mode search (controlled by | 
|  | * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls | 
|  | * inter/skip/hybrid-intra mode search functions | 
|  | * | 
|  | * \param[in]    cpi            Top-level encoder structure | 
|  | * \param[in]    tile_data      Pointer to struct holding adaptive | 
|  | *                              data/contexts/models for the tile during | 
|  | *                              encoding | 
|  | * \param[in]    x              Pointer to structure holding all the data for | 
|  | *                              the current macroblock | 
|  | * \param[in]    mi_row         Row coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    mi_col         Column coordinate of the block in a step size of | 
|  | *                              MI_SIZE | 
|  | * \param[in]    rd_cost        Pointer to structure holding rate and distortion | 
|  | *                              stats for the current block | 
|  | * \param[in]    bsize          Current block size | 
|  | * \param[in]    ctx            Pointer to structure holding coding contexts and | 
|  | *                              chosen modes for the current block | 
|  | * | 
|  | * \remark Nothing is returned. Instead, the chosen modes and contexts necessary | 
|  | * for reconstruction are stored in ctx, the rate-distortion stats are stored in | 
|  | * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be | 
|  | * signalled by an INT64_MAX rd_cost->rdcost. | 
|  | */ | 
|  | static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *const x, int mi_row, int mi_col, | 
|  | RD_STATS *rd_cost, BLOCK_SIZE bsize, | 
|  | PICK_MODE_CONTEXT *ctx) { | 
|  | // For nonrd mode, av1_set_offsets is already called at the superblock level | 
|  | // in encode_nonrd_sb when we determine the partitioning. | 
|  | if (bsize != cpi->common.seq_params->sb_size || | 
|  | cpi->sf.rt_sf.nonrd_check_partition_split == 1) { | 
|  | av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); | 
|  | } | 
|  | assert(x->last_set_offsets_loc.mi_row == mi_row && | 
|  | x->last_set_offsets_loc.mi_col == mi_col && | 
|  | x->last_set_offsets_loc.bsize == bsize); | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | struct macroblock_plane *const p = x->plane; | 
|  | struct macroblockd_plane *const pd = xd->plane; | 
|  | const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | int i; | 
|  | const int seg_skip = | 
|  | segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); | 
|  |  | 
|  | // This is only needed for real time/allintra row-mt enabled multi-threaded | 
|  | // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. | 
|  | wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, | 
|  | &tile_data->tile_info, cm->seq_params->sb_size, | 
|  | cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, pick_sb_modes_nonrd_time); | 
|  | #endif | 
|  | // Sets up the tx_type_map buffer in MACROBLOCKD. | 
|  | xd->tx_type_map = txfm_info->tx_type_map_; | 
|  | xd->tx_type_map_stride = mi_size_wide[bsize]; | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | p[i].coeff = ctx->coeff[i]; | 
|  | p[i].qcoeff = ctx->qcoeff[i]; | 
|  | p[i].dqcoeff = ctx->dqcoeff[i]; | 
|  | p[i].eobs = ctx->eobs[i]; | 
|  | p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; | 
|  | } | 
|  | for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; | 
|  |  | 
|  | if (!seg_skip) { | 
|  | x->force_zeromv_skip_for_blk = | 
|  | get_force_zeromv_skip_flag_for_blk(cpi, x, bsize); | 
|  |  | 
|  | // Source variance may be already compute at superblock level, so no need | 
|  | // to recompute, unless bsize < sb_size or source_variance is not yet set. | 
|  | if (!x->force_zeromv_skip_for_blk && | 
|  | (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size)) | 
|  | x->source_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); | 
|  | } | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); | 
|  | // Set error per bit for current rdmult | 
|  | av1_set_error_per_bit(&x->errorperbit, x->rdmult); | 
|  | // Find best coding mode & reconstruct the MB so it is available | 
|  | // as a predictor for MBs that follow in the SB | 
|  | if (frame_is_intra_only(cm)) { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, hybrid_intra_mode_search_time); | 
|  | #endif | 
|  | hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, hybrid_intra_mode_search_time); | 
|  | #endif | 
|  | } else { | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, nonrd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | if (seg_skip) { | 
|  | x->force_zeromv_skip_for_blk = 1; | 
|  | // TODO(marpan): Consider adding a function for nonrd: | 
|  | // av1_nonrd_pick_inter_mode_sb_seg_skip(), instead of setting | 
|  | // x->force_zeromv_skip flag and entering av1_nonrd_pick_inter_mode_sb(). | 
|  | } | 
|  | av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, nonrd_pick_inter_mode_sb_time); | 
|  | #endif | 
|  | } | 
|  | if (cpi->sf.rt_sf.skip_cdef_sb) { | 
|  | // cdef_strength is initialized to 1 which means skip_cdef, and is updated | 
|  | // here. Check to see is skipping cdef is allowed. Never skip on slide/scene | 
|  | // change, near a key frame, or when color sensitivity is set. Always allow | 
|  | // cdef_skip for seg_skip = 1. | 
|  | const int allow_cdef_skipping = | 
|  | seg_skip || | 
|  | (cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad && | 
|  | !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] || | 
|  | x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)])); | 
|  |  | 
|  | // Find the corresponding 64x64 block. It'll be the 128x128 block if that's | 
|  | // the block size. | 
|  | const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64; | 
|  | const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64; | 
|  | MB_MODE_INFO **mi_sb = | 
|  | cm->mi_params.mi_grid_base + | 
|  | get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb); | 
|  | const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; | 
|  | unsigned int thresh_spatial_var = | 
|  | (cpi->oxcf.speed >= 11 && !is_720p_or_larger && | 
|  | cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) | 
|  | ? 400 | 
|  | : UINT_MAX; | 
|  | // For skip_cdef_sb = 1: do not skip if allow_cdef_skipping is false or | 
|  | // intra or new mv is picked, with possible conidition on spatial variance. | 
|  | // For skip_cdef_sb >= 2: more aggressive mode to always skip unless | 
|  | // allow_cdef_skipping is false and source_variance is non-zero. | 
|  | if (cpi->sf.rt_sf.skip_cdef_sb >= 2) { | 
|  | mi_sb[0]->cdef_strength = | 
|  | mi_sb[0]->cdef_strength && | 
|  | (allow_cdef_skipping || x->source_variance == 0); | 
|  | } else { | 
|  | mi_sb[0]->cdef_strength = | 
|  | mi_sb[0]->cdef_strength && allow_cdef_skipping && | 
|  | !(x->source_variance < thresh_spatial_var && | 
|  | (mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV)); | 
|  | } | 
|  | // Store in the pickmode context. | 
|  | ctx->mic.cdef_strength = mi_sb[0]->cdef_strength; | 
|  | } | 
|  | x->rdmult = orig_rdmult; | 
|  | ctx->rd_stats.rate = rd_cost->rate; | 
|  | ctx->rd_stats.dist = rd_cost->dist; | 
|  | ctx->rd_stats.rdcost = rd_cost->rdcost; | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, pick_sb_modes_nonrd_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td, | 
|  | TileDataEnc *const tile_data, | 
|  | TileInfo *const tile_info, TokenExtra **tp, | 
|  | MACROBLOCK *const x, MACROBLOCKD *const xd, | 
|  | const CommonModeInfoParams *const mi_params, | 
|  | const int mi_row, const int mi_col, | 
|  | const BLOCK_SIZE bsize, const int pl, | 
|  | PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | if (mi_row + mi_size_high[bsize] >= mi_params->mi_rows || | 
|  | mi_col + mi_size_wide[bsize] >= mi_params->mi_cols) | 
|  | return 0; | 
|  | if (bsize <= BLOCK_8X8 || frame_is_intra_only(cm)) return 0; | 
|  | if (x->content_state_sb.source_sad_nonrd <= kLowSad) return 0; | 
|  |  | 
|  | // Do not try split partition when the source sad is small, or | 
|  | // the prediction residual is small. | 
|  | const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); | 
|  | const struct scale_factors *const sf = | 
|  | get_ref_scale_factors_const(cm, LAST_FRAME); | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); | 
|  | av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf, num_planes); | 
|  | int block_sad = 0; | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bs = | 
|  | get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); | 
|  | const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( | 
|  | p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride); | 
|  | block_sad += plane_sad; | 
|  | } | 
|  | const int blk_pix = block_size_wide[bsize] * block_size_high[bsize]; | 
|  | const int block_avg_sad = block_sad / blk_pix; | 
|  | // TODO(chengchen): find a proper threshold. It might change according to | 
|  | // q as well. | 
|  | const int threshold = 25; | 
|  | if (block_avg_sad < threshold) return 0; | 
|  |  | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | RD_STATS split_rdc, none_rdc; | 
|  | av1_invalid_rd_stats(&split_rdc); | 
|  | av1_invalid_rd_stats(&none_rdc); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | // Calculate rdcost for none partition | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  | if (!pc_tree->none) { | 
|  | pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->none); | 
|  | } | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, | 
|  | pc_tree->none); | 
|  | none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; | 
|  | none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); | 
|  |  | 
|  | // Calculate rdcost for split partition | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | av1_init_rd_stats(&split_rdc); | 
|  | split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; | 
|  | if (subsize >= BLOCK_8X8) { | 
|  | split_rdc.rate += (mode_costs->partition_cost[pl][PARTITION_NONE] * 4); | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | if (!pc_tree->split[i]) { | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | } | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | RD_STATS block_rdc; | 
|  | av1_invalid_rd_stats(&block_rdc); | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); | 
|  | if (!pc_tree->split[i]->none) { | 
|  | pc_tree->split[i]->none = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->split[i]->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->split[i]->none); | 
|  | } | 
|  | pc_tree->split[i]->partitioning = PARTITION_NONE; | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, | 
|  | &block_rdc, subsize, pc_tree->split[i]->none); | 
|  | split_rdc.rate += block_rdc.rate; | 
|  | split_rdc.dist += block_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, &split_rdc); | 
|  | if (none_rdc.rdcost < split_rdc.rdcost) break; | 
|  | if (i != SUB_PARTITIONS_SPLIT - 1) | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, | 
|  | subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); | 
|  | } | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); | 
|  | split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); | 
|  | const int split = split_rdc.rdcost < none_rdc.rdcost; | 
|  |  | 
|  | return split; | 
|  | } | 
|  |  | 
|  | // Returns if SPLIT partitions should be evaluated | 
|  | static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x, | 
|  | const PC_TREE *pc_tree, const RD_STATS *none_rdc, | 
|  | const CommonModeInfoParams *mi_params, | 
|  | int mi_row, int mi_col, int hbs, | 
|  | BLOCK_SIZE bsize, PARTITION_TYPE partition) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int is_larger_qindex = cm->quant_params.base_qindex > 100; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | bool do_split = | 
|  | (cpi->sf.rt_sf.nonrd_check_partition_merge_mode == 3) | 
|  | ? (bsize <= BLOCK_32X32 || (is_larger_qindex && bsize <= BLOCK_64X64)) | 
|  | : true; | 
|  | if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN || | 
|  | cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || | 
|  | cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) || | 
|  | !none_rdc->skip_txfm) | 
|  | return do_split; | 
|  |  | 
|  | const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize); | 
|  |  | 
|  | // When model based skip is not used (i.e.,use_model_yrd_large = 0), skip_txfm | 
|  | // would have been populated based on Hadamard transform and skip_txfm flag is | 
|  | // more reliable. Hence SPLIT evaluation is disabled at all quantizers for 8x8 | 
|  | // and 16x16 blocks. | 
|  | // When model based skip is used (i.e.,use_model_yrd_large = 1), skip_txfm may | 
|  | // not be reliable. Hence SPLIT evaluation is disabled only at lower | 
|  | // quantizers for blocks >= 32x32. | 
|  | if ((!use_model_yrd_large) || (!is_larger_qindex)) return false; | 
|  |  | 
|  | // Use residual statistics to decide if SPLIT partition should be evaluated | 
|  | // for 32x32 blocks. The pruning logic is avoided for larger block size to | 
|  | // avoid the visual artifacts | 
|  | if (pc_tree->none->mic.mode == NEWMV && bsize == BLOCK_32X32 && do_split) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | assert(subsize < BLOCK_SIZES_ALL); | 
|  | double min_per_pixel_error = DBL_MAX; | 
|  | double max_per_pixel_error = 0.; | 
|  | int i; | 
|  | for (i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | const int x_idx = (i & 1) * hbs; | 
|  | const int y_idx = (i >> 1) * hbs; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Populate the appropriate buffer pointers. | 
|  | // Pass scale factors as NULL as the base pointer of the block would have | 
|  | // been calculated appropriately. | 
|  | struct buf_2d src_split_buf_2d, pred_split_buf_2d; | 
|  | const struct buf_2d *src_none_buf_2d = &x->plane[AOM_PLANE_Y].src; | 
|  | setup_pred_plane(&src_split_buf_2d, subsize, src_none_buf_2d->buf, | 
|  | src_none_buf_2d->width, src_none_buf_2d->height, | 
|  | src_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); | 
|  | const struct buf_2d *pred_none_buf_2d = &xd->plane[AOM_PLANE_Y].dst; | 
|  | setup_pred_plane(&pred_split_buf_2d, subsize, pred_none_buf_2d->buf, | 
|  | pred_none_buf_2d->width, pred_none_buf_2d->height, | 
|  | pred_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); | 
|  |  | 
|  | unsigned int curr_uint_mse; | 
|  | const unsigned int curr_uint_var = cpi->ppi->fn_ptr[subsize].vf( | 
|  | src_split_buf_2d.buf, src_split_buf_2d.stride, pred_split_buf_2d.buf, | 
|  | pred_split_buf_2d.stride, &curr_uint_mse); | 
|  | const double curr_per_pixel_error = | 
|  | sqrt((double)curr_uint_var / block_size_wide[subsize] / | 
|  | block_size_high[subsize]); | 
|  | if (curr_per_pixel_error < min_per_pixel_error) | 
|  | min_per_pixel_error = curr_per_pixel_error; | 
|  | if (curr_per_pixel_error > max_per_pixel_error) | 
|  | max_per_pixel_error = curr_per_pixel_error; | 
|  | } | 
|  |  | 
|  | // Prune based on residual statistics only if all the sub-partitions are | 
|  | // valid. | 
|  | if (i == SUB_PARTITIONS_SPLIT) { | 
|  | if (max_per_pixel_error - min_per_pixel_error <= 1.5) do_split = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return do_split; | 
|  | } | 
|  |  | 
|  | static void try_merge(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, MB_MODE_INFO **mib, | 
|  | TokenExtra **tp, const int mi_row, const int mi_col, | 
|  | const BLOCK_SIZE bsize, PC_TREE *const pc_tree, | 
|  | const PARTITION_TYPE partition, const BLOCK_SIZE subsize, | 
|  | const int pl) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | // Only square blocks from 8x8 to 128x128 are supported | 
|  | assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); | 
|  | const int bs = mi_size_wide[bsize]; | 
|  | const int hbs = bs / 2; | 
|  | bool do_split = false; | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | RD_STATS split_rdc, none_rdc; | 
|  | av1_invalid_rd_stats(&split_rdc); | 
|  | av1_invalid_rd_stats(&none_rdc); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | if (!pc_tree->none) { | 
|  | pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->none); | 
|  | } | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, | 
|  | pc_tree->none); | 
|  | none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; | 
|  | none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || | 
|  | none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) { | 
|  | do_split = calc_do_split_flag(cpi, x, pc_tree, &none_rdc, mi_params, mi_row, | 
|  | mi_col, hbs, bsize, partition); | 
|  | if (do_split) { | 
|  | av1_init_rd_stats(&split_rdc); | 
|  | split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | RD_STATS block_rdc; | 
|  | av1_invalid_rd_stats(&block_rdc); | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); | 
|  | if (!pc_tree->split[i]->none) { | 
|  | pc_tree->split[i]->none = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->split[i]->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->split[i]->none); | 
|  | } | 
|  | pc_tree->split[i]->partitioning = PARTITION_NONE; | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, | 
|  | &block_rdc, subsize, pc_tree->split[i]->none); | 
|  | // TODO(yunqingwang): The rate here did not include the cost of | 
|  | // signaling PARTITION_NONE token in the sub-blocks. | 
|  | split_rdc.rate += block_rdc.rate; | 
|  | split_rdc.dist += block_rdc.dist; | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &split_rdc); | 
|  |  | 
|  | if (none_rdc.rdcost < split_rdc.rdcost) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i != SUB_PARTITIONS_SPLIT - 1) | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, | 
|  | 1, subsize, PARTITION_NONE, pc_tree->split[i]->none, | 
|  | NULL); | 
|  | } | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  | split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (none_rdc.rdcost < split_rdc.rdcost) { | 
|  | /* Predicted samples can not be reused for PARTITION_NONE since same | 
|  | * buffer is being used to store the reconstructed samples of | 
|  | * PARTITION_SPLIT block. */ | 
|  | if (do_split) x->reuse_inter_pred = false; | 
|  |  | 
|  | mib[0]->bsize = bsize; | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, | 
|  | pc_tree->none, NULL); | 
|  | } else { | 
|  | mib[0]->bsize = subsize; | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  | /* Predicted samples can not be reused for PARTITION_SPLIT since same | 
|  | * buffer is being used to write the reconstructed samples. */ | 
|  | // TODO(Cherma): Store and reuse predicted samples generated by | 
|  | // encode_b_nonrd() in DRY_RUN_NORMAL mode. | 
|  | x->reuse_inter_pred = false; | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  |  | 
|  | // Note: We don't reset pc_tree->split[i]->none here because it | 
|  | // could contain results from the additional check. Instead, it is | 
|  | // reset before we enter the nonrd_check_partition_merge_mode | 
|  | // condition. | 
|  | if (!pc_tree->split[i]->none) { | 
|  | pc_tree->split[i]->none = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->split[i]->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0, | 
|  | subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Evaluate if the sub-partitions can be merged directly into a large partition | 
|  | // without calculating the RD cost. | 
|  | static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, MB_MODE_INFO **mib, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int bs = mi_size_wide[bsize]; | 
|  | const int hbs = bs / 2; | 
|  | const PARTITION_TYPE partition = | 
|  | (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) | 
|  | : PARTITION_NONE; | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  |  | 
|  | MB_MODE_INFO **b0 = mib; | 
|  | MB_MODE_INFO **b1 = mib + hbs; | 
|  | MB_MODE_INFO **b2 = mib + hbs * mi_params->mi_stride; | 
|  | MB_MODE_INFO **b3 = mib + hbs * mi_params->mi_stride + hbs; | 
|  |  | 
|  | // Check if the following conditions are met. This can be updated | 
|  | // later with more support added. | 
|  | const int further_split = b0[0]->bsize < subsize || b1[0]->bsize < subsize || | 
|  | b2[0]->bsize < subsize || b3[0]->bsize < subsize; | 
|  | if (further_split) return; | 
|  |  | 
|  | const int no_skip = !b0[0]->skip_txfm || !b1[0]->skip_txfm || | 
|  | !b2[0]->skip_txfm || !b3[0]->skip_txfm; | 
|  | if (no_skip) return; | 
|  |  | 
|  | const int compound = (b0[0]->ref_frame[1] != b1[0]->ref_frame[1] || | 
|  | b0[0]->ref_frame[1] != b2[0]->ref_frame[1] || | 
|  | b0[0]->ref_frame[1] != b3[0]->ref_frame[1] || | 
|  | b0[0]->ref_frame[1] > NONE_FRAME); | 
|  | if (compound) return; | 
|  |  | 
|  | // Intra modes aren't considered here. | 
|  | const int different_ref = (b0[0]->ref_frame[0] != b1[0]->ref_frame[0] || | 
|  | b0[0]->ref_frame[0] != b2[0]->ref_frame[0] || | 
|  | b0[0]->ref_frame[0] != b3[0]->ref_frame[0] || | 
|  | b0[0]->ref_frame[0] <= INTRA_FRAME); | 
|  | if (different_ref) return; | 
|  |  | 
|  | const int different_mode = | 
|  | (b0[0]->mode != b1[0]->mode || b0[0]->mode != b2[0]->mode || | 
|  | b0[0]->mode != b3[0]->mode); | 
|  | if (different_mode) return; | 
|  |  | 
|  | const int unsupported_mode = | 
|  | (b0[0]->mode != NEARESTMV && b0[0]->mode != GLOBALMV); | 
|  | if (unsupported_mode) return; | 
|  |  | 
|  | const int different_mv = (b0[0]->mv[0].as_int != b1[0]->mv[0].as_int || | 
|  | b0[0]->mv[0].as_int != b2[0]->mv[0].as_int || | 
|  | b0[0]->mv[0].as_int != b3[0]->mv[0].as_int); | 
|  | if (different_mv) return; | 
|  |  | 
|  | const int unsupported_motion_mode = | 
|  | (b0[0]->motion_mode != b1[0]->motion_mode || | 
|  | b0[0]->motion_mode != b2[0]->motion_mode || | 
|  | b0[0]->motion_mode != b3[0]->motion_mode || | 
|  | b0[0]->motion_mode != SIMPLE_TRANSLATION); | 
|  | if (unsupported_motion_mode) return; | 
|  |  | 
|  | const int diffent_filter = | 
|  | (b0[0]->interp_filters.as_int != b1[0]->interp_filters.as_int || | 
|  | b0[0]->interp_filters.as_int != b2[0]->interp_filters.as_int || | 
|  | b0[0]->interp_filters.as_int != b3[0]->interp_filters.as_int); | 
|  | if (diffent_filter) return; | 
|  |  | 
|  | const int different_seg = (b0[0]->segment_id != b1[0]->segment_id || | 
|  | b0[0]->segment_id != b2[0]->segment_id || | 
|  | b0[0]->segment_id != b3[0]->segment_id); | 
|  | if (different_seg) return; | 
|  |  | 
|  | // Evaluate the ref_mv. | 
|  | MB_MODE_INFO **this_mi = mib; | 
|  | BLOCK_SIZE orig_bsize = this_mi[0]->bsize; | 
|  | const PARTITION_TYPE orig_partition = this_mi[0]->partition; | 
|  |  | 
|  | this_mi[0]->bsize = bsize; | 
|  | this_mi[0]->partition = PARTITION_NONE; | 
|  | this_mi[0]->skip_txfm = 1; | 
|  |  | 
|  | // TODO(yunqing): functions called below can be optimized by | 
|  | // removing unrelated operations. | 
|  | av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, | 
|  | mi_col, bsize); | 
|  |  | 
|  | const MV_REFERENCE_FRAME ref_frame = this_mi[0]->ref_frame[0]; | 
|  | int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; | 
|  | struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; | 
|  | int force_skip_low_temp_var = 0; | 
|  | int skip_pred_mv = 0; | 
|  | bool use_scaled_ref; | 
|  |  | 
|  | for (int i = 0; i < MB_MODE_COUNT; ++i) { | 
|  | for (int j = 0; j < REF_FRAMES; ++j) { | 
|  | frame_mv[i][j].as_int = INVALID_MV; | 
|  | } | 
|  | } | 
|  | av1_copy(x->color_sensitivity, x->color_sensitivity_sb); | 
|  | skip_pred_mv = (x->nonrd_prune_ref_frame_search > 2 && | 
|  | x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 && | 
|  | x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2); | 
|  |  | 
|  | find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, bsize, | 
|  | force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); | 
|  |  | 
|  | int continue_merging = 1; | 
|  | if (frame_mv[NEARESTMV][ref_frame].as_mv.row != b0[0]->mv[0].as_mv.row || | 
|  | frame_mv[NEARESTMV][ref_frame].as_mv.col != b0[0]->mv[0].as_mv.col) | 
|  | continue_merging = 0; | 
|  |  | 
|  | if (!continue_merging) { | 
|  | this_mi[0]->bsize = orig_bsize; | 
|  | this_mi[0]->partition = orig_partition; | 
|  |  | 
|  | // TODO(yunqing): Store the results and restore here instead of | 
|  | // calling find_predictors() again. | 
|  | av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, | 
|  | mi_col, this_mi[0]->bsize); | 
|  | find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, this_mi[0]->bsize, | 
|  | force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); | 
|  | } else { | 
|  | struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame); | 
|  | const int is_scaled = av1_is_scaled(sf); | 
|  | const int is_y_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 8) || | 
|  | (abs(this_mi[0]->mv[0].as_mv.col) % 8); | 
|  | const int is_uv_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 16) || | 
|  | (abs(this_mi[0]->mv[0].as_mv.col) % 16); | 
|  |  | 
|  | if (cpi->ppi->use_svc || is_scaled || is_y_subpel_mv || is_uv_subpel_mv) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | set_ref_ptrs(cm, xd, ref_frame, this_mi[0]->ref_frame[1]); | 
|  | const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); | 
|  | av1_setup_pre_planes(xd, 0, cfg, mi_row, mi_col, | 
|  | xd->block_ref_scale_factors[0], num_planes); | 
|  |  | 
|  | if (!cpi->ppi->use_svc && !is_scaled && !is_y_subpel_mv) { | 
|  | assert(is_uv_subpel_mv == 1); | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 1, | 
|  | num_planes - 1); | 
|  | } else { | 
|  | av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, | 
|  | num_planes - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy out mbmi_ext information. | 
|  | MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; | 
|  | MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame = x->mbmi_ext_frame; | 
|  | av1_copy_mbmi_ext_to_mbmi_ext_frame( | 
|  | mbmi_ext_frame, mbmi_ext, av1_ref_frame_type(this_mi[0]->ref_frame)); | 
|  |  | 
|  | const BLOCK_SIZE this_subsize = | 
|  | get_partition_subsize(bsize, this_mi[0]->partition); | 
|  | // Update partition contexts. | 
|  | update_ext_partition_context(xd, mi_row, mi_col, this_subsize, bsize, | 
|  | this_mi[0]->partition); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | av1_reset_entropy_context(xd, bsize, num_planes); | 
|  |  | 
|  | // Note: use x->txfm_search_params.tx_mode_search_type instead of | 
|  | // cm->features.tx_mode here. | 
|  | TX_SIZE tx_size = | 
|  | tx_size_from_tx_mode(bsize, x->txfm_search_params.tx_mode_search_type); | 
|  | if (xd->lossless[this_mi[0]->segment_id]) tx_size = TX_4X4; | 
|  | this_mi[0]->tx_size = tx_size; | 
|  | memset(this_mi[0]->inter_tx_size, this_mi[0]->tx_size, | 
|  | sizeof(this_mi[0]->inter_tx_size)); | 
|  |  | 
|  | // Update txfm contexts. | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | set_txfm_ctxs(this_mi[0]->tx_size, xd->width, xd->height, | 
|  | this_mi[0]->skip_txfm && is_inter_block(this_mi[0]), xd); | 
|  |  | 
|  | // Update mi for this partition block. | 
|  | for (int y = 0; y < bs; y++) { | 
|  | for (int x_idx = 0; x_idx < bs; x_idx++) { | 
|  | this_mi[x_idx + y * mi_params->mi_stride] = this_mi[0]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 block partition application (minimal RD search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Encode the block by applying pre-calculated partition patterns that are | 
|  | * represented by coding block sizes stored in the mbmi array. The only | 
|  | * partition adjustment allowed is merging leaf split nodes if it leads to a | 
|  | * lower rd cost. The partition types are limited to a basic set: none, horz, | 
|  | * vert, and split. This function is only used in the real-time mode. | 
|  | * | 
|  | * \param[in]    cpi       Top-level encoder structure | 
|  | * \param[in]    td        Pointer to thread data | 
|  | * \param[in]    tile_data Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during encoding | 
|  | * \param[in]    mib       Array representing MB_MODE_INFO pointers for mi | 
|  | blocks starting from the first pixel of the current | 
|  | block | 
|  | * \param[in]    tp        Pointer to the starting token | 
|  | * \param[in]    mi_row    Row coordinate of the block in a step size of MI_SIZE | 
|  | * \param[in]    mi_col    Column coordinate of the block in a step size of | 
|  | MI_SIZE | 
|  | * \param[in]    bsize     Current block size | 
|  | * \param[in]    pc_tree   Pointer to the PC_TREE node holding the picked | 
|  | partitions and mode info for the current block | 
|  | * | 
|  | * \remark Nothing is returned. The pc_tree struct is modified to store the | 
|  | * picked partition and modes. | 
|  | */ | 
|  | void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, MB_MODE_INFO **mib, | 
|  | TokenExtra **tp, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | // Only square blocks from 8x8 to 128x128 are supported | 
|  | assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); | 
|  | const int bs = mi_size_wide[bsize]; | 
|  | const int hbs = bs / 2; | 
|  | PARTITION_TYPE partition = (bsize >= BLOCK_8X8) | 
|  | ? get_partition(cm, mi_row, mi_col, bsize) | 
|  | : PARTITION_NONE; | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  | assert(subsize <= BLOCK_LARGEST); | 
|  | const int pl = (bsize >= BLOCK_8X8) | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : 0; | 
|  |  | 
|  | RD_STATS dummy_cost; | 
|  | av1_invalid_rd_stats(&dummy_cost); | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | // Initialize default mode evaluation params | 
|  | set_mode_eval_params(cpi, x, DEFAULT_EVAL); | 
|  |  | 
|  | x->reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd; | 
|  |  | 
|  | int change_none_to_split = 0; | 
|  | if (partition == PARTITION_NONE && | 
|  | cpi->sf.rt_sf.nonrd_check_partition_split == 1) { | 
|  | change_none_to_split = | 
|  | try_split_partition(cpi, td, tile_data, tile_info, tp, x, xd, mi_params, | 
|  | mi_row, mi_col, bsize, pl, pc_tree); | 
|  | if (change_none_to_split) { | 
|  | partition = PARTITION_SPLIT; | 
|  | subsize = get_partition_subsize(bsize, partition); | 
|  | assert(subsize <= BLOCK_LARGEST); | 
|  | } | 
|  | } | 
|  |  | 
|  | pc_tree->partitioning = partition; | 
|  |  | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | if (!pc_tree->none) { | 
|  | pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->none); | 
|  | } | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, bsize, | 
|  | pc_tree->none); | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, | 
|  | partition, pc_tree->none, NULL); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (!pc_tree->vertical[i]) { | 
|  | pc_tree->vertical[i] = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->vertical[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->vertical[i]); | 
|  | } | 
|  | } | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, | 
|  | subsize, pc_tree->vertical[0]); | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, | 
|  | PARTITION_VERT, pc_tree->vertical[0], NULL); | 
|  | if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) { | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs, | 
|  | &dummy_cost, subsize, pc_tree->vertical[1]); | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize, | 
|  | PARTITION_VERT, pc_tree->vertical[1], NULL); | 
|  | } | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { | 
|  | if (!pc_tree->horizontal[i]) { | 
|  | pc_tree->horizontal[i] = | 
|  | av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->horizontal[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } else { | 
|  | av1_reset_pmc(pc_tree->horizontal[i]); | 
|  | } | 
|  | } | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, | 
|  | subsize, pc_tree->horizontal[0]); | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, | 
|  | PARTITION_HORZ, pc_tree->horizontal[0], NULL); | 
|  |  | 
|  | if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) { | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col, | 
|  | &dummy_cost, subsize, pc_tree->horizontal[1]); | 
|  | encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize, | 
|  | PARTITION_HORZ, pc_tree->horizontal[1], NULL); | 
|  | } | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | if (!pc_tree->split[i]) { | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | } | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  | if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode && | 
|  | av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) && | 
|  | !frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { | 
|  | try_merge(cpi, td, tile_data, mib, tp, mi_row, mi_col, bsize, pc_tree, | 
|  | partition, subsize, pl); | 
|  | } else { | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | int x_idx = (i & 1) * hbs; | 
|  | int y_idx = (i >> 1) * hbs; | 
|  | int jj = i >> 1, ii = i & 0x01; | 
|  | if ((mi_row + y_idx >= mi_params->mi_rows) || | 
|  | (mi_col + x_idx >= mi_params->mi_cols)) | 
|  | continue; | 
|  | av1_nonrd_use_partition( | 
|  | cpi, td, tile_data, | 
|  | mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, | 
|  | mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]); | 
|  | } | 
|  |  | 
|  | if (!change_none_to_split) { | 
|  | // Note: Palette, cfl are not supported. | 
|  | if (!frame_is_intra_only(cm) && !tile_data->allow_update_cdf && | 
|  | cpi->sf.rt_sf.partition_direct_merging && | 
|  | mode_costs->partition_cost[pl][PARTITION_NONE] < | 
|  | mode_costs->partition_cost[pl][PARTITION_SPLIT] && | 
|  | (mi_row + bs <= mi_params->mi_rows) && | 
|  | (mi_col + bs <= mi_params->mi_cols)) { | 
|  | direct_partition_merging(cpi, td, tile_data, mib, mi_row, mi_col, | 
|  | bsize); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | case PARTITION_VERT_B: | 
|  | case PARTITION_HORZ_A: | 
|  | case PARTITION_HORZ_B: | 
|  | case PARTITION_HORZ_4: | 
|  | case PARTITION_VERT_4: | 
|  | assert(0 && "Cannot handle extended partition types"); | 
|  | default: assert(0); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | // Try searching for an encoding for the given subblock. Returns zero if the | 
|  | // rdcost is already too high (to tell the caller not to bother searching for | 
|  | // encodings of further subblocks). | 
|  | static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int is_last, | 
|  | int mi_row, int mi_col, BLOCK_SIZE subsize, | 
|  | RD_STATS best_rdcost, RD_STATS *sum_rdc, | 
|  | PARTITION_TYPE partition, | 
|  | PICK_MODE_CONTEXT *this_ctx) { | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const int orig_mult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL); | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &best_rdcost); | 
|  |  | 
|  | RD_STATS rdcost_remaining; | 
|  | av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); | 
|  | RD_STATS this_rdc; | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, | 
|  | subsize, this_ctx, rdcost_remaining); | 
|  |  | 
|  | if (this_rdc.rate == INT_MAX) { | 
|  | sum_rdc->rdcost = INT64_MAX; | 
|  | } else { | 
|  | sum_rdc->rate += this_rdc.rate; | 
|  | sum_rdc->dist += this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, sum_rdc); | 
|  | } | 
|  |  | 
|  | if (sum_rdc->rdcost >= best_rdcost.rdcost) { | 
|  | x->rdmult = orig_mult; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!is_last) { | 
|  | av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); | 
|  | } | 
|  |  | 
|  | x->rdmult = orig_mult; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Tests an AB partition, and updates the encoder status, the pick mode | 
|  | // contexts, the best rdcost, and the best partition. | 
|  | static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | PC_TREE *pc_tree, RD_STATS *best_rdc, | 
|  | int64_t *this_rdcost, | 
|  | PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB], | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition, | 
|  | const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], | 
|  | const int ab_mi_pos[SUB_PARTITIONS_AB][2], | 
|  | const MB_MODE_INFO **mode_cache) { | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | RD_STATS sum_rdc; | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | sum_rdc.rate = x->mode_costs.partition_cost[pl][partition]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  | // Loop over sub-partitions in AB partition type. | 
|  | for (int i = 0; i < SUB_PARTITIONS_AB; i++) { | 
|  | if (mode_cache && mode_cache[i]) { | 
|  | x->use_mb_mode_cache = 1; | 
|  | x->mb_mode_cache = mode_cache[i]; | 
|  | } | 
|  | const int mode_search_success = | 
|  | rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1, | 
|  | ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i], | 
|  | *best_rdc, &sum_rdc, partition, ctxs[i]); | 
|  | x->use_mb_mode_cache = 0; | 
|  | x->mb_mode_cache = NULL; | 
|  | if (!mode_search_success) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  | *this_rdcost = sum_rdc.rdcost; | 
|  | if (sum_rdc.rdcost >= best_rdc->rdcost) return false; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); | 
|  | *this_rdcost = sum_rdc.rdcost; | 
|  | if (sum_rdc.rdcost >= best_rdc->rdcost) return false; | 
|  |  | 
|  | *best_rdc = sum_rdc; | 
|  | pc_tree->partitioning = partition; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | static void init_partition_block_timing_stats( | 
|  | PartitionTimingStats *part_timing_stats) { | 
|  | av1_zero(*part_timing_stats); | 
|  | } | 
|  |  | 
|  | static INLINE void start_partition_block_timer( | 
|  | PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) { | 
|  | assert(!part_timing_stats->timer_is_on); | 
|  | part_timing_stats->partition_attempts[partition_type] += 1; | 
|  | aom_usec_timer_start(&part_timing_stats->timer); | 
|  | part_timing_stats->timer_is_on = 1; | 
|  | } | 
|  |  | 
|  | static INLINE void end_partition_block_timer( | 
|  | PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type, | 
|  | int64_t rdcost) { | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | aom_usec_timer_mark(&part_timing_stats->timer); | 
|  | const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer); | 
|  | part_timing_stats->partition_times[partition_type] += time; | 
|  | part_timing_stats->partition_rdcost[partition_type] = rdcost; | 
|  | part_timing_stats->timer_is_on = 0; | 
|  | } | 
|  | } | 
|  | static INLINE void print_partition_timing_stats_with_rdcost( | 
|  | const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number, | 
|  | const RD_STATS *best_rdc, const char *filename) { | 
|  | FILE *f = fopen(filename, "a"); | 
|  | fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number, | 
|  | frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist, | 
|  | best_rdc->rdcost); | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) { | 
|  | fprintf(f, "%d,", -1); | 
|  | } else { | 
|  | fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]); | 
|  | } | 
|  | } | 
|  | fprintf(f, "\n"); | 
|  | fclose(f); | 
|  | } | 
|  |  | 
|  | static INLINE void print_partition_timing_stats( | 
|  | const PartitionTimingStats *part_timing_stats, int intra_only, | 
|  | int show_frame, const BLOCK_SIZE bsize, const char *filename) { | 
|  | FILE *f = fopen(filename, "a"); | 
|  | fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only); | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); | 
|  | } | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); | 
|  | } | 
|  | fprintf(f, "\n"); | 
|  | fclose(f); | 
|  | } | 
|  |  | 
|  | static INLINE void accumulate_partition_timing_stats( | 
|  | FramePartitionTimingStats *fr_part_timing_stats, | 
|  | const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) { | 
|  | const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); | 
|  | int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx]; | 
|  | int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx]; | 
|  | int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx]; | 
|  | for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { | 
|  | agg_attempts[idx] += part_timing_stats->partition_attempts[idx]; | 
|  | agg_decisions[idx] += part_timing_stats->partition_decisions[idx]; | 
|  | agg_times[idx] += part_timing_stats->partition_times[idx]; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_COLLECT_PARTITION_STATS | 
|  |  | 
|  | // Initialize state variables of partition search used in | 
|  | // av1_rd_pick_partition(). | 
|  | static void init_partition_search_state_params( | 
|  | MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; | 
|  |  | 
|  | // Initialization of block size related parameters. | 
|  | blk_params->mi_step = mi_size_wide[bsize] / 2; | 
|  | blk_params->mi_row = mi_row; | 
|  | blk_params->mi_col = mi_col; | 
|  | blk_params->mi_row_edge = mi_row + blk_params->mi_step; | 
|  | blk_params->mi_col_edge = mi_col + blk_params->mi_step; | 
|  | blk_params->width = block_size_wide[bsize]; | 
|  | blk_params->min_partition_size_1d = | 
|  | block_size_wide[x->sb_enc.min_partition_size]; | 
|  | blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | blk_params->split_bsize2 = blk_params->subsize; | 
|  | blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8); | 
|  | blk_params->bsize = bsize; | 
|  |  | 
|  | // Check if the partition corresponds to edge block. | 
|  | blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows); | 
|  | blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols); | 
|  |  | 
|  | // Update intra partitioning related info. | 
|  | part_search_state->intra_part_info = &x->part_search_info; | 
|  | // Prepare for segmentation CNN-based partitioning for intra-frame. | 
|  | if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { | 
|  | part_search_state->intra_part_info->quad_tree_idx = 0; | 
|  | part_search_state->intra_part_info->cnn_output_valid = 0; | 
|  | } | 
|  |  | 
|  | // Set partition plane context index. | 
|  | part_search_state->pl_ctx_idx = | 
|  | blk_params->bsize_at_least_8x8 | 
|  | ? partition_plane_context(xd, mi_row, mi_col, bsize) | 
|  | : 0; | 
|  |  | 
|  | // Partition cost buffer update | 
|  | ModeCosts *mode_costs = &x->mode_costs; | 
|  | part_search_state->partition_cost = | 
|  | mode_costs->partition_cost[part_search_state->pl_ctx_idx]; | 
|  |  | 
|  | // Initialize HORZ and VERT win flags as true for all split partitions. | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { | 
|  | part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true; | 
|  | part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true; | 
|  | } | 
|  |  | 
|  | // Initialize the rd cost. | 
|  | av1_init_rd_stats(&part_search_state->this_rdc); | 
|  |  | 
|  | // Initialize RD costs for partition types to 0. | 
|  | part_search_state->none_rd = 0; | 
|  | av1_zero(part_search_state->split_rd); | 
|  | av1_zero(part_search_state->rect_part_rd); | 
|  |  | 
|  | // Initialize SPLIT partition to be not ready. | 
|  | av1_zero(part_search_state->is_split_ctx_is_ready); | 
|  | // Initialize HORZ and VERT partitions to be not ready. | 
|  | av1_zero(part_search_state->is_rect_ctx_is_ready); | 
|  |  | 
|  | // Chroma subsampling. | 
|  | part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x; | 
|  | part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y; | 
|  |  | 
|  | // Initialize partition search flags to defaults. | 
|  | part_search_state->terminate_partition_search = 0; | 
|  | part_search_state->do_square_split = blk_params->bsize_at_least_8x8; | 
|  | part_search_state->do_rectangular_split = | 
|  | cpi->oxcf.part_cfg.enable_rect_partitions && | 
|  | blk_params->bsize_at_least_8x8; | 
|  | av1_zero(part_search_state->prune_rect_part); | 
|  |  | 
|  | // Initialize allowed partition types for the partition block. | 
|  | part_search_state->partition_none_allowed = | 
|  | av1_blk_has_rows_and_cols(blk_params); | 
|  | part_search_state->partition_rect_allowed[HORZ] = | 
|  | part_search_state->do_rectangular_split && blk_params->has_cols && | 
|  | get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | part_search_state->partition_rect_allowed[VERT] = | 
|  | part_search_state->do_rectangular_split && blk_params->has_rows && | 
|  | get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  |  | 
|  | // Reset the flag indicating whether a partition leading to a rdcost lower | 
|  | // than the bound best_rdc has been found. | 
|  | part_search_state->found_best_partition = false; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | init_partition_block_timing_stats(&part_search_state->part_timing_stats); | 
|  | #endif  // CONFIG_COLLECT_PARTITION_STATS | 
|  | } | 
|  |  | 
|  | // Override partition cost buffer for the edge blocks. | 
|  | static void set_partition_cost_for_edge_blk( | 
|  | AV1_COMMON const *cm, PartitionSearchState *part_search_state) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0); | 
|  | const aom_cdf_prob *partition_cdf = | 
|  | cm->fc->partition_cdf[part_search_state->pl_ctx_idx]; | 
|  | const int max_cost = av1_cost_symbol(0); | 
|  | for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i) | 
|  | part_search_state->tmp_partition_cost[i] = max_cost; | 
|  | if (blk_params.has_cols) { | 
|  | // At the bottom, the two possibilities are HORZ and SPLIT. | 
|  | aom_cdf_prob bot_cdf[2]; | 
|  | partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize); | 
|  | static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; | 
|  | av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf, | 
|  | bot_inv_map); | 
|  | } else if (blk_params.has_rows) { | 
|  | // At the right, the two possibilities are VERT and SPLIT. | 
|  | aom_cdf_prob rhs_cdf[2]; | 
|  | partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize); | 
|  | static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; | 
|  | av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf, | 
|  | rhs_inv_map); | 
|  | } else { | 
|  | // At the bottom right, we always split. | 
|  | part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0; | 
|  | } | 
|  | // Override the partition cost buffer. | 
|  | part_search_state->partition_cost = part_search_state->tmp_partition_cost; | 
|  | } | 
|  |  | 
|  | // Reset the partition search state flags when | 
|  | // must_find_valid_partition is equal to 1. | 
|  | static AOM_INLINE void reset_part_limitations( | 
|  | AV1_COMP *const cpi, PartitionSearchState *part_search_state) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int is_rect_part_allowed = | 
|  | blk_params.bsize_at_least_8x8 && | 
|  | cpi->oxcf.part_cfg.enable_rect_partitions && | 
|  | (blk_params.width > blk_params.min_partition_size_1d); | 
|  | part_search_state->do_square_split = | 
|  | blk_params.bsize_at_least_8x8 && | 
|  | (blk_params.width > blk_params.min_partition_size_1d); | 
|  | part_search_state->partition_none_allowed = | 
|  | av1_blk_has_rows_and_cols(&blk_params) && | 
|  | (blk_params.width >= blk_params.min_partition_size_1d); | 
|  | part_search_state->partition_rect_allowed[HORZ] = | 
|  | blk_params.has_cols && is_rect_part_allowed && | 
|  | get_plane_block_size( | 
|  | get_partition_subsize(blk_params.bsize, PARTITION_HORZ), | 
|  | part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; | 
|  | part_search_state->partition_rect_allowed[VERT] = | 
|  | blk_params.has_rows && is_rect_part_allowed && | 
|  | get_plane_block_size( | 
|  | get_partition_subsize(blk_params.bsize, PARTITION_VERT), | 
|  | part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; | 
|  | part_search_state->terminate_partition_search = 0; | 
|  | } | 
|  |  | 
|  | // Rectangular partitions evaluation at sub-block level. | 
|  | static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data, | 
|  | MACROBLOCK *x, | 
|  | PICK_MODE_CONTEXT *cur_partition_ctx, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, const int idx, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition_type) { | 
|  | // Obtain the remainder from the best rd cost | 
|  | // for further processing of partition. | 
|  | RD_STATS best_remain_rdcost; | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc, | 
|  | &best_remain_rdcost); | 
|  |  | 
|  | // Obtain the best mode for the partition sub-block. | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc, | 
|  | partition_type, bsize, cur_partition_ctx, best_remain_rdcost); | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc); | 
|  |  | 
|  | // Update the partition rd cost with the current sub-block rd. | 
|  | if (part_search_state->this_rdc.rate == INT_MAX) { | 
|  | part_search_state->sum_rdc.rdcost = INT64_MAX; | 
|  | } else { | 
|  | part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate; | 
|  | part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); | 
|  | } | 
|  | const RECT_PART_TYPE rect_part = | 
|  | partition_type == PARTITION_HORZ ? HORZ : VERT; | 
|  | part_search_state->rect_part_rd[rect_part][idx] = | 
|  | part_search_state->this_rdc.rdcost; | 
|  | } | 
|  |  | 
|  | typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step); | 
|  |  | 
|  | // Checks if HORZ / VERT partition search is allowed. | 
|  | static AOM_INLINE int is_rect_part_allowed( | 
|  | const AV1_COMP *cpi, const PartitionSearchState *part_search_state, | 
|  | const active_edge_info *active_edge, RECT_PART_TYPE rect_part, | 
|  | const int mi_pos) { | 
|  | const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; | 
|  | const int is_part_allowed = | 
|  | (!part_search_state->terminate_partition_search && | 
|  | part_search_state->partition_rect_allowed[rect_part] && | 
|  | !part_search_state->prune_rect_part[rect_part] && | 
|  | (part_search_state->do_rectangular_split || | 
|  | active_edge[rect_part](cpi, mi_pos, blk_params->mi_step))); | 
|  | return is_part_allowed; | 
|  | } | 
|  |  | 
|  | static void rectangular_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type, | 
|  | const RECT_PART_TYPE end_type) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS *sum_rdc = &part_search_state->sum_rdc; | 
|  | const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ, | 
|  | PARTITION_VERT }; | 
|  |  | 
|  | // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of | 
|  | //                                           HORZ and VERT partition types. | 
|  | // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of | 
|  | //                                           HORZ and VERT partition types. | 
|  | const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = { | 
|  | { { blk_params.mi_row, blk_params.mi_col }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col } }, | 
|  | { { blk_params.mi_row, blk_params.mi_col }, | 
|  | { blk_params.mi_row, blk_params.mi_col_edge } } | 
|  | }; | 
|  |  | 
|  | // Initialize active edge_type function pointer | 
|  | // for HOZR and VERT partition types. | 
|  | active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge, | 
|  | av1_active_v_edge }; | 
|  |  | 
|  | // Indicates edge blocks for HORZ and VERT partition types. | 
|  | const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows, | 
|  | blk_params.has_cols }; | 
|  |  | 
|  | // Initialize pc tree context for HORZ and VERT partition types. | 
|  | PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = { | 
|  | { &pc_tree->horizontal[0], &pc_tree->horizontal[1] }, | 
|  | { &pc_tree->vertical[0], &pc_tree->vertical[1] } | 
|  | }; | 
|  |  | 
|  | // Loop over rectangular partition types. | 
|  | for (RECT_PART_TYPE i = start_type; i <= end_type; i++) { | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part_search_state->partition_rect_allowed[i])); | 
|  |  | 
|  | // Check if the HORZ / VERT partition search is to be performed. | 
|  | if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i, | 
|  | mi_pos_rect[i][0][i])) | 
|  | continue; | 
|  |  | 
|  | // Sub-partition idx. | 
|  | int sub_part_idx = 0; | 
|  | PARTITION_TYPE partition_type = rect_partition_type[i]; | 
|  | blk_params.subsize = | 
|  | get_partition_subsize(blk_params.bsize, partition_type); | 
|  | assert(blk_params.subsize <= BLOCK_LARGEST); | 
|  | av1_init_rd_stats(sum_rdc); | 
|  | for (int j = 0; j < SUB_PARTITIONS_RECT; j++) { | 
|  | if (cur_ctx[i][j][0] == NULL) { | 
|  | cur_ctx[i][j][0] = | 
|  | av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf); | 
|  | if (!cur_ctx[i][j][0]) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | } | 
|  | sum_rdc->rate = part_search_state->partition_cost[partition_type]; | 
|  | sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0); | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state->part_timing_stats; | 
|  | if (best_rdc->rdcost - sum_rdc->rdcost >= 0) { | 
|  | start_partition_block_timer(part_timing_stats, partition_type); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // First sub-partition evaluation in HORZ / VERT partition type. | 
|  | rd_pick_rect_partition( | 
|  | cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, | 
|  | best_rdc, 0, mi_pos_rect[i][sub_part_idx][0], | 
|  | mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); | 
|  |  | 
|  | // Start of second sub-partition evaluation. | 
|  | // Evaluate second sub-partition if the first sub-partition cost | 
|  | // is less than the best cost and if it is not an edge block. | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) { | 
|  | const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic; | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | // Neither palette mode nor cfl predicted. | 
|  | if (pmi->palette_size[PLANE_TYPE_Y] == 0 && | 
|  | pmi->palette_size[PLANE_TYPE_UV] == 0) { | 
|  | if (mbmi->uv_mode != UV_CFL_PRED) | 
|  | part_search_state->is_rect_ctx_is_ready[i] = 1; | 
|  | } | 
|  | av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row, | 
|  | blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL); | 
|  | encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, | 
|  | blk_params.subsize, NULL); | 
|  |  | 
|  | // Second sub-partition evaluation in HORZ / VERT partition type. | 
|  | sub_part_idx = 1; | 
|  | rd_pick_rect_partition( | 
|  | cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, | 
|  | best_rdc, 1, mi_pos_rect[i][sub_part_idx][0], | 
|  | mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); | 
|  | } | 
|  | // Update HORZ / VERT best partition. | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost) { | 
|  | sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist); | 
|  | if (sum_rdc->rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = *sum_rdc; | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = partition_type; | 
|  | } | 
|  | } else { | 
|  | // Update HORZ / VERT win flag. | 
|  | if (rect_part_win_info != NULL) | 
|  | rect_part_win_info->rect_part_win[i] = false; | 
|  | } | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | end_partition_block_timer(part_timing_stats, partition_type, | 
|  | sum_rdc->rdcost); | 
|  | } | 
|  | #endif | 
|  | av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, | 
|  | blk_params.bsize, av1_num_planes(cm)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // AB partition type evaluation. | 
|  | static void rd_pick_ab_part( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB], | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], | 
|  | const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type, | 
|  | const MB_MODE_INFO **mode_cache) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | int64_t this_rdcost = 0; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state->part_timing_stats; | 
|  | { | 
|  | RD_STATS tmp_sum_rdc; | 
|  | av1_init_rd_stats(&tmp_sum_rdc); | 
|  | tmp_sum_rdc.rate = part_search_state->partition_cost[part_type]; | 
|  | tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); | 
|  | if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) { | 
|  | start_partition_block_timer(part_timing_stats, part_type); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Test this partition and update the best partition. | 
|  | const bool find_best_ab_part = rd_test_partition3( | 
|  | cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row, | 
|  | mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache); | 
|  | part_search_state->found_best_partition |= find_best_ab_part; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | if (!find_best_ab_part) this_rdcost = INT64_MAX; | 
|  | end_partition_block_timer(part_timing_stats, part_type, this_rdcost); | 
|  | } | 
|  | #endif | 
|  | av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // Set mode search context. | 
|  | static AOM_INLINE void set_mode_search_ctx( | 
|  | PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2], | 
|  | PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) { | 
|  | mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0]; | 
|  | mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0]; | 
|  |  | 
|  | if (is_ctx_ready[HORZ_A][0]) | 
|  | mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none; | 
|  |  | 
|  | if (is_ctx_ready[VERT_A][0]) | 
|  | mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none; | 
|  |  | 
|  | if (is_ctx_ready[HORZ_A][1]) | 
|  | mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void copy_partition_mode_from_mode_context( | 
|  | const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) { | 
|  | if (ctx && ctx->rd_stats.rate < INT_MAX) { | 
|  | *dst_mode = &ctx->mic; | 
|  | } else { | 
|  | *dst_mode = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void copy_partition_mode_from_pc_tree( | 
|  | const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) { | 
|  | if (pc_tree) { | 
|  | copy_partition_mode_from_mode_context(dst_mode, pc_tree->none); | 
|  | } else { | 
|  | *dst_mode = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void set_mode_cache_for_partition_ab( | 
|  | const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree, | 
|  | AB_PART_TYPE ab_part_type) { | 
|  | switch (ab_part_type) { | 
|  | case HORZ_A: | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); | 
|  | copy_partition_mode_from_mode_context(&mode_cache[2], | 
|  | pc_tree->horizontal[1]); | 
|  | break; | 
|  | case HORZ_B: | 
|  | copy_partition_mode_from_mode_context(&mode_cache[0], | 
|  | pc_tree->horizontal[0]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); | 
|  | break; | 
|  | case VERT_A: | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); | 
|  | copy_partition_mode_from_mode_context(&mode_cache[2], | 
|  | pc_tree->vertical[1]); | 
|  | break; | 
|  | case VERT_B: | 
|  | copy_partition_mode_from_mode_context(&mode_cache[0], | 
|  | pc_tree->vertical[0]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); | 
|  | copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); | 
|  | break; | 
|  | default: assert(0 && "Invalid ab partition type!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // AB Partitions type search. | 
|  | static void ab_partitions_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info, | 
|  | int pb_source_variance, int ext_partition_allowed, | 
|  | const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  |  | 
|  | if (part_search_state->terminate_partition_search) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int ab_partitions_allowed[NUM_AB_PARTS]; | 
|  | // Prune AB partitions | 
|  | av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost, | 
|  | rect_part_win_info, ext_partition_allowed, | 
|  | part_search_state, ab_partitions_allowed); | 
|  |  | 
|  | // Flags to indicate whether the mode search is done. | 
|  | const int is_ctx_ready[NUM_AB_PARTS][2] = { | 
|  | { part_search_state->is_split_ctx_is_ready[0], | 
|  | part_search_state->is_split_ctx_is_ready[1] }, | 
|  | { part_search_state->is_rect_ctx_is_ready[HORZ], 0 }, | 
|  | { part_search_state->is_split_ctx_is_ready[0], 0 }, | 
|  | { part_search_state->is_rect_ctx_is_ready[VERT], 0 } | 
|  | }; | 
|  |  | 
|  | // Current partition context. | 
|  | PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala, | 
|  | pc_tree->horizontalb, | 
|  | pc_tree->verticala, | 
|  | pc_tree->verticalb }; | 
|  |  | 
|  | // Context of already evaluted partition types. | 
|  | PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]; | 
|  | // Set context of already evaluted partition types. | 
|  | set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx); | 
|  |  | 
|  | // Array of sub-partition size of AB partition types. | 
|  | const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = { | 
|  | { blk_params.split_bsize2, blk_params.split_bsize2, | 
|  | get_partition_subsize(bsize, PARTITION_HORZ_A) }, | 
|  | { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2, | 
|  | blk_params.split_bsize2 }, | 
|  | { blk_params.split_bsize2, blk_params.split_bsize2, | 
|  | get_partition_subsize(bsize, PARTITION_VERT_A) }, | 
|  | { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2, | 
|  | blk_params.split_bsize2 } | 
|  | }; | 
|  |  | 
|  | // Array of mi_row, mi_col positions corresponds to each sub-partition in AB | 
|  | // partition types. | 
|  | const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = { | 
|  | { { mi_row, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge }, | 
|  | { blk_params.mi_row_edge, mi_col } }, | 
|  | { { mi_row, mi_col }, | 
|  | { blk_params.mi_row_edge, mi_col }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col_edge } }, | 
|  | { { mi_row, mi_col }, | 
|  | { blk_params.mi_row_edge, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge } }, | 
|  | { { mi_row, mi_col }, | 
|  | { mi_row, blk_params.mi_col_edge }, | 
|  | { blk_params.mi_row_edge, blk_params.mi_col_edge } } | 
|  | }; | 
|  |  | 
|  | // Loop over AB partition types. | 
|  | for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type; | 
|  | ab_part_type++) { | 
|  | const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A; | 
|  |  | 
|  | // Check if the AB partition search is to be performed. | 
|  | if (!ab_partitions_allowed[ab_part_type]) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | blk_params.subsize = get_partition_subsize(bsize, part_type); | 
|  | for (int i = 0; i < SUB_PARTITIONS_AB; i++) { | 
|  | // Set AB partition context. | 
|  | cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc( | 
|  | cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf); | 
|  | if (!cur_part_ctxs[ab_part_type][i]) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | // Set mode as not ready. | 
|  | cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) { | 
|  | // We can copy directly the mode search results if we have already | 
|  | // searched the current block and the contexts match. | 
|  | if (is_ctx_ready[ab_part_type][0]) { | 
|  | av1_copy_tree_context(cur_part_ctxs[ab_part_type][0], | 
|  | mode_srch_ctx[ab_part_type][0][0]); | 
|  | cur_part_ctxs[ab_part_type][0]->mic.partition = part_type; | 
|  | cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1; | 
|  | if (is_ctx_ready[ab_part_type][1]) { | 
|  | av1_copy_tree_context(cur_part_ctxs[ab_part_type][1], | 
|  | mode_srch_ctx[ab_part_type][1][0]); | 
|  | cur_part_ctxs[ab_part_type][1]->mic.partition = part_type; | 
|  | cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Even if the contexts don't match, we can still speed up by reusing the | 
|  | // previous prediction mode. | 
|  | const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL }; | 
|  | if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) { | 
|  | set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type); | 
|  | } | 
|  |  | 
|  | // Evaluation of AB partition type. | 
|  | rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree, | 
|  | cur_part_ctxs[ab_part_type], part_search_state, best_rdc, | 
|  | ab_subsize[ab_part_type], ab_mi_pos[ab_part_type], | 
|  | part_type, mode_cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set mi positions for HORZ4 / VERT4 sub-block partitions. | 
|  | static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES], | 
|  | int mi_pos[SUB_PARTITIONS_PART4][2], | 
|  | const int mi_row, const int mi_col) { | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) { | 
|  | mi_pos[i][0] = mi_row + i * inc_step[HORZ4]; | 
|  | mi_pos[i][1] = mi_col + i * inc_step[VERT4]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set context and RD cost for HORZ4 / VERT4 partition types. | 
|  | static void set_4_part_ctx_and_rdcost( | 
|  | MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td, | 
|  | PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], | 
|  | PartitionSearchState *part_search_state, PARTITION_TYPE partition_type, | 
|  | BLOCK_SIZE bsize) { | 
|  | // Initialize sum_rdc RD cost structure. | 
|  | av1_init_rd_stats(&part_search_state->sum_rdc); | 
|  | const int subsize = get_partition_subsize(bsize, partition_type); | 
|  | part_search_state->sum_rdc.rate = | 
|  | part_search_state->partition_cost[partition_type]; | 
|  | part_search_state->sum_rdc.rdcost = | 
|  | RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0); | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); | 
|  | if (!cur_part_ctx[i]) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Partition search of HORZ4 / VERT4 partition types. | 
|  | static void rd_pick_4partition( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | // mi positions needed for HORZ4 and VERT4 partition types. | 
|  | int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows, | 
|  | cm->mi_params.mi_cols }; | 
|  | const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4); | 
|  | int mi_pos[SUB_PARTITIONS_PART4][2]; | 
|  |  | 
|  | blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type); | 
|  | // Set partition context and RD cost. | 
|  | set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state, | 
|  | partition_type, blk_params.bsize); | 
|  | // Set mi positions for sub-block sizes. | 
|  | set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col); | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state->part_timing_stats; | 
|  | if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) { | 
|  | start_partition_block_timer(part_timing_stats, partition_type); | 
|  | } | 
|  | #endif | 
|  | // Loop over sub-block partitions. | 
|  | for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { | 
|  | if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break; | 
|  |  | 
|  | // Sub-block evaluation of Horz4 / Vert4 partition type. | 
|  | cur_part_ctx[i]->rd_mode_is_ready = 0; | 
|  | if (!rd_try_subblock( | 
|  | cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1), | 
|  | mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc, | 
|  | &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) { | 
|  | av1_invalid_rd_stats(&part_search_state->sum_rdc); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); | 
|  | if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = part_search_state->sum_rdc; | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = partition_type; | 
|  | } | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | end_partition_block_timer(part_timing_stats, partition_type, | 
|  | part_search_state->sum_rdc.rdcost); | 
|  | } | 
|  | #endif | 
|  | av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, | 
|  | blk_params.bsize, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // Do not evaluate extended partitions if NONE partition is skippable. | 
|  | static INLINE int prune_ext_part_none_skippable( | 
|  | PICK_MODE_CONTEXT *part_none, int must_find_valid_partition, | 
|  | int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) { | 
|  | if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) { | 
|  | if (part_none->skippable && !must_find_valid_partition && | 
|  | bsize >= BLOCK_16X16) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Allow ab partition search | 
|  | static int allow_ab_partition_search(PartitionSearchState *part_search_state, | 
|  | PARTITION_SPEED_FEATURES *part_sf, | 
|  | PARTITION_TYPE curr_best_part, | 
|  | int must_find_valid_partition, | 
|  | int prune_ext_part_state, | 
|  | int64_t best_rdcost) { | 
|  | const PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  |  | 
|  | // Do not prune if there is no valid partition | 
|  | if (best_rdcost == INT64_MAX) return 1; | 
|  |  | 
|  | // Determine bsize threshold to evaluate ab partitions | 
|  | BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh; | 
|  | if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition && | 
|  | !(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT)) | 
|  | ab_bsize_thresh = BLOCK_128X128; | 
|  |  | 
|  | // ab partitions are only allowed for square block sizes BLOCK_16X16 or | 
|  | // higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and | 
|  | // BLOCK_8X8. | 
|  | assert(ab_bsize_thresh >= BLOCK_8X8); | 
|  |  | 
|  | int ab_partition_allowed = | 
|  | part_search_state->do_rectangular_split && bsize > ab_bsize_thresh && | 
|  | av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; | 
|  |  | 
|  | return ab_partition_allowed; | 
|  | } | 
|  |  | 
|  | // Prune 4-way partitions based on the number of horz/vert wins | 
|  | // in the current block and sub-blocks in PARTITION_SPLIT. | 
|  | static void prune_4_partition_using_split_info( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state, | 
|  | int part4_search_allowed[NUM_PART4_TYPES]) { | 
|  | PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 }; | 
|  | // Count of child blocks in which HORZ or VERT partition has won | 
|  | int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 }; | 
|  | // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of | 
|  | // split partiitons. | 
|  | // Conservative pruning for high quantizers. | 
|  | const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3); | 
|  |  | 
|  | for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) { | 
|  | if (!(cpi->sf.part_sf.prune_ext_part_using_split_info && | 
|  | part4_search_allowed[cur_part[i]])) | 
|  | continue; | 
|  | // Loop over split partitions. | 
|  | // Get rectangular partitions winner info of split partitions. | 
|  | for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++) | 
|  | num_child_rect_win[i] += | 
|  | (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1 | 
|  | : 0; | 
|  | if (num_child_rect_win[i] < num_win_thresh) { | 
|  | part4_search_allowed[cur_part[i]] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prune 4-way partition search. | 
|  | static void prune_4_way_partition_search( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | int pb_source_variance, int prune_ext_part_state, | 
|  | int part4_search_allowed[NUM_PART4_TYPES]) { | 
|  | const PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  |  | 
|  | // Do not prune if there is no valid partition | 
|  | if (best_rdc->rdcost == INT64_MAX) return; | 
|  |  | 
|  | // Determine bsize threshold to evaluate 4-way partitions | 
|  | BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh; | 
|  | if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best && | 
|  | !x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE) | 
|  | part4_bsize_thresh = BLOCK_128X128; | 
|  |  | 
|  | // 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and | 
|  | // BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude | 
|  | // BLOCK_4X4 and BLOCK_8X8. | 
|  | assert(part4_bsize_thresh >= BLOCK_8X8); | 
|  |  | 
|  | bool partition4_allowed = | 
|  | part_search_state->do_rectangular_split && bsize > part4_bsize_thresh && | 
|  | av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; | 
|  |  | 
|  | // Disable 4-way partition search flags for width less than a multiple of the | 
|  | // minimum partition width. | 
|  | if (blk_params.width < (blk_params.min_partition_size_1d | 
|  | << cpi->sf.part_sf.prune_part4_search)) { | 
|  | part4_search_allowed[HORZ4] = 0; | 
|  | part4_search_allowed[VERT4] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4, | 
|  | PARTITION_VERT_4 }; | 
|  | const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; | 
|  | // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or | 
|  | // PARTITION_VERT_4 for this block. This is almost the same as | 
|  | // partition4_allowed, except that we don't allow 128x32 or 32x128 | 
|  | // blocks, so we require that bsize is not BLOCK_128X128. | 
|  | partition4_allowed &= | 
|  | part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128; | 
|  |  | 
|  | for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) { | 
|  | part4_search_allowed[i] = | 
|  | partition4_allowed && part_search_state->partition_rect_allowed[i] && | 
|  | get_plane_block_size(get_partition_subsize(bsize, cur_part[i]), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | } | 
|  | // Pruning: pruning out 4-way partitions based on the current best partition. | 
|  | if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) { | 
|  | part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ || | 
|  | pc_tree->partitioning == PARTITION_HORZ_A || | 
|  | pc_tree->partitioning == PARTITION_HORZ_B || | 
|  | pc_tree->partitioning == PARTITION_SPLIT || | 
|  | pc_tree->partitioning == PARTITION_NONE); | 
|  | part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT || | 
|  | pc_tree->partitioning == PARTITION_VERT_A || | 
|  | pc_tree->partitioning == PARTITION_VERT_B || | 
|  | pc_tree->partitioning == PARTITION_SPLIT || | 
|  | pc_tree->partitioning == PARTITION_NONE); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of | 
|  | // sub-blocks from basic partition types. | 
|  | if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed && | 
|  | part_search_state->partition_rect_allowed[HORZ] && | 
|  | part_search_state->partition_rect_allowed[VERT]) { | 
|  | av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost, | 
|  | part_search_state, part4_search_allowed, | 
|  | pb_source_variance); | 
|  | } | 
|  |  | 
|  | // Pruning: pruning out 4-way partitions based on the number of horz/vert wins | 
|  | // in the current block and sub-blocks in PARTITION_SPLIT. | 
|  | prune_4_partition_using_split_info(cpi, x, part_search_state, | 
|  | part4_search_allowed); | 
|  | } | 
|  |  | 
|  | // Set params needed for PARTITION_NONE search. | 
|  | static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td, | 
|  | MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_remain_rdcost, | 
|  | RD_STATS *best_rdc, int *pt_cost) { | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS partition_rdcost; | 
|  | // Set PARTITION_NONE context. | 
|  | if (pc_tree->none == NULL) | 
|  | pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  |  | 
|  | // Set PARTITION_NONE type cost. | 
|  | if (part_search_state->partition_none_allowed) { | 
|  | if (blk_params.bsize_at_least_8x8) { | 
|  | *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX | 
|  | ? part_search_state->partition_cost[PARTITION_NONE] | 
|  | : 0; | 
|  | } | 
|  |  | 
|  | // Initialize the RD stats structure. | 
|  | av1_init_rd_stats(&partition_rdcost); | 
|  | partition_rdcost.rate = *pt_cost; | 
|  | av1_rd_cost_update(x->rdmult, &partition_rdcost); | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost, | 
|  | best_remain_rdcost); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip other partitions based on PARTITION_NONE rd cost. | 
|  | static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PICK_MODE_CONTEXT *ctx_none, | 
|  | PartitionSearchState *part_search_state, | 
|  | RD_STATS *best_rdc, | 
|  | unsigned int *pb_source_variance) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS *this_rdc = &part_search_state->this_rdc; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | if (!frame_is_intra_only(cm) && | 
|  | (part_search_state->do_square_split || | 
|  | part_search_state->do_rectangular_split) && | 
|  | !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { | 
|  | const int use_ml_based_breakout = | 
|  | bsize <= cpi->sf.part_sf.use_square_partition_only_threshold && | 
|  | bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1; | 
|  | if (use_ml_based_breakout) { | 
|  | av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd, | 
|  | part_search_state); | 
|  | } | 
|  |  | 
|  | // Adjust dist breakout threshold according to the partition size. | 
|  | const int64_t dist_breakout_thr = | 
|  | cpi->sf.part_sf.partition_search_breakout_dist_thr >> | 
|  | ((2 * (MAX_SB_SIZE_LOG2 - 2)) - | 
|  | (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); | 
|  | const int rate_breakout_thr = | 
|  | cpi->sf.part_sf.partition_search_breakout_rate_thr * | 
|  | num_pels_log2_lookup[bsize]; | 
|  | // If all y, u, v transform blocks in this partition are skippable, | 
|  | // and the dist & rate are within the thresholds, the partition | 
|  | // search is terminated for current branch of the partition search | 
|  | // tree. The dist & rate thresholds are set to 0 at speed 0 to | 
|  | // disable the early termination at that speed. | 
|  | if (best_rdc->dist < dist_breakout_thr && | 
|  | best_rdc->rate < rate_breakout_thr) { | 
|  | part_search_state->do_square_split = 0; | 
|  | part_search_state->do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Early termination: using simple_motion_search features and the | 
|  | // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a | 
|  | // decision on early terminating at PARTITION_NONE. | 
|  | if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame && | 
|  | !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 && | 
|  | av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX && | 
|  | this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX && | 
|  | this_rdc->rate >= 0 && | 
|  | (part_search_state->do_square_split || | 
|  | part_search_state->do_rectangular_split)) { | 
|  | av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc, | 
|  | part_search_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide early termination and rectangular partition pruning | 
|  | // based on PARTITION_NONE and PARTITION_SPLIT costs. | 
|  | static void prune_partitions_after_split( | 
|  | AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | int64_t part_none_rd, int64_t part_split_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | // Early termination: using the rd costs of PARTITION_NONE and subblocks | 
|  | // from PARTITION_SPLIT to determine an early breakout. | 
|  | if (cpi->sf.part_sf.ml_early_term_after_part_split_level && | 
|  | !frame_is_intra_only(cm) && | 
|  | !part_search_state->terminate_partition_search && | 
|  | part_search_state->do_rectangular_split && | 
|  | (part_search_state->partition_rect_allowed[HORZ] || | 
|  | part_search_state->partition_rect_allowed[VERT])) { | 
|  | av1_ml_early_term_after_split( | 
|  | cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd, | 
|  | part_search_state->split_rd, part_search_state); | 
|  | } | 
|  |  | 
|  | // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT | 
|  | // to prune out rectangular partitions in some directions. | 
|  | if (!cpi->sf.part_sf.ml_early_term_after_part_split_level && | 
|  | cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) && | 
|  | (part_search_state->partition_rect_allowed[HORZ] || | 
|  | part_search_state->partition_rect_allowed[VERT]) && | 
|  | !(part_search_state->prune_rect_part[HORZ] || | 
|  | part_search_state->prune_rect_part[VERT]) && | 
|  | !part_search_state->terminate_partition_search) { | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm), | 
|  | bsize); | 
|  | av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost, | 
|  | part_search_state->none_rd, | 
|  | part_search_state->split_rd, part_search_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if either of the left and top neighbor blocks is larger than | 
|  | // the current block; false otherwise. | 
|  | static AOM_INLINE bool is_neighbor_blk_larger_than_cur_blk( | 
|  | const MACROBLOCKD *xd, BLOCK_SIZE bsize) { | 
|  | const int cur_blk_area = (block_size_high[bsize] * block_size_wide[bsize]); | 
|  | if (xd->left_available) { | 
|  | const BLOCK_SIZE left_bsize = xd->left_mbmi->bsize; | 
|  | if (block_size_high[left_bsize] * block_size_wide[left_bsize] > | 
|  | cur_blk_area) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (xd->up_available) { | 
|  | const BLOCK_SIZE above_bsize = xd->above_mbmi->bsize; | 
|  | if (block_size_high[above_bsize] * block_size_wide[above_bsize] > | 
|  | cur_blk_area) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void prune_rect_part_using_none_pred_mode( | 
|  | const MACROBLOCKD *xd, PartitionSearchState *part_state, | 
|  | PREDICTION_MODE mode, BLOCK_SIZE bsize) { | 
|  | if (mode == DC_PRED || mode == SMOOTH_PRED) { | 
|  | // If the prediction mode of NONE partition is either DC_PRED or | 
|  | // SMOOTH_PRED, it indicates that the current block has less variation. In | 
|  | // this case, HORZ and VERT partitions are pruned if at least one of left | 
|  | // and top neighbor blocks is larger than the current block. | 
|  | if (is_neighbor_blk_larger_than_cur_blk(xd, bsize)) { | 
|  | part_state->prune_rect_part[HORZ] = 1; | 
|  | part_state->prune_rect_part[VERT] = 1; | 
|  | } | 
|  | } else if (mode == D67_PRED || mode == V_PRED || mode == D113_PRED) { | 
|  | // If the prediction mode chosen by NONE partition is close to 90 degrees, | 
|  | // it implies a dominant vertical pattern, and the chance of choosing a | 
|  | // vertical rectangular partition is high. Hence, horizontal partition is | 
|  | // pruned in these cases. | 
|  | part_state->prune_rect_part[HORZ] = 1; | 
|  | } else if (mode == D157_PRED || mode == H_PRED || mode == D203_PRED) { | 
|  | // If the prediction mode chosen by NONE partition is close to 180 degrees, | 
|  | // it implies a dominant horizontal pattern, and the chance of choosing a | 
|  | // horizontal rectangular partition is high. Hence, vertical partition is | 
|  | // pruned in these cases. | 
|  | part_state->prune_rect_part[VERT] = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // PARTITION_NONE search. | 
|  | static void none_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x, | 
|  | PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | RD_STATS *this_rdc = &part_search_state->this_rdc; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | if (part_search_state->terminate_partition_search || | 
|  | !part_search_state->partition_none_allowed) | 
|  | return; | 
|  |  | 
|  | int pt_cost = 0; | 
|  | RD_STATS best_remain_rdcost; | 
|  | av1_invalid_rd_stats(&best_remain_rdcost); | 
|  |  | 
|  | // Set PARTITION_NONE context and cost. | 
|  | set_none_partition_params(cpi, td, x, pc_tree, part_search_state, | 
|  | &best_remain_rdcost, best_rdc, &pt_cost); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | // Timer start for partition None. | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state->part_timing_stats; | 
|  | if (best_remain_rdcost.rdcost >= 0) { | 
|  | start_partition_block_timer(part_timing_stats, PARTITION_NONE); | 
|  | } | 
|  | #endif | 
|  | // PARTITION_NONE evaluation and cost update. | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE, | 
|  | bsize, pc_tree->none, best_remain_rdcost); | 
|  |  | 
|  | av1_rd_cost_update(x->rdmult, this_rdc); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | // Timer end for partition None. | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | RD_STATS tmp_rdc; | 
|  | av1_init_rd_stats(&tmp_rdc); | 
|  | if (this_rdc->rate != INT_MAX) { | 
|  | tmp_rdc.rate = this_rdc->rate; | 
|  | tmp_rdc.dist = this_rdc->dist; | 
|  | tmp_rdc.rdcost = this_rdc->rdcost; | 
|  | if (blk_params.bsize_at_least_8x8) { | 
|  | tmp_rdc.rate += pt_cost; | 
|  | tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist); | 
|  | } | 
|  | } | 
|  | end_partition_block_timer(part_timing_stats, PARTITION_NONE, | 
|  | tmp_rdc.rdcost); | 
|  | } | 
|  | #endif | 
|  | *pb_source_variance = x->source_variance; | 
|  | if (none_rd) *none_rd = this_rdc->rdcost; | 
|  | part_search_state->none_rd = this_rdc->rdcost; | 
|  | if (this_rdc->rate != INT_MAX) { | 
|  | // Record picked ref frame to prune ref frames for other partition types. | 
|  | if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) { | 
|  | const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame); | 
|  | av1_update_picked_ref_frames_mask( | 
|  | x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | if (blk_params.bsize_at_least_8x8) { | 
|  | this_rdc->rate += pt_cost; | 
|  | this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist); | 
|  | } | 
|  | *part_none_rd = this_rdc->rdcost; | 
|  | if (this_rdc->rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = *this_rdc; | 
|  | part_search_state->found_best_partition = true; | 
|  | if (blk_params.bsize_at_least_8x8) { | 
|  | pc_tree->partitioning = PARTITION_NONE; | 
|  | } | 
|  |  | 
|  | // Disable split and rectangular partition search | 
|  | // based on PARTITION_NONE cost. | 
|  | prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none, | 
|  | part_search_state, best_rdc, | 
|  | pb_source_variance); | 
|  | } | 
|  |  | 
|  | if (cpi->sf.part_sf.prune_rect_part_using_none_pred_mode) | 
|  | prune_rect_part_using_none_pred_mode(&x->e_mbd, part_search_state, | 
|  | pc_tree->none->mic.mode, bsize); | 
|  | } | 
|  | av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // PARTITION_SPLIT search. | 
|  | static void split_partition_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, | 
|  | PartitionSearchState *part_search_state, RD_STATS *best_rdc, | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mi_row = blk_params.mi_row; | 
|  | const int mi_col = blk_params.mi_col; | 
|  | const BLOCK_SIZE bsize = blk_params.bsize; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | RD_STATS sum_rdc = part_search_state->sum_rdc; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  |  | 
|  | // Check if partition split is allowed. | 
|  | if (part_search_state->terminate_partition_search || | 
|  | !part_search_state->do_square_split) | 
|  | return; | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | if (pc_tree->split[i] == NULL) | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  |  | 
|  | // Initialization of this partition RD stats. | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  | sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); | 
|  |  | 
|  | int idx; | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state->part_timing_stats; | 
|  | if (best_rdc->rdcost - sum_rdc.rdcost >= 0) { | 
|  | start_partition_block_timer(part_timing_stats, PARTITION_SPLIT); | 
|  | } | 
|  | #endif | 
|  | // Recursive partition search on 4 sub-blocks. | 
|  | for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost; | 
|  | ++idx) { | 
|  | const int x_idx = (idx & 1) * blk_params.mi_step; | 
|  | const int y_idx = (idx >> 1) * blk_params.mi_step; | 
|  |  | 
|  | if (mi_row + y_idx >= mi_params->mi_rows || | 
|  | mi_col + x_idx >= mi_params->mi_cols) | 
|  | continue; | 
|  |  | 
|  | pc_tree->split[idx]->index = idx; | 
|  | int64_t *p_split_rd = &part_search_state->split_rd[idx]; | 
|  | RD_STATS best_remain_rdcost; | 
|  | av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc, | 
|  | &best_remain_rdcost); | 
|  |  | 
|  | int curr_quad_tree_idx = 0; | 
|  | if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { | 
|  | curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx; | 
|  | part_search_state->intra_part_info->quad_tree_idx = | 
|  | 4 * curr_quad_tree_idx + idx + 1; | 
|  | } | 
|  | // Split partition evaluation of corresponding idx. | 
|  | // If the RD cost exceeds the best cost then do not | 
|  | // evaluate other split sub-partitions. | 
|  | SIMPLE_MOTION_DATA_TREE *const sms_tree_split = | 
|  | (sms_tree == NULL) ? NULL : sms_tree->split[idx]; | 
|  | if (!av1_rd_pick_partition( | 
|  | cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, | 
|  | &part_search_state->this_rdc, best_remain_rdcost, | 
|  | pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode, | 
|  | &part_search_state->split_part_rect_win[idx])) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | break; | 
|  | } | 
|  | if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { | 
|  | part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx; | 
|  | } | 
|  |  | 
|  | sum_rdc.rate += part_search_state->this_rdc.rate; | 
|  | sum_rdc.dist += part_search_state->this_rdc.dist; | 
|  | av1_rd_cost_update(x->rdmult, &sum_rdc); | 
|  |  | 
|  | // Set split ctx as ready for use. | 
|  | if (idx <= 1 && (bsize <= BLOCK_8X8 || | 
|  | pc_tree->split[idx]->partitioning == PARTITION_NONE)) { | 
|  | const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic; | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | // Neither palette mode nor cfl predicted. | 
|  | if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { | 
|  | if (mbmi->uv_mode != UV_CFL_PRED) | 
|  | part_search_state->is_split_ctx_is_ready[idx] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (part_timing_stats->timer_is_on) { | 
|  | end_partition_block_timer(part_timing_stats, PARTITION_SPLIT, | 
|  | sum_rdc.rdcost); | 
|  | } | 
|  | #endif | 
|  | const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT); | 
|  |  | 
|  | // Calculate the total cost and update the best partition. | 
|  | *part_split_rd = sum_rdc.rdcost; | 
|  | if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); | 
|  | if (sum_rdc.rdcost < best_rdc->rdcost) { | 
|  | *best_rdc = sum_rdc; | 
|  | part_search_state->found_best_partition = true; | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  | } | 
|  | } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) { | 
|  | // Skip rectangular partition test when partition type none gives better | 
|  | // rd than partition type split. | 
|  | if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) { | 
|  | const int partition_none_valid = part_search_state->none_rd > 0; | 
|  | const int partition_none_better = | 
|  | part_search_state->none_rd < sum_rdc.rdcost; | 
|  | part_search_state->do_rectangular_split &= | 
|  | !(partition_none_valid && partition_none_better); | 
|  | } | 
|  | } | 
|  | // Restore the context for the following cases: | 
|  | // 1) Current block size not more than maximum partition size as dry run | 
|  | // encode happens for these cases | 
|  | // 2) Current block size same as superblock size as the final encode | 
|  | // happens for this case | 
|  | if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size) | 
|  | av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // The max number of nodes in the partition tree. | 
|  | // The number of leaf nodes is (128x128) / (4x4) = 1024. | 
|  | // The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023. | 
|  | #define NUM_NODES 2048 | 
|  |  | 
|  | static void write_partition_tree(AV1_COMP *const cpi, | 
|  | const PC_TREE *const pc_tree, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col) { | 
|  | (void)mi_row; | 
|  | (void)mi_col; | 
|  | const char *path = cpi->oxcf.partition_info_path; | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, | 
|  | cpi->sb_counter, 0); | 
|  | FILE *pfile = fopen(filename, "w"); | 
|  | fprintf(pfile, "%d", bsize); | 
|  |  | 
|  | // Write partition type with BFS order. | 
|  | const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; | 
|  | int q_idx = 0; | 
|  | int last_idx = 1; | 
|  | int num_nodes = 1; | 
|  |  | 
|  | // First traversal to get number of leaf nodes. | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | const PC_TREE *node = tree_node_queue[q_idx]; | 
|  | if (node->partitioning == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | num_nodes += 4; | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | const int num_leafs = last_idx; | 
|  | fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); | 
|  |  | 
|  | // Write partitions for each node. | 
|  | q_idx = 0; | 
|  | last_idx = 1; | 
|  | num_nodes = 1; | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | const PC_TREE *node = tree_node_queue[q_idx]; | 
|  | fprintf(pfile, ",%d", node->partitioning); | 
|  | if (node->partitioning == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | num_nodes += 4; | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  |  | 
|  | fclose(pfile); | 
|  | } | 
|  |  | 
|  | #if CONFIG_PARTITION_SEARCH_ORDER | 
|  | static void verify_write_partition_tree(const AV1_COMP *const cpi, | 
|  | const PC_TREE *const pc_tree, | 
|  | const BLOCK_SIZE bsize, | 
|  | const int config_id, const int mi_row, | 
|  | const int mi_col) { | 
|  | (void)mi_row; | 
|  | (void)mi_col; | 
|  | const char *path = cpi->oxcf.partition_info_path; | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d", | 
|  | path, cpi->sb_counter, config_id); | 
|  | FILE *pfile = fopen(filename, "w"); | 
|  | fprintf(pfile, "%d", bsize); | 
|  |  | 
|  | // Write partition type with BFS order. | 
|  | const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; | 
|  | int q_idx = 0; | 
|  | int last_idx = 1; | 
|  | int num_nodes = 1; | 
|  |  | 
|  | // First traversal to get number of leaf nodes. | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | const PC_TREE *node = tree_node_queue[q_idx]; | 
|  | if (node != NULL && node->partitioning == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | num_nodes += 4; | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | const int num_leafs = last_idx; | 
|  | fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); | 
|  |  | 
|  | // Write partitions for each node. | 
|  | q_idx = 0; | 
|  | last_idx = 1; | 
|  | num_nodes = 1; | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | const PC_TREE *node = tree_node_queue[q_idx]; | 
|  | if (node != NULL) {  // suppress warning | 
|  | fprintf(pfile, ",%d", node->partitioning); | 
|  | if (node->partitioning == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | num_nodes += 4; | 
|  | } | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | fprintf(pfile, "\n"); | 
|  |  | 
|  | fclose(pfile); | 
|  | } | 
|  |  | 
|  | static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree, | 
|  | struct aom_internal_error_info *error_info, | 
|  | const int config_id) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const char *path = cpi->oxcf.partition_info_path; | 
|  | char filename[256]; | 
|  | snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, | 
|  | cpi->sb_counter, config_id); | 
|  | FILE *pfile = fopen(filename, "r"); | 
|  | if (pfile == NULL) { | 
|  | aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.", | 
|  | filename); | 
|  | } | 
|  |  | 
|  | int read_bsize; | 
|  | int num_nodes; | 
|  | int num_configs; | 
|  | fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs); | 
|  | assert(read_bsize == cpi->common.seq_params->sb_size); | 
|  | BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize; | 
|  | assert(bsize == pc_tree->block_size); | 
|  |  | 
|  | PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; | 
|  | int last_idx = 1; | 
|  | int q_idx = 0; | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | int partitioning; | 
|  | fscanf(pfile, ",%d", &partitioning); | 
|  | assert(partitioning >= PARTITION_NONE && | 
|  | partitioning < EXT_PARTITION_TYPES); | 
|  | PC_TREE *node = tree_node_queue[q_idx]; | 
|  | if (node != NULL) { | 
|  | node->partitioning = partitioning; | 
|  | bsize = node->block_size; | 
|  | } | 
|  | if (partitioning == PARTITION_SPLIT) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | if (node != NULL) {  // Suppress warning | 
|  | node->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!node->split[i]) | 
|  | aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | node->split[i]->index = i; | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | fclose(pfile); | 
|  |  | 
|  | return num_configs; | 
|  | } | 
|  |  | 
|  | static RD_STATS rd_search_for_fixed_partition( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, | 
|  | TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col, | 
|  | const BLOCK_SIZE bsize, PC_TREE *pc_tree) { | 
|  | const PARTITION_TYPE partition = pc_tree->partitioning; | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | RD_STATS best_rdc; | 
|  | av1_invalid_rd_stats(&best_rdc); | 
|  | int sum_subblock_rate = 0; | 
|  | int64_t sum_subblock_dist = 0; | 
|  | PartitionSearchState part_search_state; | 
|  | init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, | 
|  | bsize); | 
|  | // Override partition costs at the edges of the frame in the same | 
|  | // way as in read_partition (see decodeframe.c). | 
|  | PartitionBlkParams blk_params = part_search_state.part_blk_params; | 
|  | if (!av1_blk_has_rows_and_cols(&blk_params)) | 
|  | set_partition_cost_for_edge_blk(cm, &part_search_state); | 
|  |  | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | (void)orig_rdmult; | 
|  |  | 
|  | // Set the context. | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | unsigned int pb_source_variance = UINT_MAX; | 
|  | int64_t part_none_rd = INT64_MAX; | 
|  | int64_t none_rd = INT64_MAX; | 
|  | int inc_step[NUM_PART4_TYPES] = { 0 }; | 
|  | if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4; | 
|  | if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4; | 
|  |  | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, &pb_source_variance, | 
|  | &none_rd, &part_none_rd); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, NULL, HORZ, | 
|  | HORZ); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, NULL, VERT, | 
|  | VERT); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, NULL, | 
|  | pb_source_variance, 1, HORZ_A, HORZ_A); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, NULL, | 
|  | pb_source_variance, 1, HORZ_B, HORZ_B); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, NULL, | 
|  | pb_source_variance, 1, VERT_A, VERT_A); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, NULL, | 
|  | pb_source_variance, 1, VERT_B, VERT_B); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->horizontal4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_HORZ_4); | 
|  | break; | 
|  | case PARTITION_VERT_4: | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->vertical4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_VERT_4); | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) { | 
|  | const BLOCK_SIZE subsize = | 
|  | get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | assert(subsize < BLOCK_SIZES_ALL); | 
|  | const int next_mi_row = | 
|  | idx < 2 ? mi_row : mi_row + mi_size_high[subsize]; | 
|  | const int next_mi_col = | 
|  | idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize]; | 
|  | if (next_mi_row >= cm->mi_params.mi_rows || | 
|  | next_mi_col >= cm->mi_params.mi_cols) { | 
|  | continue; | 
|  | } | 
|  | const RD_STATS subblock_rdc = rd_search_for_fixed_partition( | 
|  | cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row, | 
|  | next_mi_col, subsize, pc_tree->split[idx]); | 
|  | sum_subblock_rate += subblock_rdc.rate; | 
|  | sum_subblock_dist += subblock_rdc.dist; | 
|  | } | 
|  | best_rdc.rate = sum_subblock_rate; | 
|  | best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT]; | 
|  | best_rdc.dist = sum_subblock_dist; | 
|  | best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist); | 
|  | break; | 
|  | default: | 
|  | assert(0 && "invalid partition type."); | 
|  | aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type."); | 
|  | } | 
|  | // Note: it is necessary to restore context information. | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | if (bsize != cm->seq_params->sb_size) { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL); | 
|  | } | 
|  | x->rdmult = orig_rdmult; | 
|  |  | 
|  | return best_rdc; | 
|  | } | 
|  |  | 
|  | static void prepare_sb_features_before_search( | 
|  | AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, | 
|  | int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) { | 
|  | av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, | 
|  | bsize, features); | 
|  | collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features); | 
|  | } | 
|  |  | 
|  | static void update_partition_stats(const RD_STATS *const this_rdcost, | 
|  | aom_partition_stats_t *stats) { | 
|  | stats->rate = this_rdcost->rate; | 
|  | stats->dist = this_rdcost->dist; | 
|  | stats->rdcost = this_rdcost->rdcost; | 
|  | } | 
|  |  | 
|  | static void build_pc_tree_from_part_decision( | 
|  | const aom_partition_decision_t *partition_decision, | 
|  | const BLOCK_SIZE this_bsize, PC_TREE *pc_tree, | 
|  | struct aom_internal_error_info *error_info) { | 
|  | BLOCK_SIZE bsize = this_bsize; | 
|  | int num_nodes = partition_decision->num_nodes; | 
|  | PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; | 
|  | int last_idx = 1; | 
|  | int q_idx = 0; | 
|  | tree_node_queue[q_idx] = pc_tree; | 
|  | while (num_nodes > 0) { | 
|  | const int partitioning = partition_decision->partition_decision[q_idx]; | 
|  | assert(partitioning >= PARTITION_NONE && | 
|  | partitioning < EXT_PARTITION_TYPES); | 
|  | PC_TREE *node = tree_node_queue[q_idx]; | 
|  | if (node != NULL) { | 
|  | node->partitioning = partitioning; | 
|  | bsize = node->block_size; | 
|  | } | 
|  | if (partitioning == PARTITION_SPLIT) { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | if (node != NULL) {  // Suppress warning | 
|  | node->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!node->split[i]) | 
|  | aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | node->split[i]->index = i; | 
|  | tree_node_queue[last_idx] = node->split[i]; | 
|  | ++last_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | --num_nodes; | 
|  | ++q_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The ML model needs to provide the whole decision tree for the superblock. | 
|  | static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, | 
|  | TokenExtra **tp, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, | 
|  | int mi_row, int mi_col, | 
|  | const BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | struct aom_internal_error_info *error_info = x->e_mbd.error_info; | 
|  | aom_partition_features_t features; | 
|  | prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, | 
|  | &features); | 
|  | features.mi_row = mi_row; | 
|  | features.mi_col = mi_col; | 
|  | features.frame_width = cpi->frame_info.frame_width; | 
|  | features.frame_height = cpi->frame_info.frame_height; | 
|  | features.block_size = bsize; | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  |  | 
|  | // rd mode search (dry run) for a valid partition decision from the ml model. | 
|  | aom_partition_decision_t partition_decision; | 
|  | do { | 
|  | const bool valid_decision = av1_ext_part_get_partition_decision( | 
|  | ext_part_controller, &partition_decision); | 
|  | if (!valid_decision) return false; | 
|  |  | 
|  | // First, let's take the easy approach. | 
|  | // We require that the ml model has to provide partition decisions for the | 
|  | // whole superblock. | 
|  | td->pc_root = av1_alloc_pc_tree_node(bsize); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root, | 
|  | error_info); | 
|  |  | 
|  | const RD_STATS this_rdcost = rd_search_for_fixed_partition( | 
|  | cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); | 
|  | aom_partition_stats_t stats; | 
|  | update_partition_stats(&this_rdcost, &stats); | 
|  | av1_ext_part_send_partition_stats(ext_part_controller, &stats); | 
|  | if (!partition_decision.is_final_decision) { | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | } | 
|  | } while (!partition_decision.is_final_decision); | 
|  |  | 
|  | // Encode with the selected mode and partition. | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | td->pc_root, NULL); | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Use a bitmask to represent the valid partition types for the current | 
|  | // block. "1" represents the corresponding partition type is vaild. | 
|  | // The least significant bit represents "PARTITION_NONE", the | 
|  | // largest significant bit represents "PARTITION_VERT_4", follow | 
|  | // the enum order for PARTITION_TYPE in "enums.h" | 
|  | static int get_valid_partition_types( | 
|  | const AV1_COMP *const cpi, | 
|  | const PartitionSearchState *const part_search_state, | 
|  | const BLOCK_SIZE bsize) { | 
|  | const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; | 
|  | const PartitionBlkParams blk_params = part_search_state->part_blk_params; | 
|  | int valid_types = 0; | 
|  | // PARTITION_NONE | 
|  | valid_types |= (part_search_state->partition_none_allowed << 0); | 
|  | // PARTITION_HORZ | 
|  | valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1); | 
|  | // PARTITION_VERT | 
|  | valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2); | 
|  | // PARTITION_SPLIT | 
|  | valid_types |= (part_search_state->do_square_split << 3); | 
|  | // PARTITION_HORZ_A | 
|  | const int ext_partition_allowed = part_search_state->do_rectangular_split && | 
|  | av1_blk_has_rows_and_cols(&blk_params); | 
|  | const int horzab_partition_allowed = | 
|  | ext_partition_allowed && part_cfg->enable_ab_partitions && | 
|  | part_search_state->partition_rect_allowed[HORZ]; | 
|  | valid_types |= (horzab_partition_allowed << 4); | 
|  | // PARTITION_HORZ_B | 
|  | valid_types |= (horzab_partition_allowed << 5); | 
|  | // PARTITION_VERT_A | 
|  | const int vertab_partition_allowed = | 
|  | ext_partition_allowed && part_cfg->enable_ab_partitions && | 
|  | part_search_state->partition_rect_allowed[VERT]; | 
|  | valid_types |= (vertab_partition_allowed << 6); | 
|  | // PARTITION_VERT_B | 
|  | valid_types |= (vertab_partition_allowed << 7); | 
|  | // PARTITION_HORZ_4 | 
|  | const int partition4_allowed = part_cfg->enable_1to4_partitions && | 
|  | ext_partition_allowed && | 
|  | bsize != BLOCK_128X128; | 
|  | const int horz4_allowed = | 
|  | partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && | 
|  | get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | valid_types |= (horz4_allowed << 8); | 
|  | // PARTITION_VERT_4 | 
|  | const int vert4_allowed = | 
|  | partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && | 
|  | get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), | 
|  | part_search_state->ss_x, | 
|  | part_search_state->ss_y) != BLOCK_INVALID; | 
|  | valid_types |= (vert4_allowed << 9); | 
|  |  | 
|  | return valid_types; | 
|  | } | 
|  |  | 
|  | static void prepare_tpl_stats_block(const AV1_COMP *const cpi, | 
|  | const BLOCK_SIZE bsize, const int mi_row, | 
|  | const int mi_col, int64_t *intra_cost, | 
|  | int64_t *inter_cost, int64_t *mc_dep_cost) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || | 
|  | gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | // If tpl stats is not established, early return | 
|  | if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int tpl_stride = tpl_frame->stride; | 
|  | const int step = 1 << tpl_data->tpl_stats_block_mis_log2; | 
|  | const int mi_width = | 
|  | AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); | 
|  | const int mi_height = | 
|  | AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); | 
|  |  | 
|  | int64_t sum_intra_cost = 0; | 
|  | int64_t sum_inter_cost = 0; | 
|  | int64_t sum_mc_dep_cost = 0; | 
|  | for (int row = 0; row < mi_height; row += step) { | 
|  | for (int col = 0; col < mi_width; col += step) { | 
|  | TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, | 
|  | tpl_data->tpl_stats_block_mis_log2)]; | 
|  | sum_intra_cost += this_stats->intra_cost; | 
|  | sum_inter_cost += this_stats->inter_cost; | 
|  | const int64_t mc_dep_delta = | 
|  | RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, | 
|  | this_stats->mc_dep_dist); | 
|  | sum_mc_dep_cost += mc_dep_delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | *intra_cost = sum_intra_cost; | 
|  | *inter_cost = sum_inter_cost; | 
|  | *mc_dep_cost = sum_mc_dep_cost; | 
|  | } | 
|  |  | 
|  | static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, | 
|  | PC_TREE *pc_tree, int mi_row, int mi_col, | 
|  | const BLOCK_SIZE bsize, RD_STATS *this_rdcost) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) { | 
|  | return false; | 
|  | } | 
|  | aom_partition_decision_t partition_decision; | 
|  | do { | 
|  | PartitionSearchState part_search_state; | 
|  | // Initialization of state variables used in partition search. | 
|  | // TODO(chengchen): check if there is hidden conditions that don't allow | 
|  | // all possible partition types. | 
|  | init_partition_search_state_params(x, cpi, &part_search_state, mi_row, | 
|  | mi_col, bsize); | 
|  | // Override partition costs at the edges of the frame in the same | 
|  | // way as in read_partition (see decodeframe.c). | 
|  | PartitionBlkParams blk_params = part_search_state.part_blk_params; | 
|  | if (!av1_blk_has_rows_and_cols(&blk_params)) | 
|  | set_partition_cost_for_edge_blk(cm, &part_search_state); | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | const int valid_partition_types = | 
|  | get_valid_partition_types(cpi, &part_search_state, bsize); | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id, | 
|  | cm->quant_params.base_qindex); | 
|  | // RD multiplier | 
|  | const int rdmult = x->rdmult; | 
|  | // pyramid level | 
|  | const int pyramid_level = | 
|  | cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index]; | 
|  | x->rdmult = orig_rdmult; | 
|  | // Neighbor information | 
|  | const int has_above = !!xd->above_mbmi; | 
|  | const int has_left = !!xd->left_mbmi; | 
|  | const BLOCK_SIZE above_bsize = | 
|  | has_above ? xd->above_mbmi->bsize : BLOCK_INVALID; | 
|  | const BLOCK_SIZE left_bsize = | 
|  | has_left ? xd->left_mbmi->bsize : BLOCK_INVALID; | 
|  | const int above_block_width = | 
|  | above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize]; | 
|  | const int above_block_height = | 
|  | above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize]; | 
|  | const int left_block_width = | 
|  | left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize]; | 
|  | const int left_block_height = | 
|  | left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize]; | 
|  | // Prepare simple motion search stats as features | 
|  | unsigned int block_sse = -1; | 
|  | unsigned int block_var = -1; | 
|  | unsigned int sub_block_sse[4] = { -1, -1, -1, -1 }; | 
|  | unsigned int sub_block_var[4] = { -1, -1, -1, -1 }; | 
|  | unsigned int horz_block_sse[2] = { -1, -1 }; | 
|  | unsigned int horz_block_var[2] = { -1, -1 }; | 
|  | unsigned int vert_block_sse[2] = { -1, -1 }; | 
|  | unsigned int vert_block_var[2] = { -1, -1 }; | 
|  | av1_prepare_motion_search_features_block( | 
|  | cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types, | 
|  | &block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse, | 
|  | horz_block_var, vert_block_sse, vert_block_var); | 
|  | // Prepare tpl stats for the current block as features | 
|  | int64_t tpl_intra_cost = -1; | 
|  | int64_t tpl_inter_cost = -1; | 
|  | int64_t tpl_mc_dep_cost = -1; | 
|  | prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost, | 
|  | &tpl_inter_cost, &tpl_mc_dep_cost); | 
|  |  | 
|  | aom_partition_features_t features; | 
|  | features.mi_row = mi_row; | 
|  | features.mi_col = mi_col; | 
|  | features.frame_width = cpi->frame_info.frame_width; | 
|  | features.frame_height = cpi->frame_info.frame_height; | 
|  | features.block_size = bsize; | 
|  | features.valid_partition_types = valid_partition_types; | 
|  | features.update_type = update_type; | 
|  | features.qindex = qindex; | 
|  | features.rdmult = rdmult; | 
|  | features.pyramid_level = pyramid_level; | 
|  | features.has_above_block = has_above; | 
|  | features.above_block_width = above_block_width; | 
|  | features.above_block_height = above_block_height; | 
|  | features.has_left_block = has_left; | 
|  | features.left_block_width = left_block_width; | 
|  | features.left_block_height = left_block_height; | 
|  | features.block_sse = block_sse; | 
|  | features.block_var = block_var; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | features.sub_block_sse[i] = sub_block_sse[i]; | 
|  | features.sub_block_var[i] = sub_block_var[i]; | 
|  | } | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | features.horz_block_sse[i] = horz_block_sse[i]; | 
|  | features.horz_block_var[i] = horz_block_var[i]; | 
|  | features.vert_block_sse[i] = vert_block_sse[i]; | 
|  | features.vert_block_var[i] = vert_block_var[i]; | 
|  | } | 
|  | features.tpl_intra_cost = tpl_intra_cost; | 
|  | features.tpl_inter_cost = tpl_inter_cost; | 
|  | features.tpl_mc_dep_cost = tpl_mc_dep_cost; | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  | const bool valid_decision = av1_ext_part_get_partition_decision( | 
|  | ext_part_controller, &partition_decision); | 
|  | if (!valid_decision) return false; | 
|  | pc_tree->partitioning = partition_decision.current_decision; | 
|  |  | 
|  | av1_init_rd_stats(this_rdcost); | 
|  | if (partition_decision.current_decision == PARTITION_SPLIT) { | 
|  | assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8); | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | RD_STATS split_rdc[SUB_PARTITIONS_SPLIT]; | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | av1_init_rd_stats(&split_rdc[i]); | 
|  | if (pc_tree->split[i] == NULL) | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  | const int orig_rdmult_tmp = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  | // TODO(chengchen): check boundary conditions | 
|  | // top-left | 
|  | recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0], | 
|  | mi_row, mi_col, subsize, &split_rdc[0]); | 
|  | // top-right | 
|  | recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1], | 
|  | mi_row, mi_col + mi_size_wide[subsize], subsize, | 
|  | &split_rdc[1]); | 
|  | // bottom-left | 
|  | recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2], | 
|  | mi_row + mi_size_high[subsize], mi_col, subsize, | 
|  | &split_rdc[2]); | 
|  | // bottom_right | 
|  | recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3], | 
|  | mi_row + mi_size_high[subsize], | 
|  | mi_col + mi_size_wide[subsize], subsize, | 
|  | &split_rdc[3]); | 
|  | this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT]; | 
|  | // problem is here, the rdmult is different from the rdmult in sub block. | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | this_rdcost->rate += split_rdc[i].rate; | 
|  | this_rdcost->dist += split_rdc[i].dist; | 
|  | av1_rd_cost_update(x->rdmult, this_rdcost); | 
|  | } | 
|  | x->rdmult = orig_rdmult_tmp; | 
|  | } else { | 
|  | *this_rdcost = rd_search_for_fixed_partition( | 
|  | cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree); | 
|  | } | 
|  |  | 
|  | aom_partition_stats_t stats; | 
|  | update_partition_stats(this_rdcost, &stats); | 
|  | av1_ext_part_send_partition_stats(ext_part_controller, &stats); | 
|  | if (!partition_decision.is_final_decision) { | 
|  | if (partition_decision.current_decision == PARTITION_SPLIT) { | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | if (pc_tree->split[i] != NULL) { | 
|  | av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0, | 
|  | 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | pc_tree->split[i] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } while (!partition_decision.is_final_decision); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The ML model only needs to make decisions for the current block each time. | 
|  | static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, | 
|  | int mi_row, int mi_col, | 
|  | const BLOCK_SIZE bsize) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | ExtPartController *const ext_part_controller = &cpi->ext_part_controller; | 
|  | aom_partition_features_t features; | 
|  | prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, | 
|  | &features); | 
|  | features.mi_row = mi_row; | 
|  | features.mi_col = mi_col; | 
|  | features.frame_width = cpi->frame_info.frame_width; | 
|  | features.frame_height = cpi->frame_info.frame_height; | 
|  | features.block_size = bsize; | 
|  | av1_ext_part_send_features(ext_part_controller, &features); | 
|  | td->pc_root = av1_alloc_pc_tree_node(bsize); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  |  | 
|  | RD_STATS rdcost; | 
|  | const bool valid_partition = | 
|  | recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row, | 
|  | mi_col, bsize, &rdcost); | 
|  | if (!valid_partition) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Encode with the selected mode and partition. | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | td->pc_root, NULL); | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, | 
|  | int mi_col, const BLOCK_SIZE bsize, | 
|  | RD_STATS *best_rd_cost) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | if (cpi->ext_part_controller.ready) { | 
|  | bool valid_search = true; | 
|  | const aom_ext_part_decision_mode_t decision_mode = | 
|  | av1_get_ext_part_decision_mode(&cpi->ext_part_controller); | 
|  | if (decision_mode == AOM_EXT_PART_WHOLE_TREE) { | 
|  | valid_search = ml_partition_search_whole_tree( | 
|  | cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); | 
|  | } else if (decision_mode == AOM_EXT_PART_RECURSIVE) { | 
|  | valid_search = ml_partition_search_partial( | 
|  | cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); | 
|  | } else { | 
|  | assert(0 && "Unknown decision mode."); | 
|  | return false; | 
|  | } | 
|  | if (!valid_search) { | 
|  | aom_internal_error( | 
|  | cm->error, AOM_CODEC_ERROR, | 
|  | "Invalid search from ML model, partition search failed"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int best_idx = 0; | 
|  | int64_t min_rdcost = INT64_MAX; | 
|  | int num_configs; | 
|  | int i = 0; | 
|  | do { | 
|  | td->pc_root = av1_alloc_pc_tree_node(bsize); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i); | 
|  | if (num_configs <= 0) { | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs."); | 
|  | } | 
|  | verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col); | 
|  | if (i == 0) { | 
|  | AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost, | 
|  | aom_calloc(num_configs, sizeof(*x->rdcost))); | 
|  | } | 
|  | // Encode the block with the given partition tree. Get rdcost and encoding | 
|  | // time. | 
|  | x->rdcost[i] = rd_search_for_fixed_partition( | 
|  | cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); | 
|  |  | 
|  | if (x->rdcost[i].rdcost < min_rdcost) { | 
|  | min_rdcost = x->rdcost[i].rdcost; | 
|  | best_idx = i; | 
|  | *best_rd_cost = x->rdcost[i]; | 
|  | } | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | ++i; | 
|  | } while (i < num_configs); | 
|  |  | 
|  | aom_free(x->rdcost); | 
|  | x->rdcost = NULL; | 
|  | // Encode with the partition configuration with the smallest rdcost. | 
|  | td->pc_root = av1_alloc_pc_tree_node(bsize); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx); | 
|  | rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row, | 
|  | mi_col, bsize, td->pc_root); | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | td->pc_root, NULL); | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | ++cpi->sb_counter; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif  // CONFIG_PARTITION_SEARCH_ORDER | 
|  |  | 
|  | static AOM_INLINE bool should_do_dry_run_encode_for_current_block( | 
|  | BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index, | 
|  | BLOCK_SIZE bsize) { | 
|  | if (bsize > max_partition_size) return false; | 
|  |  | 
|  | // Enable the reconstruction with dry-run for the 4th sub-block only if its | 
|  | // parent block's reconstruction with dry-run is skipped. If | 
|  | // max_partition_size is the same as immediate split of superblock, then avoid | 
|  | // reconstruction of the 4th sub-block, as this data is not consumed. | 
|  | if (curr_block_index != 3) return true; | 
|  |  | 
|  | const BLOCK_SIZE sub_sb_size = | 
|  | get_partition_subsize(sb_size, PARTITION_SPLIT); | 
|  | return bsize == max_partition_size && sub_sb_size != max_partition_size; | 
|  | } | 
|  |  | 
|  | static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, | 
|  | double *var_min, double *var_max) { | 
|  | // This functions returns a the minimum and maximum log variances for 4x4 | 
|  | // sub blocks in the current block. | 
|  |  | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int is_hbd = is_cur_buf_hbd(xd); | 
|  | const int right_overflow = | 
|  | (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; | 
|  | const int bottom_overflow = | 
|  | (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; | 
|  | const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; | 
|  | const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; | 
|  |  | 
|  | // Initialize minimum variance to a large value and maximum variance to 0. | 
|  | double min_var_4x4 = (double)INT_MAX; | 
|  | double max_var_4x4 = 0.0; | 
|  |  | 
|  | for (int i = 0; i < bh; i += MI_SIZE) { | 
|  | for (int j = 0; j < bw; j += MI_SIZE) { | 
|  | int var; | 
|  | // Calculate the 4x4 sub-block variance. | 
|  | var = av1_calc_normalized_variance( | 
|  | cpi->ppi->fn_ptr[BLOCK_4X4].vf, | 
|  | x->plane[0].src.buf + (i * x->plane[0].src.stride) + j, | 
|  | x->plane[0].src.stride, is_hbd); | 
|  |  | 
|  | // Record min and max for over-arching block | 
|  | min_var_4x4 = AOMMIN(min_var_4x4, var); | 
|  | max_var_4x4 = AOMMAX(max_var_4x4, var); | 
|  | } | 
|  | } | 
|  | *var_min = log1p(min_var_4x4 / 16.0); | 
|  | *var_max = log1p(max_var_4x4 / 16.0); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void set_sms_tree_partitioning( | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, PARTITION_TYPE partition) { | 
|  | if (sms_tree == NULL) return; | 
|  | sms_tree->partitioning = partition; | 
|  | } | 
|  |  | 
|  | /*!\brief AV1 block partition search (full search). | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * Searches for the best partition pattern for a block based on the | 
|  | * rate-distortion cost, and returns a bool value to indicate whether a valid | 
|  | * partition pattern is found. The partition can recursively go down to the | 
|  | * smallest block size. | 
|  | * | 
|  | * \param[in]    cpi                Top-level encoder structure | 
|  | * \param[in]    td                 Pointer to thread data | 
|  | * \param[in]    tile_data          Pointer to struct holding adaptive | 
|  | data/contexts/models for the tile during | 
|  | encoding | 
|  | * \param[in]    tp                 Pointer to the starting token | 
|  | * \param[in]    mi_row             Row coordinate of the block in a step size | 
|  | of MI_SIZE | 
|  | * \param[in]    mi_col             Column coordinate of the block in a step | 
|  | size of MI_SIZE | 
|  | * \param[in]    bsize              Current block size | 
|  | * \param[in]    rd_cost            Pointer to the final rd cost of the block | 
|  | * \param[in]    best_rdc           Upper bound of rd cost of a valid partition | 
|  | * \param[in]    pc_tree            Pointer to the PC_TREE node storing the | 
|  | picked partitions and mode info for the | 
|  | current block | 
|  | * \param[in]    sms_tree           Pointer to struct holding simple motion | 
|  | search data for the current block | 
|  | * \param[in]    none_rd            Pointer to the rd cost in the case of not | 
|  | splitting the current block | 
|  | * \param[in]    multi_pass_mode    SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS | 
|  | * \param[in]    rect_part_win_info Pointer to struct storing whether horz/vert | 
|  | partition outperforms previously tested | 
|  | partitions | 
|  | * | 
|  | * \return A bool value is returned indicating if a valid partition is found. | 
|  | * The pc_tree struct is modified to store the picked partition and modes. | 
|  | * The rd_cost struct is also updated with the RD stats corresponding to the | 
|  | * best partition found. | 
|  | */ | 
|  | bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, | 
|  | RD_STATS best_rdc, PC_TREE *pc_tree, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd, | 
|  | SB_MULTI_PASS_MODE multi_pass_mode, | 
|  | RD_RECT_PART_WIN_INFO *rect_part_win_info) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | const TokenExtra *const tp_orig = *tp; | 
|  | PartitionSearchState part_search_state; | 
|  |  | 
|  | // Initialization of state variables used in partition search. | 
|  | init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, | 
|  | bsize); | 
|  | PartitionBlkParams blk_params = part_search_state.part_blk_params; | 
|  |  | 
|  | set_sms_tree_partitioning(sms_tree, PARTITION_NONE); | 
|  | if (best_rdc.rdcost < 0) { | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return part_search_state.found_best_partition; | 
|  | } | 
|  | if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0; | 
|  |  | 
|  | // Override skipping rectangular partition operations for edge blocks. | 
|  | if (none_rd) *none_rd = 0; | 
|  | (void)*tp_orig; | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | // Stats at the current quad tree | 
|  | PartitionTimingStats *part_timing_stats = | 
|  | &part_search_state.part_timing_stats; | 
|  | // Stats aggregated at frame level | 
|  | FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats; | 
|  | #endif  // CONFIG_COLLECT_PARTITION_STATS | 
|  |  | 
|  | // Override partition costs at the edges of the frame in the same | 
|  | // way as in read_partition (see decodeframe.c). | 
|  | if (!av1_blk_has_rows_and_cols(&blk_params)) | 
|  | set_partition_cost_for_edge_blk(cm, &part_search_state); | 
|  |  | 
|  | // Disable rectangular partitions for inner blocks when the current block is | 
|  | // forced to only use square partitions. | 
|  | if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) { | 
|  | part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows; | 
|  | part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Nothing should rely on the default value of this array (which is just | 
|  | // leftover from encoding the previous block. Setting it to fixed pattern | 
|  | // when debugging. | 
|  | // bit 0, 1, 2 are blk_skip of each plane | 
|  | // bit 4, 5, 6 are initialization checking of each plane | 
|  | memset(x->txfm_search_info.blk_skip, 0x77, | 
|  | sizeof(x->txfm_search_info.blk_skip)); | 
|  | #endif  // NDEBUG | 
|  |  | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]); | 
|  |  | 
|  | // Set buffers and offsets. | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); | 
|  |  | 
|  | if (cpi->oxcf.mode == ALLINTRA) { | 
|  | if (bsize == cm->seq_params->sb_size) { | 
|  | double var_min, var_max; | 
|  | log_sub_block_var(cpi, x, bsize, &var_min, &var_max); | 
|  |  | 
|  | x->intra_sb_rdmult_modifier = 128; | 
|  | if ((var_min < 2.0) && (var_max > 4.0)) { | 
|  | if ((var_max - var_min) > 8.0) { | 
|  | x->intra_sb_rdmult_modifier -= 48; | 
|  | } else { | 
|  | x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save rdmult before it might be changed, so it can be restored later. | 
|  | const int orig_rdmult = x->rdmult; | 
|  | setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); | 
|  |  | 
|  | // Apply simple motion search for the entire super block with fixed block | 
|  | // size, e.g., 16x16, to collect features and write to files for the | 
|  | // external ML model. | 
|  | // TODO(chengchen): reduce motion search. This function is similar to | 
|  | // av1_get_max_min_partition_features(). | 
|  | if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) && | 
|  | bsize == cm->seq_params->sb_size) { | 
|  | av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, | 
|  | bsize, /*features=*/NULL); | 
|  | collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL); | 
|  | } | 
|  |  | 
|  | // Update rd cost of the bound using the current multiplier. | 
|  | av1_rd_cost_update(x->rdmult, &best_rdc); | 
|  |  | 
|  | if (bsize == BLOCK_16X16 && cpi->vaq_refresh) | 
|  | x->mb_energy = av1_log_block_var(cpi, x, bsize); | 
|  |  | 
|  | // Set the context. | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_prune_partitions_time); | 
|  | #endif | 
|  | // Pruning: before searching any partition type, using source and simple | 
|  | // motion search results to prune out unlikely partitions. | 
|  | av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state); | 
|  |  | 
|  | // Pruning: eliminating partition types leading to coding block sizes outside | 
|  | // the min and max bsize limitations set from the encoder. | 
|  | av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_prune_partitions_time); | 
|  | #endif | 
|  |  | 
|  | // Partition search | 
|  | BEGIN_PARTITION_SEARCH: | 
|  | // If a valid partition is required, usually when the first round cannot find | 
|  | // a valid one under the cost limit after pruning, reset the limitations on | 
|  | // partition types and intra cnn output. | 
|  | if (x->must_find_valid_partition) { | 
|  | reset_part_limitations(cpi, &part_search_state); | 
|  | av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); | 
|  | // Invalidate intra cnn output for key frames. | 
|  | if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { | 
|  | part_search_state.intra_part_info->quad_tree_idx = 0; | 
|  | part_search_state.intra_part_info->cnn_output_valid = 0; | 
|  | } | 
|  | } | 
|  | // Partition block source pixel variance. | 
|  | unsigned int pb_source_variance = UINT_MAX; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, none_partition_search_time); | 
|  | #endif | 
|  |  | 
|  | if (cpi->oxcf.mode == ALLINTRA) { | 
|  | const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16); | 
|  | const bool prune_rect_part_using_4x4_var_deviation = | 
|  | (cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation && | 
|  | !x->must_find_valid_partition); | 
|  |  | 
|  | if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) { | 
|  | double var_min, var_max; | 
|  | log_sub_block_var(cpi, x, bsize, &var_min, &var_max); | 
|  |  | 
|  | // Further pruning or in some cases reverse pruning when allintra is set. | 
|  | // This code helps visual and in some cases metrics quality where the | 
|  | // current block comprises at least one very low variance sub-block and at | 
|  | // least one where the variance is much higher. | 
|  | // | 
|  | // The idea is that in such cases there is danger of ringing and other | 
|  | // visual artifacts from a high variance feature such as an edge into a | 
|  | // very low variance region. | 
|  | // | 
|  | // The approach taken is to force break down / split to a smaller block | 
|  | // size to try and separate out the low variance and well predicted blocks | 
|  | // from the more complex ones and to prevent propagation of ringing over a | 
|  | // large region. | 
|  | if (bsize_at_least_16x16 && (var_min < 0.272) && | 
|  | ((var_max - var_min) > 3.0)) { | 
|  | part_search_state.partition_none_allowed = 0; | 
|  | part_search_state.terminate_partition_search = 0; | 
|  | part_search_state.do_square_split = 1; | 
|  | } else if (prune_rect_part_using_4x4_var_deviation && | 
|  | (var_max - var_min < 3.0)) { | 
|  | // Prune rectangular partitions if the variance deviation of 4x4 | 
|  | // sub-blocks within the block is less than a threshold (derived | 
|  | // empirically). | 
|  | part_search_state.do_rectangular_split = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PARTITION_NONE search stage. | 
|  | int64_t part_none_rd = INT64_MAX; | 
|  | none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, &pb_source_variance, | 
|  | none_rd, &part_none_rd); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, none_partition_search_time); | 
|  | #endif | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, split_partition_search_time); | 
|  | #endif | 
|  | // PARTITION_SPLIT search stage. | 
|  | int64_t part_split_rd = INT64_MAX; | 
|  | split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, multi_pass_mode, | 
|  | &part_split_rd); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, split_partition_search_time); | 
|  | #endif | 
|  | // Terminate partition search for child partition, | 
|  | // when NONE and SPLIT partition rd_costs are INT64_MAX. | 
|  | if (cpi->sf.part_sf.early_term_after_none_split && | 
|  | part_none_rd == INT64_MAX && part_split_rd == INT64_MAX && | 
|  | !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) { | 
|  | part_search_state.terminate_partition_search = 1; | 
|  | } | 
|  |  | 
|  | // Do not evaluate non-square partitions if NONE partition did not choose a | 
|  | // newmv mode and is skippable. | 
|  | if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) && | 
|  | (pc_tree->none != NULL)) { | 
|  | if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) && | 
|  | !have_newmv_in_inter_mode(pc_tree->none->mic.mode) && | 
|  | pc_tree->none->skippable && !x->must_find_valid_partition && | 
|  | bsize >= BLOCK_16X16) | 
|  | part_search_state.do_rectangular_split = 0; | 
|  | } | 
|  |  | 
|  | // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT. | 
|  | prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc, | 
|  | part_none_rd, part_split_rd); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rectangular_partition_search_time); | 
|  | #endif | 
|  | // Rectangular partitions search stage. | 
|  | rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, | 
|  | &part_search_state, &best_rdc, | 
|  | rect_part_win_info, HORZ, VERT); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rectangular_partition_search_time); | 
|  | #endif | 
|  |  | 
|  | if (pb_source_variance == UINT_MAX) { | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); | 
|  | pb_source_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); | 
|  | } | 
|  |  | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part_search_state.do_rectangular_split)); | 
|  |  | 
|  | const int prune_ext_part_state = prune_ext_part_none_skippable( | 
|  | pc_tree->none, x->must_find_valid_partition, | 
|  | cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize); | 
|  |  | 
|  | const int ab_partition_allowed = allow_ab_partition_search( | 
|  | &part_search_state, &cpi->sf.part_sf, pc_tree->partitioning, | 
|  | x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, ab_partitions_search_time); | 
|  | #endif | 
|  | // AB partitions search stage. | 
|  | ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | &part_search_state, &best_rdc, rect_part_win_info, | 
|  | pb_source_variance, ab_partition_allowed, HORZ_A, | 
|  | VERT_B); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, ab_partitions_search_time); | 
|  | #endif | 
|  |  | 
|  | // 4-way partitions search stage. | 
|  | int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 }; | 
|  | // Prune 4-way partition search. | 
|  | prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc, | 
|  | pb_source_variance, prune_ext_part_state, | 
|  | part4_search_allowed); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rd_pick_4partition_time); | 
|  | #endif | 
|  | // PARTITION_HORZ_4 | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part4_search_allowed[HORZ4])); | 
|  | if (!part_search_state.terminate_partition_search && | 
|  | part4_search_allowed[HORZ4]) { | 
|  | const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4, | 
|  | 0 }; | 
|  | // Evaluation of Horz4 partition type. | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->horizontal4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_HORZ_4); | 
|  | } | 
|  |  | 
|  | // PARTITION_VERT_4 | 
|  | assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, | 
|  | !part4_search_allowed[VERT4])); | 
|  | if (!part_search_state.terminate_partition_search && | 
|  | part4_search_allowed[VERT4] && blk_params.has_cols) { | 
|  | const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] / | 
|  | 4 }; | 
|  | // Evaluation of Vert4 partition type. | 
|  | rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, | 
|  | pc_tree->vertical4, &part_search_state, &best_rdc, | 
|  | inc_step, PARTITION_VERT_4); | 
|  | } | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rd_pick_4partition_time); | 
|  | #endif | 
|  |  | 
|  | if (bsize == cm->seq_params->sb_size && | 
|  | !part_search_state.found_best_partition) { | 
|  | // Did not find a valid partition, go back and search again, with less | 
|  | // constraint on which partition types to search. | 
|  | x->must_find_valid_partition = 1; | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | fr_part_timing_stats->partition_redo += 1; | 
|  | #endif  // CONFIG_COLLECT_PARTITION_STATS | 
|  | goto BEGIN_PARTITION_SEARCH; | 
|  | } | 
|  |  | 
|  | // Store the final rd cost | 
|  | *rd_cost = best_rdc; | 
|  |  | 
|  | // Also record the best partition in simple motion data tree because it is | 
|  | // necessary for the related speed features. | 
|  | set_sms_tree_partitioning(sms_tree, pc_tree->partitioning); | 
|  |  | 
|  | #if CONFIG_COLLECT_PARTITION_STATS | 
|  | if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { | 
|  | part_timing_stats->partition_decisions[pc_tree->partitioning] += 1; | 
|  | } | 
|  |  | 
|  | // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each | 
|  | // prediction block. | 
|  | print_partition_timing_stats_with_rdcost( | 
|  | part_timing_stats, mi_row, mi_col, bsize, | 
|  | cpi->ppi->gf_group.update_type[cpi->gf_frame_index], | 
|  | cm->current_frame.frame_number, &best_rdc, "part_timing.csv"); | 
|  | const bool print_timing_stats = false; | 
|  | if (print_timing_stats) { | 
|  | print_partition_timing_stats(part_timing_stats, cm->show_frame, | 
|  | frame_is_intra_only(cm), bsize, | 
|  | "part_timing_data.csv"); | 
|  | } | 
|  | // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for | 
|  | // the whole clip. So we need to pass the information upstream to the encoder. | 
|  | accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats, | 
|  | bsize); | 
|  | #endif  // CONFIG_COLLECT_PARTITION_STATS | 
|  |  | 
|  | // Reset the PC_TREE deallocation flag. | 
|  | int pc_tree_dealloc = 0; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, encode_sb_time); | 
|  | #endif | 
|  | if (part_search_state.found_best_partition) { | 
|  | if (bsize == cm->seq_params->sb_size) { | 
|  | // Encode the superblock. | 
|  | const int emit_output = multi_pass_mode != SB_DRY_PASS; | 
|  | const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL; | 
|  |  | 
|  | // Write partition tree to file. Not used by default. | 
|  | if (COLLECT_MOTION_SEARCH_FEATURE_SB) { | 
|  | write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col); | 
|  | ++cpi->sb_counter; | 
|  | } | 
|  |  | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize, | 
|  | pc_tree, NULL); | 
|  | assert(pc_tree == td->pc_root); | 
|  | // Dealloc the whole PC_TREE after a superblock is done. | 
|  | av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | pc_tree = NULL; | 
|  | td->pc_root = NULL; | 
|  | pc_tree_dealloc = 1; | 
|  | } else if (should_do_dry_run_encode_for_current_block( | 
|  | cm->seq_params->sb_size, x->sb_enc.max_partition_size, | 
|  | pc_tree->index, bsize)) { | 
|  | // Encode the smaller blocks in DRY_RUN mode. | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL); | 
|  | } | 
|  | } | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, encode_sb_time); | 
|  | #endif | 
|  |  | 
|  | // If the tree still exists (non-superblock), dealloc most nodes, only keep | 
|  | // nodes for the best partition and PARTITION_NONE. | 
|  | if (pc_tree_dealloc == 0) | 
|  | av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  |  | 
|  | if (bsize == cm->seq_params->sb_size) { | 
|  | assert(best_rdc.rate < INT_MAX); | 
|  | assert(best_rdc.dist < INT64_MAX); | 
|  | } else { | 
|  | assert(tp_orig == *tp); | 
|  | } | 
|  |  | 
|  | // Restore the rd multiplier. | 
|  | x->rdmult = orig_rdmult; | 
|  | return part_search_state.found_best_partition; | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #undef COLLECT_MOTION_SEARCH_FEATURE_SB | 
|  |  | 
|  | #if CONFIG_RT_ML_PARTITIONING | 
|  | #define FEATURES 6 | 
|  | #define LABELS 2 | 
|  | static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const NN_CONFIG *nn_config = NULL; | 
|  | const float *means = NULL; | 
|  | const float *vars = NULL; | 
|  | switch (bsize) { | 
|  | case BLOCK_64X64: | 
|  | nn_config = &av1_var_part_nnconfig_64; | 
|  | means = av1_var_part_means_64; | 
|  | vars = av1_var_part_vars_64; | 
|  | break; | 
|  | case BLOCK_32X32: | 
|  | nn_config = &av1_var_part_nnconfig_32; | 
|  | means = av1_var_part_means_32; | 
|  | vars = av1_var_part_vars_32; | 
|  | break; | 
|  | case BLOCK_16X16: | 
|  | nn_config = &av1_var_part_nnconfig_16; | 
|  | means = av1_var_part_means_16; | 
|  | vars = av1_var_part_vars_16; | 
|  | break; | 
|  | case BLOCK_8X8: | 
|  | default: assert(0 && "Unexpected block size."); return -1; | 
|  | } | 
|  |  | 
|  | if (!nn_config) return -1; | 
|  |  | 
|  | { | 
|  | const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f; | 
|  | float features[FEATURES] = { 0.0f }; | 
|  | const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, | 
|  | cm->seq_params->bit_depth); | 
|  | int feature_idx = 0; | 
|  | float score[LABELS]; | 
|  |  | 
|  | features[feature_idx] = | 
|  | (log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) / | 
|  | sqrtf(vars[feature_idx]); | 
|  | feature_idx++; | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); | 
|  | { | 
|  | const int bs = block_size_wide[bsize]; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | const int sb_offset_row = 4 * (mi_row & 15); | 
|  | const int sb_offset_col = 4 * (mi_col & 15); | 
|  | const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; | 
|  | const uint8_t *src = x->plane[0].src.buf; | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | const int pred_stride = 64; | 
|  | unsigned int sse; | 
|  | int i; | 
|  | // Variance of whole block. | 
|  | const unsigned int var = | 
|  | cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); | 
|  | const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); | 
|  |  | 
|  | features[feature_idx] = | 
|  | (log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]); | 
|  | feature_idx++; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | const int x_idx = (i & 1) * bs / 2; | 
|  | const int y_idx = (i >> 1) * bs / 2; | 
|  | const int src_offset = y_idx * src_stride + x_idx; | 
|  | const int pred_offset = y_idx * pred_stride + x_idx; | 
|  | // Variance of quarter block. | 
|  | const unsigned int sub_var = | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride, | 
|  | pred + pred_offset, pred_stride, &sse); | 
|  | const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; | 
|  | features[feature_idx] = | 
|  | (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]); | 
|  | feature_idx++; | 
|  | } | 
|  | } | 
|  | //    for (int i = 0; i<FEATURES; i++) | 
|  | //      printf("F_%d, %f; ", i, features[i]); | 
|  | assert(feature_idx == FEATURES); | 
|  | av1_nn_predict(features, nn_config, 1, score); | 
|  | //    printf("Score %f, thr %f ", (float)score[0], thresh); | 
|  | if (score[0] > thresh) return PARTITION_SPLIT; | 
|  | if (score[0] < -thresh) return PARTITION_NONE; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | #undef FEATURES | 
|  | #undef LABELS | 
|  |  | 
|  | // Uncomment for collecting data for ML-based partitioning | 
|  | // #define _COLLECT_GROUND_TRUTH_ | 
|  |  | 
|  | #ifdef _COLLECT_GROUND_TRUTH_ | 
|  | static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col, PARTITION_TYPE part) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | char fname[128]; | 
|  | switch (bsize) { | 
|  | case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break; | 
|  | case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break; | 
|  | case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break; | 
|  | case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break; | 
|  | default: assert(0 && "Unexpected block size."); return -1; | 
|  | } | 
|  |  | 
|  | float features[6];  // DC_Q, VAR, VAR_RATIO-0..3 | 
|  |  | 
|  | FILE *f = fopen(fname, "a"); | 
|  |  | 
|  | { | 
|  | const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, | 
|  | cm->seq_params->bit_depth); | 
|  | int feature_idx = 0; | 
|  |  | 
|  | features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f); | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); | 
|  | { | 
|  | const int bs = block_size_wide[bsize]; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | const int sb_offset_row = 4 * (mi_row & 15); | 
|  | const int sb_offset_col = 4 * (mi_col & 15); | 
|  | const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; | 
|  | const uint8_t *src = x->plane[0].src.buf; | 
|  | const int src_stride = x->plane[0].src.stride; | 
|  | const int pred_stride = 64; | 
|  | unsigned int sse; | 
|  | int i; | 
|  | // Variance of whole block. | 
|  | /* | 
|  | if (bs == 8) | 
|  | { | 
|  | int r, c; | 
|  | printf("%d %d\n", mi_row, mi_col); | 
|  | for (r = 0; r < bs; ++r) { | 
|  | for (c = 0; c < bs; ++c) { | 
|  | printf("%3d ", | 
|  | src[r * src_stride + c] - pred[64 * r + c]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | */ | 
|  | const unsigned int var = | 
|  | cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); | 
|  | const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); | 
|  |  | 
|  | features[feature_idx++] = log1pf((float)var); | 
|  |  | 
|  | fprintf(f, "%f,%f,", features[0], features[1]); | 
|  | for (i = 0; i < 4; ++i) { | 
|  | const int x_idx = (i & 1) * bs / 2; | 
|  | const int y_idx = (i >> 1) * bs / 2; | 
|  | const int src_offset = y_idx * src_stride + x_idx; | 
|  | const int pred_offset = y_idx * pred_stride + x_idx; | 
|  | // Variance of quarter block. | 
|  | const unsigned int sub_var = | 
|  | cpi->fn_ptr[subsize].vf(src + src_offset, src_stride, | 
|  | pred + pred_offset, pred_stride, &sse); | 
|  | const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; | 
|  | features[feature_idx++] = var_ratio; | 
|  | fprintf(f, "%f,", var_ratio); | 
|  | } | 
|  |  | 
|  | fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1); | 
|  | } | 
|  |  | 
|  | fclose(f); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | const int block_width = | 
|  | AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); | 
|  | const int block_height = | 
|  | AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); | 
|  | const int mi_stride = xd->mi_stride; | 
|  | MB_MODE_INFO *const src_mi = xd->mi[0]; | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; j < block_height; ++j) | 
|  | for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; | 
|  | } | 
|  |  | 
|  | static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( | 
|  | MB_MODE_INFO_EXT *const mbmi_ext, | 
|  | const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) { | 
|  | memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, | 
|  | sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); | 
|  | memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, | 
|  | sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); | 
|  | mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; | 
|  | mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; | 
|  | memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, | 
|  | sizeof(mbmi_ext->global_mvs)); | 
|  | } | 
|  |  | 
|  | static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | int hbs = mi_size_wide[bsize] >> 1; | 
|  | PARTITION_TYPE partition = pc_tree->partitioning; | 
|  | BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); | 
|  |  | 
|  | assert(bsize >= BLOCK_8X8); | 
|  |  | 
|  | if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) | 
|  | return; | 
|  |  | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, | 
|  | mi_col); | 
|  | *(xd->mi[0]) = pc_tree->none->mic; | 
|  | copy_mbmi_ext_frame_to_mbmi_ext( | 
|  | &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME); | 
|  | duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); | 
|  | break; | 
|  | case PARTITION_SPLIT: { | 
|  | fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]); | 
|  | fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize, | 
|  | pc_tree->split[1]); | 
|  | fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize, | 
|  | pc_tree->split[2]); | 
|  | fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize, | 
|  | pc_tree->split[3]); | 
|  | break; | 
|  | } | 
|  | default: break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | RD_STATS *rd_cost, int do_recon, int64_t best_rd, | 
|  | PC_TREE *pc_tree) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int hbs = mi_size_wide[bsize] >> 1; | 
|  | TokenExtra *tp_orig = *tp; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | RD_STATS this_rdc, best_rdc; | 
|  | RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; | 
|  | int do_split = bsize > BLOCK_8X8; | 
|  | // Override skipping rectangular partition operations for edge blocks | 
|  | const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows); | 
|  | const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols); | 
|  |  | 
|  | int partition_none_allowed = !force_horz_split && !force_vert_split; | 
|  |  | 
|  | assert(mi_size_wide[bsize] == mi_size_high[bsize]);  // Square partition only | 
|  | assert(cm->seq_params->sb_size == BLOCK_64X64);      // Small SB so far | 
|  |  | 
|  | (void)*tp_orig; | 
|  |  | 
|  | av1_invalid_rd_stats(&best_rdc); | 
|  | best_rdc.rdcost = best_rd; | 
|  | #ifndef _COLLECT_GROUND_TRUTH_ | 
|  | if (partition_none_allowed && do_split) { | 
|  | const int ml_predicted_partition = | 
|  | ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col); | 
|  | if (ml_predicted_partition == PARTITION_NONE) do_split = 0; | 
|  | if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_contexts.txfm[tile_info->tile_row] + mi_col; | 
|  | xd->left_txfm_context = | 
|  | xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); | 
|  | av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); | 
|  |  | 
|  | // PARTITION_NONE | 
|  | if (partition_none_allowed) { | 
|  | pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); | 
|  | if (!pc_tree->none) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PICK_MODE_CONTEXT"); | 
|  | PICK_MODE_CONTEXT *ctx = pc_tree->none; | 
|  |  | 
|  | // Flip for RDO based pick mode | 
|  | #if 0 | 
|  | RD_STATS dummy; | 
|  | av1_invalid_rd_stats(&dummy); | 
|  | pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, | 
|  | PARTITION_NONE, bsize, ctx, dummy); | 
|  | #else | 
|  | pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, | 
|  | ctx); | 
|  | #endif | 
|  | if (this_rdc.rate != INT_MAX) { | 
|  | const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  |  | 
|  | this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; | 
|  | this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); | 
|  | if (this_rdc.rdcost < best_rdc.rdcost) { | 
|  | best_rdc = this_rdc; | 
|  | if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PARTITION_SPLIT | 
|  | if (do_split) { | 
|  | RD_STATS sum_rdc; | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  |  | 
|  | av1_init_rd_stats(&sum_rdc); | 
|  |  | 
|  | for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { | 
|  | pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); | 
|  | if (!pc_tree->split[i]) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | pc_tree->split[i]->index = i; | 
|  | } | 
|  |  | 
|  | int pl = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; | 
|  | sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); | 
|  | for (int i = 0; | 
|  | i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) { | 
|  | const int x_idx = (i & 1) * hbs; | 
|  | const int y_idx = (i >> 1) * hbs; | 
|  |  | 
|  | if (mi_row + y_idx >= cm->mi_params.mi_rows || | 
|  | mi_col + x_idx >= cm->mi_params.mi_cols) | 
|  | continue; | 
|  | av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, | 
|  | mi_col + x_idx, subsize, &this_rdc, i < 3, | 
|  | best_rdc.rdcost - sum_rdc.rdcost, | 
|  | pc_tree->split[i]); | 
|  |  | 
|  | if (this_rdc.rate == INT_MAX) { | 
|  | av1_invalid_rd_stats(&sum_rdc); | 
|  | } else { | 
|  | sum_rdc.rate += this_rdc.rate; | 
|  | sum_rdc.dist += this_rdc.dist; | 
|  | sum_rdc.rdcost += this_rdc.rdcost; | 
|  | } | 
|  | } | 
|  | if (sum_rdc.rdcost < best_rdc.rdcost) { | 
|  | best_rdc = sum_rdc; | 
|  | pc_tree->partitioning = PARTITION_SPLIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef _COLLECT_GROUND_TRUTH_ | 
|  | store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning); | 
|  | #endif | 
|  |  | 
|  | *rd_cost = best_rdc; | 
|  |  | 
|  | av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); | 
|  |  | 
|  | if (best_rdc.rate == INT_MAX) { | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // update mode info array | 
|  | fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree); | 
|  |  | 
|  | if (do_recon) { | 
|  | if (bsize == cm->seq_params->sb_size) { | 
|  | // NOTE: To get estimate for rate due to the tokens, use: | 
|  | // int rate_coeffs = 0; | 
|  | // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, | 
|  | //           bsize, pc_tree, &rate_coeffs); | 
|  | set_cb_offsets(x->cb_offset, 0, 0); | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, | 
|  | pc_tree, NULL); | 
|  | } else { | 
|  | encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, | 
|  | pc_tree, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bsize == BLOCK_64X64 && do_recon) { | 
|  | assert(best_rdc.rate < INT_MAX); | 
|  | assert(best_rdc.dist < INT64_MAX); | 
|  | } else { | 
|  | assert(tp_orig == *tp); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_RT_ML_PARTITIONING |