| /* | 
 |  * Copyright (c) 2018, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <tuple> | 
 |  | 
 | #include "third_party/googletest/src/googletest/include/gtest/gtest.h" | 
 |  | 
 | #include "aom/aom_integer.h" | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "av1/encoder/ml.h" | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 | #include "config/av1_rtcd.h" | 
 | #include "test/util.h" | 
 | #include "test/register_state_check.h" | 
 | #include "test/acm_random.h" | 
 |  | 
 | namespace { | 
 | typedef void (*NnPredict_Func)(const float *const input_nodes, | 
 |                                const NN_CONFIG *const nn_config, | 
 |                                int reduce_prec, float *const output); | 
 |  | 
 | typedef std::tuple<const NnPredict_Func> NnPredictTestParam; | 
 |  | 
 | const float epsilon = 1e-3f;  // Error threshold for functional equivalence | 
 |  | 
 | class NnPredictTest : public ::testing::TestWithParam<NnPredictTestParam> { | 
 |  public: | 
 |   void SetUp() override { | 
 |     const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
 |     // Allocate two massive buffers on the heap for edge weights and node bias | 
 |     // Then set-up the double-dimension arrays pointing into the big buffers | 
 |     weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) * | 
 |                                       sizeof(*weights_buf)); | 
 |     bias_buf = | 
 |         (float *)aom_malloc(NN_MAX_NODES_PER_LAYER * | 
 |                             (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf)); | 
 |     ASSERT_NE(weights_buf, nullptr); | 
 |     ASSERT_NE(bias_buf, nullptr); | 
 |     for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { | 
 |       weights[i] = &weights_buf[i * MAX_NODES2]; | 
 |       bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER]; | 
 |     } | 
 |     target_func_ = GET_PARAM(0); | 
 |   } | 
 |   void TearDown() override { | 
 |     aom_free(weights_buf); | 
 |     aom_free(bias_buf); | 
 |   } | 
 |   void RunNnPredictTest(const NN_CONFIG *const shape); | 
 |   void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times); | 
 |   void RunNnPredictTest_all(const NN_CONFIG *const shapes, | 
 |                             const int num_shapes); | 
 |   void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, | 
 |                                  const int num_shapes, const int run_times); | 
 |  | 
 |  private: | 
 |   NnPredict_Func target_func_; | 
 |   libaom_test::ACMRandom rng_; | 
 |   float *weights[NN_MAX_HIDDEN_LAYERS + 1] = {}; | 
 |   float *bias[NN_MAX_HIDDEN_LAYERS + 1] = {}; | 
 |   float *weights_buf = nullptr, *bias_buf = nullptr; | 
 | }; | 
 | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(NnPredictTest); | 
 |  | 
 | void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) { | 
 |   float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |   float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |   float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |  | 
 |   NN_CONFIG nn_config; | 
 |   memcpy(&nn_config, shape, sizeof(nn_config)); | 
 |  | 
 |   char shape_str[32] = { 0 }; | 
 |   snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs); | 
 |   for (int layer = 0; layer < shape->num_hidden_layers; layer++) | 
 |     snprintf(&shape_str[strlen(shape_str)], | 
 |              sizeof(shape_str) - strlen(shape_str), "x%d", | 
 |              shape->num_hidden_nodes[layer]); | 
 |   snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str), | 
 |            "x%d", shape->num_outputs); | 
 |  | 
 |   for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { | 
 |     nn_config.weights[i] = weights[i]; | 
 |     nn_config.bias[i] = bias[i]; | 
 |   } | 
 |  | 
 |   for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) { | 
 |     for (int node = 0; node < shape->num_inputs; node++) { | 
 |       inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
 |     } | 
 |     for (int layer = 0; layer < shape->num_hidden_layers; layer++) { | 
 |       for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { | 
 |         bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
 |       } | 
 |       for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
 |            node++) { | 
 |         weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
 |       } | 
 |     } | 
 |     // Now the outputs: | 
 |     int layer = shape->num_hidden_layers; | 
 |     for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { | 
 |       bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
 |     } | 
 |     for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
 |          node++) { | 
 |       weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
 |     } | 
 |  | 
 |     av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); | 
 |     target_func_(inputs, &nn_config, 0, outputs_test); | 
 |  | 
 |     for (int node = 0; node < shape->num_outputs; node++) { | 
 |       if (outputs_ref[node] < epsilon) { | 
 |         ASSERT_LE(outputs_test[node], epsilon) | 
 |             << "Reference output was near-zero, test output was not (" | 
 |             << shape_str << ")"; | 
 |       } else { | 
 |         const float error = outputs_ref[node] - outputs_test[node]; | 
 |         const float relative_error = fabsf(error / outputs_ref[node]); | 
 |         ASSERT_LE(relative_error, epsilon) | 
 |             << "Excessive relative error between reference and test (" | 
 |             << shape_str << ")"; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape, | 
 |                                           const int run_times) { | 
 |   float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |   float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |   float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
 |  | 
 |   NN_CONFIG nn_config; | 
 |   memcpy(&nn_config, shape, sizeof(nn_config)); | 
 |  | 
 |   for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) { | 
 |     nn_config.weights[i] = weights[i]; | 
 |     nn_config.bias[i] = bias[i]; | 
 |   } | 
 |   // Don't bother actually changing the values for inputs/weights/bias: it | 
 |   // shouldn't make any difference for a speed test. | 
 |  | 
 |   aom_usec_timer timer; | 
 |   aom_usec_timer_start(&timer); | 
 |   for (int i = 0; i < run_times; ++i) { | 
 |     av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); | 
 |   } | 
 |   aom_usec_timer_mark(&timer); | 
 |   const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |   aom_usec_timer_start(&timer); | 
 |   for (int i = 0; i < run_times; ++i) { | 
 |     target_func_(inputs, &nn_config, 0, outputs_test); | 
 |   } | 
 |   aom_usec_timer_mark(&timer); | 
 |   const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |  | 
 |   printf("%d", shape->num_inputs); | 
 |   for (int layer = 0; layer < shape->num_hidden_layers; layer++) | 
 |     printf("x%d", shape->num_hidden_nodes[layer]); | 
 |   printf("x%d: ", shape->num_outputs); | 
 |   printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2); | 
 | } | 
 |  | 
 | // This is all the neural network shapes observed executed in a few different | 
 | // runs of the encoder.  It also conveniently covers all the kernels | 
 | // implemented. | 
 | static const NN_CONFIG kShapes[] = { | 
 |   { 37, 1, 2, { 16, 24 }, {}, {} }, { 24, 24, 1, { 12 }, {}, {} }, | 
 |   { 10, 16, 1, { 64 }, {}, {} },    { 12, 1, 1, { 12 }, {}, {} }, | 
 |   { 12, 1, 1, { 24 }, {}, {} },     { 12, 1, 1, { 32 }, {}, {} }, | 
 |   { 18, 4, 1, { 24 }, {}, {} },     { 18, 4, 1, { 32 }, {}, {} }, | 
 |   { 4, 1, 1, { 16 }, {}, {} },      { 8, 1, 0, { 0 }, {}, {} }, | 
 |   { 8, 4, 1, { 16 }, {}, {} },      { 8, 1, 1, { 32 }, {}, {} }, | 
 |   { 9, 3, 1, { 32 }, {}, {} },      { 8, 4, 0, { 0 }, {}, {} }, | 
 |   { 8, 8, 0, { 0 }, {}, {} },       { 4, 4, 1, { 8 }, {}, {} }, | 
 |   { 4, 3, 0, { 64 }, {}, {} }, | 
 | }; | 
 |  | 
 | void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes, | 
 |                                          const int num_shapes) { | 
 |   for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]); | 
 | } | 
 |  | 
 | void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, | 
 |                                               const int num_shapes, | 
 |                                               const int run_times) { | 
 |   for (int i = 0; i < num_shapes; i++) | 
 |     NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times); | 
 | } | 
 |  | 
 | TEST_P(NnPredictTest, RandomValues) { | 
 |   RunNnPredictTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0])); | 
 | } | 
 |  | 
 | TEST_P(NnPredictTest, DISABLED_Speed) { | 
 |   RunNnPredictSpeedTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0]), | 
 |                             10000000); | 
 | } | 
 |  | 
 | #if !CONFIG_EXCLUDE_SIMD_MISMATCH | 
 | #if HAVE_SSE3 | 
 | INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest, | 
 |                          ::testing::Values(av1_nn_predict_sse3)); | 
 | #endif | 
 |  | 
 | #if HAVE_AVX2 | 
 | INSTANTIATE_TEST_SUITE_P(AVX2, NnPredictTest, | 
 |                          ::testing::Values(av1_nn_predict_avx2)); | 
 | #endif | 
 |  | 
 | #if HAVE_NEON | 
 | INSTANTIATE_TEST_SUITE_P(NEON, NnPredictTest, | 
 |                          ::testing::Values(av1_nn_predict_neon)); | 
 | #endif | 
 | #endif  // !CONFIG_EXCLUDE_SIMD_MISMATCH | 
 |  | 
 | }  // namespace |