|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "aom/aom_image.h" | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_scale_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/txfm_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_util/aom_pthread.h" | 
|  | #include "aom_util/aom_thread.h" | 
|  | #include "av1/common/av1_loopfilter.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/cdef.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/thread_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/restoration.h" | 
|  |  | 
|  | // Set up nsync by width. | 
|  | static INLINE int get_sync_range(int width) { | 
|  | // nsync numbers are picked by testing. For example, for 4k | 
|  | // video, using 4 gives best performance. | 
|  | if (width < 640) | 
|  | return 1; | 
|  | else if (width <= 1280) | 
|  | return 2; | 
|  | else if (width <= 4096) | 
|  | return 4; | 
|  | else | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | static INLINE int get_lr_sync_range(int width) { | 
|  | #if 0 | 
|  | // nsync numbers are picked by testing. For example, for 4k | 
|  | // video, using 4 gives best performance. | 
|  | if (width < 640) | 
|  | return 1; | 
|  | else if (width <= 1280) | 
|  | return 2; | 
|  | else if (width <= 4096) | 
|  | return 4; | 
|  | else | 
|  | return 8; | 
|  | #else | 
|  | (void)width; | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Allocate memory for lf row synchronization | 
|  | void av1_loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, | 
|  | int width, int num_workers) { | 
|  | lf_sync->rows = rows; | 
|  | #if CONFIG_MULTITHREAD | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], | 
|  | aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); | 
|  | if (lf_sync->mutex_[j]) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lf_sync->cond_[j], | 
|  | aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); | 
|  | if (lf_sync->cond_[j]) { | 
|  | for (i = 0; i < rows; ++i) { | 
|  | pthread_cond_init(&lf_sync->cond_[j][i], NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lf_sync->job_mutex, | 
|  | aom_malloc(sizeof(*(lf_sync->job_mutex)))); | 
|  | if (lf_sync->job_mutex) { | 
|  | pthread_mutex_init(lf_sync->job_mutex, NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, lf_sync->lfdata, | 
|  | aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); | 
|  | lf_sync->num_workers = num_workers; | 
|  |  | 
|  | for (int j = 0; j < MAX_MB_PLANE; j++) { | 
|  | CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], | 
|  | aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); | 
|  | } | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lf_sync->job_queue, | 
|  | aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); | 
|  | // Set up nsync. | 
|  | lf_sync->sync_range = get_sync_range(width); | 
|  | } | 
|  |  | 
|  | // Deallocate lf synchronization related mutex and data | 
|  | void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { | 
|  | if (lf_sync != NULL) { | 
|  | int j; | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | if (lf_sync->mutex_[j] != NULL) { | 
|  | for (i = 0; i < lf_sync->rows; ++i) { | 
|  | pthread_mutex_destroy(&lf_sync->mutex_[j][i]); | 
|  | } | 
|  | aom_free(lf_sync->mutex_[j]); | 
|  | } | 
|  | if (lf_sync->cond_[j] != NULL) { | 
|  | for (i = 0; i < lf_sync->rows; ++i) { | 
|  | pthread_cond_destroy(&lf_sync->cond_[j][i]); | 
|  | } | 
|  | aom_free(lf_sync->cond_[j]); | 
|  | } | 
|  | } | 
|  | if (lf_sync->job_mutex != NULL) { | 
|  | pthread_mutex_destroy(lf_sync->job_mutex); | 
|  | aom_free(lf_sync->job_mutex); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | aom_free(lf_sync->lfdata); | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | aom_free(lf_sync->cur_sb_col[j]); | 
|  | } | 
|  |  | 
|  | aom_free(lf_sync->job_queue); | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*lf_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_alloc_cdef_sync(AV1_COMMON *const cm, AV1CdefSync *cdef_sync, | 
|  | int num_workers) { | 
|  | if (num_workers < 1) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (cdef_sync->mutex_ == NULL) { | 
|  | CHECK_MEM_ERROR(cm, cdef_sync->mutex_, | 
|  | aom_malloc(sizeof(*(cdef_sync->mutex_)))); | 
|  | if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL); | 
|  | } | 
|  | #else | 
|  | (void)cm; | 
|  | (void)cdef_sync; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | void av1_free_cdef_sync(AV1CdefSync *cdef_sync) { | 
|  | if (cdef_sync == NULL) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (cdef_sync->mutex_ != NULL) { | 
|  | pthread_mutex_destroy(cdef_sync->mutex_); | 
|  | aom_free(cdef_sync->mutex_); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void cdef_row_mt_sync_read(AV1CdefSync *const cdef_sync, | 
|  | int row) { | 
|  | if (!row) return; | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; | 
|  | pthread_mutex_lock(cdef_row_mt[row - 1].row_mutex_); | 
|  | while (cdef_row_mt[row - 1].is_row_done != 1) | 
|  | pthread_cond_wait(cdef_row_mt[row - 1].row_cond_, | 
|  | cdef_row_mt[row - 1].row_mutex_); | 
|  | cdef_row_mt[row - 1].is_row_done = 0; | 
|  | pthread_mutex_unlock(cdef_row_mt[row - 1].row_mutex_); | 
|  | #else | 
|  | (void)cdef_sync; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void cdef_row_mt_sync_write(AV1CdefSync *const cdef_sync, | 
|  | int row) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1CdefRowSync *const cdef_row_mt = cdef_sync->cdef_row_mt; | 
|  | pthread_mutex_lock(cdef_row_mt[row].row_mutex_); | 
|  | pthread_cond_signal(cdef_row_mt[row].row_cond_); | 
|  | cdef_row_mt[row].is_row_done = 1; | 
|  | pthread_mutex_unlock(cdef_row_mt[row].row_mutex_); | 
|  | #else | 
|  | (void)cdef_sync; | 
|  | (void)row; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, | 
|  | int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = lf_sync->sync_range; | 
|  |  | 
|  | if (r && !(c & (nsync - 1))) { | 
|  | pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { | 
|  | pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); | 
|  | } | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)lf_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, | 
|  | const int sb_cols, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | const int nsync = lf_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough filtered SB for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < sb_cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = sb_cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&lf_sync->mutex_[plane][r]); | 
|  |  | 
|  | // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum | 
|  | // column number. In this case, the AOMMAX operation here ensures that | 
|  | // cur_sb_col[plane][r] is not overwritten with a smaller value thus | 
|  | // preventing the infinite waiting of threads in the relevant sync_read() | 
|  | // function. | 
|  | lf_sync->cur_sb_col[plane][r] = AOMMAX(lf_sync->cur_sb_col[plane][r], cur); | 
|  |  | 
|  | pthread_cond_broadcast(&lf_sync->cond_[plane][r]); | 
|  | pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); | 
|  | } | 
|  | #else | 
|  | (void)lf_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)sb_cols; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // One job of row loopfiltering. | 
|  | void av1_thread_loop_filter_rows( | 
|  | const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, | 
|  | struct macroblockd_plane *planes, MACROBLOCKD *xd, int mi_row, int plane, | 
|  | int dir, int lpf_opt_level, AV1LfSync *const lf_sync, | 
|  | struct aom_internal_error_info *error_info, | 
|  | AV1_DEBLOCKING_PARAMETERS *params_buf, TX_SIZE *tx_buf, | 
|  | int num_mis_in_lpf_unit_height_log2) { | 
|  | // TODO(aomedia:3276): Pass error_info to the low-level functions as required | 
|  | // in future to handle error propagation. | 
|  | (void)error_info; | 
|  | const int sb_cols = | 
|  | CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, MAX_MIB_SIZE_LOG2); | 
|  | const int r = mi_row >> num_mis_in_lpf_unit_height_log2; | 
|  | int mi_col, c; | 
|  |  | 
|  | const bool joint_filter_chroma = (lpf_opt_level == 2) && plane > AOM_PLANE_Y; | 
|  | const int num_planes = joint_filter_chroma ? 2 : 1; | 
|  | assert(IMPLIES(joint_filter_chroma, plane == AOM_PLANE_U)); | 
|  |  | 
|  | if (dir == 0) { | 
|  | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { | 
|  | c = mi_col >> MAX_MIB_SIZE_LOG2; | 
|  |  | 
|  | av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, | 
|  | mi_row, mi_col, plane, plane + num_planes); | 
|  | if (lpf_opt_level) { | 
|  | if (plane == AOM_PLANE_Y) { | 
|  | av1_filter_block_plane_vert_opt(cm, xd, &planes[plane], mi_row, | 
|  | mi_col, params_buf, tx_buf, | 
|  | num_mis_in_lpf_unit_height_log2); | 
|  | } else { | 
|  | av1_filter_block_plane_vert_opt_chroma( | 
|  | cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, | 
|  | joint_filter_chroma, num_mis_in_lpf_unit_height_log2); | 
|  | } | 
|  | } else { | 
|  | av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, | 
|  | mi_col); | 
|  | } | 
|  | if (lf_sync != NULL) { | 
|  | sync_write(lf_sync, r, c, sb_cols, plane); | 
|  | } | 
|  | } | 
|  | } else if (dir == 1) { | 
|  | for (mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += MAX_MIB_SIZE) { | 
|  | c = mi_col >> MAX_MIB_SIZE_LOG2; | 
|  |  | 
|  | if (lf_sync != NULL) { | 
|  | // Wait for vertical edge filtering of the top-right block to be | 
|  | // completed | 
|  | sync_read(lf_sync, r, c, plane); | 
|  |  | 
|  | // Wait for vertical edge filtering of the right block to be completed | 
|  | sync_read(lf_sync, r + 1, c, plane); | 
|  | } | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (lf_sync && lf_sync->num_workers > 1) { | 
|  | pthread_mutex_lock(lf_sync->job_mutex); | 
|  | const bool lf_mt_exit = lf_sync->lf_mt_exit; | 
|  | pthread_mutex_unlock(lf_sync->job_mutex); | 
|  | // Exit in case any worker has encountered an error. | 
|  | if (lf_mt_exit) return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | av1_setup_dst_planes(planes, cm->seq_params->sb_size, frame_buffer, | 
|  | mi_row, mi_col, plane, plane + num_planes); | 
|  | if (lpf_opt_level) { | 
|  | if (plane == AOM_PLANE_Y) { | 
|  | av1_filter_block_plane_horz_opt(cm, xd, &planes[plane], mi_row, | 
|  | mi_col, params_buf, tx_buf, | 
|  | num_mis_in_lpf_unit_height_log2); | 
|  | } else { | 
|  | av1_filter_block_plane_horz_opt_chroma( | 
|  | cm, xd, &planes[plane], mi_row, mi_col, params_buf, tx_buf, plane, | 
|  | joint_filter_chroma, num_mis_in_lpf_unit_height_log2); | 
|  | } | 
|  | } else { | 
|  | av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, | 
|  | mi_col); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_set_vert_loop_filter_done(AV1_COMMON *cm, AV1LfSync *lf_sync, | 
|  | int num_mis_in_lpf_unit_height_log2) { | 
|  | int plane, sb_row; | 
|  | const int sb_cols = | 
|  | CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, num_mis_in_lpf_unit_height_log2); | 
|  | const int sb_rows = | 
|  | CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, num_mis_in_lpf_unit_height_log2); | 
|  |  | 
|  | // In case of loopfilter row-multithreading, the worker on an SB row waits for | 
|  | // the vertical edge filtering of the right and top-right SBs. Hence, in case | 
|  | // a thread (main/worker) encounters an error, update that vertical | 
|  | // loopfiltering of every SB row in the frame is complete in order to avoid | 
|  | // dependent workers waiting indefinitely. | 
|  | for (sb_row = 0; sb_row < sb_rows; ++sb_row) | 
|  | for (plane = 0; plane < MAX_MB_PLANE; ++plane) | 
|  | sync_write(lf_sync, sb_row, sb_cols - 1, sb_cols, plane); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void sync_lf_workers(AVxWorker *const workers, | 
|  | AV1_COMMON *const cm, int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int had_error = workers[0].had_error; | 
|  | struct aom_internal_error_info error_info; | 
|  |  | 
|  | // Read the error_info of main thread. | 
|  | if (had_error) { | 
|  | AVxWorker *const worker = &workers[0]; | 
|  | error_info = ((LFWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  |  | 
|  | // Wait till all rows are finished. | 
|  | for (int i = num_workers - 1; i > 0; --i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | if (!winterface->sync(worker)) { | 
|  | had_error = 1; | 
|  | error_info = ((LFWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  | } | 
|  | if (had_error) aom_internal_error_copy(cm->error, &error_info); | 
|  | } | 
|  |  | 
|  | // Row-based multi-threaded loopfilter hook | 
|  | static int loop_filter_row_worker(void *arg1, void *arg2) { | 
|  | AV1LfSync *const lf_sync = (AV1LfSync *)arg1; | 
|  | LFWorkerData *const lf_data = (LFWorkerData *)arg2; | 
|  | AV1LfMTInfo *cur_job_info; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *job_mutex_ = lf_sync->job_mutex; | 
|  | #endif | 
|  |  | 
|  | struct aom_internal_error_info *const error_info = &lf_data->error_info; | 
|  |  | 
|  | // The jmp_buf is valid only for the duration of the function that calls | 
|  | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
|  | // before it returns. | 
|  | if (setjmp(error_info->jmp)) { | 
|  | error_info->setjmp = 0; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(job_mutex_); | 
|  | lf_sync->lf_mt_exit = true; | 
|  | pthread_mutex_unlock(job_mutex_); | 
|  | #endif | 
|  | av1_set_vert_loop_filter_done(lf_data->cm, lf_sync, MAX_MIB_SIZE_LOG2); | 
|  | return 0; | 
|  | } | 
|  | error_info->setjmp = 1; | 
|  |  | 
|  | while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) { | 
|  | const int lpf_opt_level = cur_job_info->lpf_opt_level; | 
|  | av1_thread_loop_filter_rows( | 
|  | lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd, | 
|  | cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir, | 
|  | lpf_opt_level, lf_sync, error_info, lf_data->params_buf, | 
|  | lf_data->tx_buf, MAX_MIB_SIZE_LOG2); | 
|  | } | 
|  | error_info->setjmp = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int start, int stop, | 
|  | const int planes_to_lf[MAX_MB_PLANE], | 
|  | AVxWorker *workers, int num_workers, | 
|  | AV1LfSync *lf_sync, int lpf_opt_level) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int i; | 
|  | loop_filter_frame_mt_init(cm, start, stop, planes_to_lf, num_workers, lf_sync, | 
|  | lpf_opt_level, MAX_MIB_SIZE_LOG2); | 
|  |  | 
|  | // Set up loopfilter thread data. | 
|  | for (i = num_workers - 1; i >= 0; --i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | LFWorkerData *const lf_data = &lf_sync->lfdata[i]; | 
|  |  | 
|  | worker->hook = loop_filter_row_worker; | 
|  | worker->data1 = lf_sync; | 
|  | worker->data2 = lf_data; | 
|  |  | 
|  | // Loopfilter data | 
|  | loop_filter_data_reset(lf_data, frame, cm, xd); | 
|  |  | 
|  | // Start loopfiltering | 
|  | worker->had_error = 0; | 
|  | if (i == 0) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | sync_lf_workers(workers, cm, num_workers); | 
|  | } | 
|  |  | 
|  | static void loop_filter_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int start, int stop, | 
|  | const int planes_to_lf[MAX_MB_PLANE], | 
|  | int lpf_opt_level) { | 
|  | // Filter top rows of all planes first, in case the output can be partially | 
|  | // reconstructed row by row. | 
|  | int mi_row, plane, dir; | 
|  |  | 
|  | AV1_DEBLOCKING_PARAMETERS params_buf[MAX_MIB_SIZE]; | 
|  | TX_SIZE tx_buf[MAX_MIB_SIZE]; | 
|  | for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { | 
|  | for (plane = 0; plane < MAX_MB_PLANE; ++plane) { | 
|  | if (skip_loop_filter_plane(planes_to_lf, plane, lpf_opt_level)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (dir = 0; dir < 2; ++dir) { | 
|  | av1_thread_loop_filter_rows(frame, cm, xd->plane, xd, mi_row, plane, | 
|  | dir, lpf_opt_level, /*lf_sync=*/NULL, | 
|  | xd->error_info, params_buf, tx_buf, | 
|  | MAX_MIB_SIZE_LOG2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, | 
|  | MACROBLOCKD *xd, int plane_start, int plane_end, | 
|  | int partial_frame, AVxWorker *workers, | 
|  | int num_workers, AV1LfSync *lf_sync, | 
|  | int lpf_opt_level) { | 
|  | int start_mi_row, end_mi_row, mi_rows_to_filter; | 
|  | int planes_to_lf[MAX_MB_PLANE]; | 
|  |  | 
|  | if (!check_planes_to_loop_filter(&cm->lf, planes_to_lf, plane_start, | 
|  | plane_end)) | 
|  | return; | 
|  |  | 
|  | start_mi_row = 0; | 
|  | mi_rows_to_filter = cm->mi_params.mi_rows; | 
|  | if (partial_frame && cm->mi_params.mi_rows > 8) { | 
|  | start_mi_row = cm->mi_params.mi_rows >> 1; | 
|  | start_mi_row &= 0xfffffff8; | 
|  | mi_rows_to_filter = AOMMAX(cm->mi_params.mi_rows / 8, 8); | 
|  | } | 
|  | end_mi_row = start_mi_row + mi_rows_to_filter; | 
|  | av1_loop_filter_frame_init(cm, plane_start, plane_end); | 
|  |  | 
|  | if (num_workers > 1) { | 
|  | // Enqueue and execute loopfiltering jobs. | 
|  | loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, | 
|  | workers, num_workers, lf_sync, lpf_opt_level); | 
|  | } else { | 
|  | // Directly filter in the main thread. | 
|  | loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, planes_to_lf, | 
|  | lpf_opt_level); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
|  | const int nsync = loop_res_sync->sync_range; | 
|  |  | 
|  | if (r && !(c & (nsync - 1))) { | 
|  | pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; | 
|  | pthread_mutex_lock(mutex); | 
|  |  | 
|  | while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { | 
|  | pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); | 
|  | } | 
|  | pthread_mutex_unlock(mutex); | 
|  | } | 
|  | #else | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | static INLINE void lr_sync_write(void *const lr_sync, int r, int c, | 
|  | const int sb_cols, int plane) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; | 
|  | const int nsync = loop_res_sync->sync_range; | 
|  | int cur; | 
|  | // Only signal when there are enough filtered SB for next row to run. | 
|  | int sig = 1; | 
|  |  | 
|  | if (c < sb_cols - 1) { | 
|  | cur = c; | 
|  | if (c % nsync) sig = 0; | 
|  | } else { | 
|  | cur = sb_cols + nsync; | 
|  | } | 
|  |  | 
|  | if (sig) { | 
|  | pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); | 
|  |  | 
|  | // When a thread encounters an error, cur_sb_col[plane][r] is set to maximum | 
|  | // column number. In this case, the AOMMAX operation here ensures that | 
|  | // cur_sb_col[plane][r] is not overwritten with a smaller value thus | 
|  | // preventing the infinite waiting of threads in the relevant sync_read() | 
|  | // function. | 
|  | loop_res_sync->cur_sb_col[plane][r] = | 
|  | AOMMAX(loop_res_sync->cur_sb_col[plane][r], cur); | 
|  |  | 
|  | pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); | 
|  | pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); | 
|  | } | 
|  | #else | 
|  | (void)lr_sync; | 
|  | (void)r; | 
|  | (void)c; | 
|  | (void)sb_cols; | 
|  | (void)plane; | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | } | 
|  |  | 
|  | // Allocate memory for loop restoration row synchronization | 
|  | void av1_loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, | 
|  | int num_workers, int num_rows_lr, | 
|  | int num_planes, int width) { | 
|  | lr_sync->rows = num_rows_lr; | 
|  | lr_sync->num_planes = num_planes; | 
|  | #if CONFIG_MULTITHREAD | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (j = 0; j < num_planes; j++) { | 
|  | CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], | 
|  | aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); | 
|  | if (lr_sync->mutex_[j]) { | 
|  | for (i = 0; i < num_rows_lr; ++i) { | 
|  | pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lr_sync->cond_[j], | 
|  | aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); | 
|  | if (lr_sync->cond_[j]) { | 
|  | for (i = 0; i < num_rows_lr; ++i) { | 
|  | pthread_cond_init(&lr_sync->cond_[j][i], NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, lr_sync->job_mutex, | 
|  | aom_malloc(sizeof(*(lr_sync->job_mutex)))); | 
|  | if (lr_sync->job_mutex) { | 
|  | pthread_mutex_init(lr_sync->job_mutex, NULL); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, | 
|  | aom_calloc(num_workers, sizeof(*(lr_sync->lrworkerdata)))); | 
|  | lr_sync->num_workers = num_workers; | 
|  |  | 
|  | for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
|  | if (worker_idx < num_workers - 1) { | 
|  | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, | 
|  | (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); | 
|  | CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, | 
|  | aom_malloc(sizeof(RestorationLineBuffers))); | 
|  |  | 
|  | } else { | 
|  | lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; | 
|  | lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < num_planes; j++) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lr_sync->cur_sb_col[j], | 
|  | aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); | 
|  | } | 
|  | CHECK_MEM_ERROR( | 
|  | cm, lr_sync->job_queue, | 
|  | aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); | 
|  | // Set up nsync. | 
|  | lr_sync->sync_range = get_lr_sync_range(width); | 
|  | } | 
|  |  | 
|  | // Deallocate loop restoration synchronization related mutex and data | 
|  | void av1_loop_restoration_dealloc(AV1LrSync *lr_sync) { | 
|  | if (lr_sync != NULL) { | 
|  | int j; | 
|  | #if CONFIG_MULTITHREAD | 
|  | int i; | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | if (lr_sync->mutex_[j] != NULL) { | 
|  | for (i = 0; i < lr_sync->rows; ++i) { | 
|  | pthread_mutex_destroy(&lr_sync->mutex_[j][i]); | 
|  | } | 
|  | aom_free(lr_sync->mutex_[j]); | 
|  | } | 
|  | if (lr_sync->cond_[j] != NULL) { | 
|  | for (i = 0; i < lr_sync->rows; ++i) { | 
|  | pthread_cond_destroy(&lr_sync->cond_[j][i]); | 
|  | } | 
|  | aom_free(lr_sync->cond_[j]); | 
|  | } | 
|  | } | 
|  | if (lr_sync->job_mutex != NULL) { | 
|  | pthread_mutex_destroy(lr_sync->job_mutex); | 
|  | aom_free(lr_sync->job_mutex); | 
|  | } | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | for (j = 0; j < MAX_MB_PLANE; j++) { | 
|  | aom_free(lr_sync->cur_sb_col[j]); | 
|  | } | 
|  |  | 
|  | aom_free(lr_sync->job_queue); | 
|  |  | 
|  | if (lr_sync->lrworkerdata) { | 
|  | for (int worker_idx = 0; worker_idx < lr_sync->num_workers - 1; | 
|  | worker_idx++) { | 
|  | LRWorkerData *const workerdata_data = | 
|  | lr_sync->lrworkerdata + worker_idx; | 
|  |  | 
|  | aom_free(workerdata_data->rst_tmpbuf); | 
|  | aom_free(workerdata_data->rlbs); | 
|  | } | 
|  | aom_free(lr_sync->lrworkerdata); | 
|  | } | 
|  |  | 
|  | // clear the structure as the source of this call may be a resize in which | 
|  | // case this call will be followed by an _alloc() which may fail. | 
|  | av1_zero(*lr_sync); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, | 
|  | AV1_COMMON *cm) { | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; | 
|  | int32_t lr_job_counter[2], num_even_lr_jobs = 0; | 
|  | lr_sync->jobs_enqueued = 0; | 
|  | lr_sync->jobs_dequeued = 0; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  | num_even_lr_jobs = | 
|  | num_even_lr_jobs + ((ctxt[plane].rsi->vert_units + 1) >> 1); | 
|  | } | 
|  | lr_job_counter[0] = 0; | 
|  | lr_job_counter[1] = num_even_lr_jobs; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  | const int is_uv = plane > 0; | 
|  | const int ss_y = is_uv && cm->seq_params->subsampling_y; | 
|  | const int unit_size = ctxt[plane].rsi->restoration_unit_size; | 
|  | const int plane_h = ctxt[plane].plane_h; | 
|  | const int ext_size = unit_size * 3 / 2; | 
|  |  | 
|  | int y0 = 0, i = 0; | 
|  | while (y0 < plane_h) { | 
|  | int remaining_h = plane_h - y0; | 
|  | int h = (remaining_h < ext_size) ? remaining_h : unit_size; | 
|  |  | 
|  | RestorationTileLimits limits; | 
|  | limits.v_start = y0; | 
|  | limits.v_end = y0 + h; | 
|  | assert(limits.v_end <= plane_h); | 
|  | // Offset upwards to align with the restoration processing stripe | 
|  | const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; | 
|  | limits.v_start = AOMMAX(0, limits.v_start - voffset); | 
|  | if (limits.v_end < plane_h) limits.v_end -= voffset; | 
|  |  | 
|  | assert(lr_job_counter[0] <= num_even_lr_jobs); | 
|  |  | 
|  | lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; | 
|  | lr_job_queue[lr_job_counter[i & 1]].plane = plane; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; | 
|  | lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; | 
|  | if ((i & 1) == 0) { | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
|  | limits.v_start + RESTORATION_BORDER; | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = | 
|  | limits.v_end - RESTORATION_BORDER; | 
|  | if (i == 0) { | 
|  | assert(limits.v_start == 0); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = 0; | 
|  | } | 
|  | if (i == (ctxt[plane].rsi->vert_units - 1)) { | 
|  | assert(limits.v_end == plane_h); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = plane_h; | 
|  | } | 
|  | } else { | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_start = | 
|  | AOMMAX(limits.v_start - RESTORATION_BORDER, 0); | 
|  | lr_job_queue[lr_job_counter[i & 1]].v_copy_end = | 
|  | AOMMIN(limits.v_end + RESTORATION_BORDER, plane_h); | 
|  | } | 
|  | lr_job_counter[i & 1]++; | 
|  | lr_sync->jobs_enqueued++; | 
|  |  | 
|  | y0 += h; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { | 
|  | AV1LrMTInfo *cur_job_info = NULL; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(lr_sync->job_mutex); | 
|  |  | 
|  | if (!lr_sync->lr_mt_exit && lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { | 
|  | cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; | 
|  | lr_sync->jobs_dequeued++; | 
|  | } | 
|  |  | 
|  | pthread_mutex_unlock(lr_sync->job_mutex); | 
|  | #else | 
|  | (void)lr_sync; | 
|  | #endif | 
|  |  | 
|  | return cur_job_info; | 
|  | } | 
|  |  | 
|  | static void set_loop_restoration_done(AV1LrSync *const lr_sync, | 
|  | FilterFrameCtxt *const ctxt) { | 
|  | for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { | 
|  | if (ctxt[plane].rsi->frame_restoration_type == RESTORE_NONE) continue; | 
|  | int y0 = 0, row_number = 0; | 
|  | const int unit_size = ctxt[plane].rsi->restoration_unit_size; | 
|  | const int plane_h = ctxt[plane].plane_h; | 
|  | const int ext_size = unit_size * 3 / 2; | 
|  | const int hnum_rest_units = ctxt[plane].rsi->horz_units; | 
|  | while (y0 < plane_h) { | 
|  | const int remaining_h = plane_h - y0; | 
|  | const int h = (remaining_h < ext_size) ? remaining_h : unit_size; | 
|  | lr_sync_write(lr_sync, row_number, hnum_rest_units - 1, hnum_rest_units, | 
|  | plane); | 
|  | y0 += h; | 
|  | ++row_number; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Implement row loop restoration for each thread. | 
|  | static int loop_restoration_row_worker(void *arg1, void *arg2) { | 
|  | AV1LrSync *const lr_sync = (AV1LrSync *)arg1; | 
|  | LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; | 
|  | AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  | int lr_unit_row; | 
|  | int plane; | 
|  | int plane_w; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *job_mutex_ = lr_sync->job_mutex; | 
|  | #endif | 
|  | struct aom_internal_error_info *const error_info = &lrworkerdata->error_info; | 
|  |  | 
|  | // The jmp_buf is valid only for the duration of the function that calls | 
|  | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
|  | // before it returns. | 
|  | if (setjmp(error_info->jmp)) { | 
|  | error_info->setjmp = 0; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(job_mutex_); | 
|  | lr_sync->lr_mt_exit = true; | 
|  | pthread_mutex_unlock(job_mutex_); | 
|  | #endif | 
|  | // In case of loop restoration multithreading, the worker on an even lr | 
|  | // block row waits for the completion of the filtering of the top-right and | 
|  | // bottom-right blocks. Hence, in case a thread (main/worker) encounters an | 
|  | // error, update that filtering of every row in the frame is complete in | 
|  | // order to avoid the dependent workers from waiting indefinitely. | 
|  | set_loop_restoration_done(lr_sync, lr_ctxt->ctxt); | 
|  | return 0; | 
|  | } | 
|  | error_info->setjmp = 1; | 
|  |  | 
|  | typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, | 
|  | YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, | 
|  | int vstart, int vend); | 
|  | static const copy_fun copy_funs[MAX_MB_PLANE] = { | 
|  | aom_yv12_partial_coloc_copy_y, aom_yv12_partial_coloc_copy_u, | 
|  | aom_yv12_partial_coloc_copy_v | 
|  | }; | 
|  |  | 
|  | while (1) { | 
|  | AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); | 
|  | if (cur_job_info != NULL) { | 
|  | RestorationTileLimits limits; | 
|  | sync_read_fn_t on_sync_read; | 
|  | sync_write_fn_t on_sync_write; | 
|  | limits.v_start = cur_job_info->v_start; | 
|  | limits.v_end = cur_job_info->v_end; | 
|  | lr_unit_row = cur_job_info->lr_unit_row; | 
|  | plane = cur_job_info->plane; | 
|  | plane_w = ctxt[plane].plane_w; | 
|  |  | 
|  | // sync_mode == 1 implies only sync read is required in LR Multi-threading | 
|  | // sync_mode == 0 implies only sync write is required. | 
|  | on_sync_read = | 
|  | cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; | 
|  | on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write | 
|  | : av1_lr_sync_write_dummy; | 
|  |  | 
|  | av1_foreach_rest_unit_in_row( | 
|  | &limits, plane_w, lr_ctxt->on_rest_unit, lr_unit_row, | 
|  | ctxt[plane].rsi->restoration_unit_size, ctxt[plane].rsi->horz_units, | 
|  | ctxt[plane].rsi->vert_units, plane, &ctxt[plane], | 
|  | lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, | 
|  | on_sync_write, lr_sync, error_info); | 
|  |  | 
|  | copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, 0, plane_w, | 
|  | cur_job_info->v_copy_start, cur_job_info->v_copy_end); | 
|  |  | 
|  | if (lrworkerdata->do_extend_border) { | 
|  | aom_extend_frame_borders_plane_row(lr_ctxt->frame, plane, | 
|  | cur_job_info->v_copy_start, | 
|  | cur_job_info->v_copy_end); | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | error_info->setjmp = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void sync_lr_workers(AVxWorker *const workers, | 
|  | AV1_COMMON *const cm, int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int had_error = workers[0].had_error; | 
|  | struct aom_internal_error_info error_info; | 
|  |  | 
|  | // Read the error_info of main thread. | 
|  | if (had_error) { | 
|  | AVxWorker *const worker = &workers[0]; | 
|  | error_info = ((LRWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  |  | 
|  | // Wait till all rows are finished. | 
|  | for (int i = num_workers - 1; i > 0; --i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | if (!winterface->sync(worker)) { | 
|  | had_error = 1; | 
|  | error_info = ((LRWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  | } | 
|  | if (had_error) aom_internal_error_copy(cm->error, &error_info); | 
|  | } | 
|  |  | 
|  | static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, | 
|  | AVxWorker *workers, int num_workers, | 
|  | AV1LrSync *lr_sync, AV1_COMMON *cm, | 
|  | int do_extend_border) { | 
|  | FilterFrameCtxt *ctxt = lr_ctxt->ctxt; | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int num_rows_lr = 0; | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; | 
|  |  | 
|  | const int plane_h = ctxt[plane].plane_h; | 
|  | const int unit_size = cm->rst_info[plane].restoration_unit_size; | 
|  |  | 
|  | num_rows_lr = AOMMAX(num_rows_lr, av1_lr_count_units(unit_size, plane_h)); | 
|  | } | 
|  |  | 
|  | int i; | 
|  | assert(MAX_MB_PLANE == 3); | 
|  |  | 
|  | if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows || | 
|  | num_workers > lr_sync->num_workers || num_planes > lr_sync->num_planes) { | 
|  | av1_loop_restoration_dealloc(lr_sync); | 
|  | av1_loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, | 
|  | num_planes, cm->width); | 
|  | } | 
|  | lr_sync->lr_mt_exit = false; | 
|  |  | 
|  | // Initialize cur_sb_col to -1 for all SB rows. | 
|  | for (i = 0; i < num_planes; i++) { | 
|  | memset(lr_sync->cur_sb_col[i], -1, | 
|  | sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); | 
|  | } | 
|  |  | 
|  | enqueue_lr_jobs(lr_sync, lr_ctxt, cm); | 
|  |  | 
|  | // Set up looprestoration thread data. | 
|  | for (i = num_workers - 1; i >= 0; --i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; | 
|  | lr_sync->lrworkerdata[i].do_extend_border = do_extend_border; | 
|  | worker->hook = loop_restoration_row_worker; | 
|  | worker->data1 = lr_sync; | 
|  | worker->data2 = &lr_sync->lrworkerdata[i]; | 
|  |  | 
|  | // Start loop restoration | 
|  | worker->had_error = 0; | 
|  | if (i == 0) { | 
|  | winterface->execute(worker); | 
|  | } else { | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | sync_lr_workers(workers, cm, num_workers); | 
|  | } | 
|  |  | 
|  | void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, | 
|  | AV1_COMMON *cm, int optimized_lr, | 
|  | AVxWorker *workers, int num_workers, | 
|  | AV1LrSync *lr_sync, void *lr_ctxt, | 
|  | int do_extend_border) { | 
|  | assert(!cm->features.all_lossless); | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; | 
|  |  | 
|  | av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, | 
|  | optimized_lr, num_planes); | 
|  |  | 
|  | foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, | 
|  | cm, do_extend_border); | 
|  | } | 
|  |  | 
|  | // Initializes cdef_sync parameters. | 
|  | static AOM_INLINE void reset_cdef_job_info(AV1CdefSync *const cdef_sync) { | 
|  | cdef_sync->end_of_frame = 0; | 
|  | cdef_sync->fbr = 0; | 
|  | cdef_sync->fbc = 0; | 
|  | cdef_sync->cdef_mt_exit = false; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void launch_cdef_workers(AVxWorker *const workers, | 
|  | int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | worker->had_error = 0; | 
|  | if (i == 0) | 
|  | winterface->execute(worker); | 
|  | else | 
|  | winterface->launch(worker); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void sync_cdef_workers(AVxWorker *const workers, | 
|  | AV1_COMMON *const cm, | 
|  | int num_workers) { | 
|  | const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
|  | int had_error = workers[0].had_error; | 
|  | struct aom_internal_error_info error_info; | 
|  |  | 
|  | // Read the error_info of main thread. | 
|  | if (had_error) { | 
|  | AVxWorker *const worker = &workers[0]; | 
|  | error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  |  | 
|  | // Wait till all rows are finished. | 
|  | for (int i = num_workers - 1; i > 0; --i) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | if (!winterface->sync(worker)) { | 
|  | had_error = 1; | 
|  | error_info = ((AV1CdefWorkerData *)worker->data2)->error_info; | 
|  | } | 
|  | } | 
|  | if (had_error) aom_internal_error_copy(cm->error, &error_info); | 
|  | } | 
|  |  | 
|  | // Updates the row index of the next job to be processed. | 
|  | // Also updates end_of_frame flag when the processing of all rows is complete. | 
|  | static void update_cdef_row_next_job_info(AV1CdefSync *const cdef_sync, | 
|  | const int nvfb) { | 
|  | cdef_sync->fbr++; | 
|  | if (cdef_sync->fbr == nvfb) { | 
|  | cdef_sync->end_of_frame = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Checks if a job is available. If job is available, | 
|  | // populates next job information and returns 1, else returns 0. | 
|  | static AOM_INLINE int get_cdef_row_next_job(AV1CdefSync *const cdef_sync, | 
|  | volatile int *cur_fbr, | 
|  | const int nvfb) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(cdef_sync->mutex_); | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | int do_next_row = 0; | 
|  | // Populates information needed for current job and update the row | 
|  | // index of the next row to be processed. | 
|  | if (!cdef_sync->cdef_mt_exit && cdef_sync->end_of_frame == 0) { | 
|  | do_next_row = 1; | 
|  | *cur_fbr = cdef_sync->fbr; | 
|  | update_cdef_row_next_job_info(cdef_sync, nvfb); | 
|  | } | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(cdef_sync->mutex_); | 
|  | #endif  // CONFIG_MULTITHREAD | 
|  | return do_next_row; | 
|  | } | 
|  |  | 
|  | static void set_cdef_init_fb_row_done(AV1CdefSync *const cdef_sync, int nvfb) { | 
|  | for (int fbr = 0; fbr < nvfb; fbr++) cdef_row_mt_sync_write(cdef_sync, fbr); | 
|  | } | 
|  |  | 
|  | // Hook function for each thread in CDEF multi-threading. | 
|  | static int cdef_sb_row_worker_hook(void *arg1, void *arg2) { | 
|  | AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1; | 
|  | AV1CdefWorkerData *const cdef_worker = (AV1CdefWorkerData *)arg2; | 
|  | AV1_COMMON *cm = cdef_worker->cm; | 
|  | const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t *job_mutex_ = cdef_sync->mutex_; | 
|  | #endif | 
|  | struct aom_internal_error_info *const error_info = &cdef_worker->error_info; | 
|  |  | 
|  | // The jmp_buf is valid only for the duration of the function that calls | 
|  | // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
|  | // before it returns. | 
|  | if (setjmp(error_info->jmp)) { | 
|  | error_info->setjmp = 0; | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(job_mutex_); | 
|  | cdef_sync->cdef_mt_exit = true; | 
|  | pthread_mutex_unlock(job_mutex_); | 
|  | #endif | 
|  | // In case of cdef row-multithreading, the worker on a filter block row | 
|  | // (fbr) waits for the line buffers (top and bottom) copy of the above row. | 
|  | // Hence, in case a thread (main/worker) encounters an error before copying | 
|  | // of the line buffers, update that line buffer copy is complete in order to | 
|  | // avoid dependent workers waiting indefinitely. | 
|  | set_cdef_init_fb_row_done(cdef_sync, nvfb); | 
|  | return 0; | 
|  | } | 
|  | error_info->setjmp = 1; | 
|  |  | 
|  | volatile int cur_fbr; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | while (get_cdef_row_next_job(cdef_sync, &cur_fbr, nvfb)) { | 
|  | MACROBLOCKD *xd = cdef_worker->xd; | 
|  | av1_cdef_fb_row(cm, xd, cdef_worker->linebuf, cdef_worker->colbuf, | 
|  | cdef_worker->srcbuf, cur_fbr, | 
|  | cdef_worker->cdef_init_fb_row_fn, cdef_sync, error_info); | 
|  | if (cdef_worker->do_extend_border) { | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | const YV12_BUFFER_CONFIG *ybf = &cm->cur_frame->buf; | 
|  | const int is_uv = plane > 0; | 
|  | const int mi_high = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; | 
|  | const int unit_height = MI_SIZE_64X64 << mi_high; | 
|  | const int v_start = cur_fbr * unit_height; | 
|  | const int v_end = | 
|  | AOMMIN(v_start + unit_height, ybf->crop_heights[is_uv]); | 
|  | aom_extend_frame_borders_plane_row(ybf, plane, v_start, v_end); | 
|  | } | 
|  | } | 
|  | } | 
|  | error_info->setjmp = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Assigns CDEF hook function and thread data to each worker. | 
|  | static void prepare_cdef_frame_workers( | 
|  | AV1_COMMON *const cm, MACROBLOCKD *xd, AV1CdefWorkerData *const cdef_worker, | 
|  | AVxWorkerHook hook, AVxWorker *const workers, AV1CdefSync *const cdef_sync, | 
|  | int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, | 
|  | int do_extend_border) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | cdef_worker[0].srcbuf = cm->cdef_info.srcbuf; | 
|  | for (int plane = 0; plane < num_planes; plane++) | 
|  | cdef_worker[0].colbuf[plane] = cm->cdef_info.colbuf[plane]; | 
|  | for (int i = num_workers - 1; i >= 0; i--) { | 
|  | AVxWorker *const worker = &workers[i]; | 
|  | cdef_worker[i].cm = cm; | 
|  | cdef_worker[i].xd = xd; | 
|  | cdef_worker[i].cdef_init_fb_row_fn = cdef_init_fb_row_fn; | 
|  | cdef_worker[i].do_extend_border = do_extend_border; | 
|  | for (int plane = 0; plane < num_planes; plane++) | 
|  | cdef_worker[i].linebuf[plane] = cm->cdef_info.linebuf[plane]; | 
|  |  | 
|  | worker->hook = hook; | 
|  | worker->data1 = cdef_sync; | 
|  | worker->data2 = &cdef_worker[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Initializes row-level parameters for CDEF frame. | 
|  | void av1_cdef_init_fb_row_mt(const AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *const xd, | 
|  | CdefBlockInfo *const fb_info, | 
|  | uint16_t **const linebuf, uint16_t *const src, | 
|  | struct AV1CdefSyncData *const cdef_sync, int fbr) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int nvfb = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; | 
|  | const int luma_stride = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4); | 
|  |  | 
|  | // for the current filter block, it's top left corner mi structure (mi_tl) | 
|  | // is first accessed to check whether the top and left boundaries are | 
|  | // frame boundaries. Then bottom-left and top-right mi structures are | 
|  | // accessed to check whether the bottom and right boundaries | 
|  | // (respectively) are frame boundaries. | 
|  | // | 
|  | // Note that we can't just check the bottom-right mi structure - eg. if | 
|  | // we're at the right-hand edge of the frame but not the bottom, then | 
|  | // the bottom-right mi is NULL but the bottom-left is not. | 
|  | fb_info->frame_boundary[TOP] = (MI_SIZE_64X64 * fbr == 0) ? 1 : 0; | 
|  | if (fbr != nvfb - 1) | 
|  | fb_info->frame_boundary[BOTTOM] = | 
|  | (MI_SIZE_64X64 * (fbr + 1) == cm->mi_params.mi_rows) ? 1 : 0; | 
|  | else | 
|  | fb_info->frame_boundary[BOTTOM] = 1; | 
|  |  | 
|  | fb_info->src = src; | 
|  | fb_info->damping = cm->cdef_info.cdef_damping; | 
|  | fb_info->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0); | 
|  | av1_zero(fb_info->dir); | 
|  | av1_zero(fb_info->var); | 
|  |  | 
|  | for (int plane = 0; plane < num_planes; plane++) { | 
|  | const int stride = luma_stride >> xd->plane[plane].subsampling_x; | 
|  | uint16_t *top_linebuf = &linebuf[plane][0]; | 
|  | uint16_t *bot_linebuf = &linebuf[plane][nvfb * CDEF_VBORDER * stride]; | 
|  | { | 
|  | const int mi_high_l2 = MI_SIZE_LOG2 - xd->plane[plane].subsampling_y; | 
|  | const int top_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; | 
|  | const int bot_offset = MI_SIZE_64X64 * (fbr + 1) << mi_high_l2; | 
|  |  | 
|  | if (fbr != nvfb - 1)  // if (fbr != 0)  // top line buffer copy | 
|  | av1_cdef_copy_sb8_16( | 
|  | cm, &top_linebuf[(fbr + 1) * CDEF_VBORDER * stride], stride, | 
|  | xd->plane[plane].dst.buf, top_offset - CDEF_VBORDER, 0, | 
|  | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); | 
|  | if (fbr != nvfb - 1)  // bottom line buffer copy | 
|  | av1_cdef_copy_sb8_16(cm, &bot_linebuf[fbr * CDEF_VBORDER * stride], | 
|  | stride, xd->plane[plane].dst.buf, bot_offset, 0, | 
|  | xd->plane[plane].dst.stride, CDEF_VBORDER, stride); | 
|  | } | 
|  |  | 
|  | fb_info->top_linebuf[plane] = &linebuf[plane][fbr * CDEF_VBORDER * stride]; | 
|  | fb_info->bot_linebuf[plane] = | 
|  | &linebuf[plane] | 
|  | [nvfb * CDEF_VBORDER * stride + (fbr * CDEF_VBORDER * stride)]; | 
|  | } | 
|  |  | 
|  | cdef_row_mt_sync_write(cdef_sync, fbr); | 
|  | cdef_row_mt_sync_read(cdef_sync, fbr); | 
|  | } | 
|  |  | 
|  | // Implements multi-threading for CDEF. | 
|  | // Perform CDEF on input frame. | 
|  | // Inputs: | 
|  | //   frame: Pointer to input frame buffer. | 
|  | //   cm: Pointer to common structure. | 
|  | //   xd: Pointer to common current coding block structure. | 
|  | // Returns: | 
|  | //   Nothing will be returned. | 
|  | void av1_cdef_frame_mt(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
|  | AV1CdefWorkerData *const cdef_worker, | 
|  | AVxWorker *const workers, AV1CdefSync *const cdef_sync, | 
|  | int num_workers, cdef_init_fb_row_t cdef_init_fb_row_fn, | 
|  | int do_extend_border) { | 
|  | YV12_BUFFER_CONFIG *frame = &cm->cur_frame->buf; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0, | 
|  | num_planes); | 
|  |  | 
|  | reset_cdef_job_info(cdef_sync); | 
|  | prepare_cdef_frame_workers(cm, xd, cdef_worker, cdef_sb_row_worker_hook, | 
|  | workers, cdef_sync, num_workers, | 
|  | cdef_init_fb_row_fn, do_extend_border); | 
|  | launch_cdef_workers(workers, num_workers); | 
|  | sync_cdef_workers(workers, cm, num_workers); | 
|  | } | 
|  |  | 
|  | int av1_get_intrabc_extra_top_right_sb_delay(const AV1_COMMON *cm) { | 
|  | // No additional top-right delay when intraBC tool is not enabled. | 
|  | if (!av1_allow_intrabc(cm)) return 0; | 
|  | // Due to the hardware constraints on processing the intraBC tool with row | 
|  | // multithreading, a top-right delay of 3 superblocks of size 128x128 or 5 | 
|  | // superblocks of size 64x64 is mandated. However, a minimum top-right delay | 
|  | // of 1 superblock is assured with 'sync_range'. Hence return only the | 
|  | // additional superblock delay when the intraBC tool is enabled. | 
|  | return cm->seq_params->sb_size == BLOCK_128X128 ? 2 : 4; | 
|  | } |