|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <float.h> | 
|  | #include <math.h> | 
|  | #include <stdbool.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/binary_codes_writer.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/aom_timer.h" | 
|  | #include "aom_util/aom_pthread.h" | 
|  | #if CONFIG_MISMATCH_DEBUG | 
|  | #include "aom_util/debug_util.h" | 
|  | #endif  // CONFIG_MISMATCH_DEBUG | 
|  |  | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/common_data.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/common/mv.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/seg_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  | #include "av1/common/warped_motion.h" | 
|  |  | 
|  | #include "av1/encoder/allintra_vis.h" | 
|  | #include "av1/encoder/aq_complexity.h" | 
|  | #include "av1/encoder/aq_cyclicrefresh.h" | 
|  | #include "av1/encoder/aq_variance.h" | 
|  | #include "av1/encoder/global_motion_facade.h" | 
|  | #include "av1/encoder/encodeframe.h" | 
|  | #include "av1/encoder/encodeframe_utils.h" | 
|  | #include "av1/encoder/encodemb.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encodetxb.h" | 
|  | #include "av1/encoder/ethread.h" | 
|  | #include "av1/encoder/extend.h" | 
|  | #include "av1/encoder/intra_mode_search_utils.h" | 
|  | #include "av1/encoder/ml.h" | 
|  | #include "av1/encoder/motion_search_facade.h" | 
|  | #include "av1/encoder/partition_strategy.h" | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | #include "av1/encoder/partition_model_weights.h" | 
|  | #endif | 
|  | #include "av1/encoder/partition_search.h" | 
|  | #include "av1/encoder/rd.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  | #include "av1/encoder/reconinter_enc.h" | 
|  | #include "av1/encoder/segmentation.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  | #include "av1/encoder/tpl_model.h" | 
|  | #include "av1/encoder/var_based_part.h" | 
|  |  | 
|  | #if CONFIG_TUNE_VMAF | 
|  | #include "av1/encoder/tune_vmaf.h" | 
|  | #endif | 
|  |  | 
|  | /*!\cond */ | 
|  | // This is used as a reference when computing the source variance for the | 
|  | //  purposes of activity masking. | 
|  | // Eventually this should be replaced by custom no-reference routines, | 
|  | //  which will be faster. | 
|  | static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128 | 
|  | }; | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, | 
|  | 128, 128, 128, 128, 128, 128, 128, 128 | 
|  | }; | 
|  |  | 
|  | static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, | 
|  | 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 | 
|  | }; | 
|  |  | 
|  | static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, | 
|  | 128 * 16, 128 * 16 | 
|  | }; | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  | /*!\endcond */ | 
|  |  | 
|  | // For the given bit depth, returns a constant array used to assist the | 
|  | // calculation of source block variance, which will then be used to decide | 
|  | // adaptive quantizers. | 
|  | static const uint8_t *get_var_offs(int use_hbd, int bd) { | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (use_hbd) { | 
|  | assert(bd == 8 || bd == 10 || bd == 12); | 
|  | const int off_index = (bd - 8) >> 1; | 
|  | static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8, | 
|  | AV1_HIGH_VAR_OFFS_10, | 
|  | AV1_HIGH_VAR_OFFS_12 }; | 
|  | return CONVERT_TO_BYTEPTR(high_var_offs[off_index]); | 
|  | } | 
|  | #else | 
|  | (void)use_hbd; | 
|  | (void)bd; | 
|  | assert(!use_hbd); | 
|  | #endif | 
|  | assert(bd == 8); | 
|  | return AV1_VAR_OFFS; | 
|  | } | 
|  |  | 
|  | void av1_init_rtc_counters(MACROBLOCK *const x) { | 
|  | av1_init_cyclic_refresh_counters(x); | 
|  | x->cnt_zeromv = 0; | 
|  | } | 
|  |  | 
|  | void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) { | 
|  | if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) | 
|  | av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x); | 
|  | cpi->rc.cnt_zeromv += x->cnt_zeromv; | 
|  | cpi->rc.num_col_blscroll_last_tl0 += x->sb_col_scroll; | 
|  | cpi->rc.num_row_blscroll_last_tl0 += x->sb_row_scroll; | 
|  | } | 
|  |  | 
|  | unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi, | 
|  | const MACROBLOCKD *xd, | 
|  | const struct buf_2d *ref, | 
|  | BLOCK_SIZE bsize, int plane, | 
|  | int use_hbd) { | 
|  | const int subsampling_x = xd->plane[plane].subsampling_x; | 
|  | const int subsampling_y = xd->plane[plane].subsampling_y; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(bsize, subsampling_x, subsampling_y); | 
|  | unsigned int sse; | 
|  | const unsigned int var = cpi->ppi->fn_ptr[plane_bsize].vf( | 
|  | ref->buf, ref->stride, get_var_offs(use_hbd, xd->bd), 0, &sse); | 
|  | return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]); | 
|  | } | 
|  |  | 
|  | unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi, | 
|  | const MACROBLOCKD *xd, | 
|  | const struct buf_2d *ref, | 
|  | BLOCK_SIZE bsize, int plane) { | 
|  | const int use_hbd = is_cur_buf_hbd(xd); | 
|  | return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd); | 
|  | } | 
|  |  | 
|  | void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, | 
|  | int mi_row, int mi_col, const int num_planes, | 
|  | BLOCK_SIZE bsize) { | 
|  | // Set current frame pointer. | 
|  | x->e_mbd.cur_buf = src; | 
|  |  | 
|  | // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet | 
|  | // the static analysis warnings. | 
|  | for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { | 
|  | const int is_uv = i > 0; | 
|  | setup_pred_plane( | 
|  | &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv], | 
|  | src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL, | 
|  | x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | /*!\brief Assigns different quantization parameters to each super | 
|  | * block based on its TPL weight. | 
|  | * | 
|  | * \ingroup tpl_modelling | 
|  | * | 
|  | * \param[in]     cpi         Top level encoder instance structure | 
|  | * \param[in,out] td          Thread data structure | 
|  | * \param[in,out] x           Macro block level data for this block. | 
|  | * \param[in]     tile_info   Tile infromation / identification | 
|  | * \param[in]     mi_row      Block row (in "MI_SIZE" units) index | 
|  | * \param[in]     mi_col      Block column (in "MI_SIZE" units) index | 
|  | * \param[out]    num_planes  Number of image planes (e.g. Y,U,V) | 
|  | * | 
|  | * \remark No return value but updates macroblock and thread data | 
|  | * related to the q / q delta to be used. | 
|  | */ | 
|  | static inline void setup_delta_q(AV1_COMP *const cpi, ThreadData *td, | 
|  | MACROBLOCK *const x, | 
|  | const TileInfo *const tile_info, int mi_row, | 
|  | int mi_col, int num_planes) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | assert(delta_q_info->delta_q_present_flag); | 
|  |  | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | // Delta-q modulation based on variance | 
|  | av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size); | 
|  |  | 
|  | const int delta_q_res = delta_q_info->delta_q_res; | 
|  | int current_qindex = cm->quant_params.base_qindex; | 
|  | if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.qp_mode == | 
|  | DUCKY_ENCODE_FRAME_MODE_QINDEX) { | 
|  | const int sb_row = mi_row >> cm->seq_params->mib_size_log2; | 
|  | const int sb_col = mi_col >> cm->seq_params->mib_size_log2; | 
|  | const int sb_cols = | 
|  | CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2); | 
|  | const int sb_index = sb_row * sb_cols + sb_col; | 
|  | current_qindex = | 
|  | cpi->ducky_encode_info.frame_info.superblock_encode_qindex[sb_index]; | 
|  | } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) { | 
|  | if (DELTA_Q_PERCEPTUAL_MODULATION == 1) { | 
|  | const int block_wavelet_energy_level = | 
|  | av1_block_wavelet_energy_level(cpi, x, sb_size); | 
|  | x->sb_energy_level = block_wavelet_energy_level; | 
|  | current_qindex = av1_compute_q_from_energy_level_deltaq_mode( | 
|  | cpi, block_wavelet_energy_level); | 
|  | } else { | 
|  | const int block_var_level = av1_log_block_var(cpi, x, sb_size); | 
|  | x->sb_energy_level = block_var_level; | 
|  | current_qindex = | 
|  | av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level); | 
|  | } | 
|  | } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE && | 
|  | cpi->oxcf.algo_cfg.enable_tpl_model) { | 
|  | // Setup deltaq based on tpl stats | 
|  | current_qindex = | 
|  | av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col); | 
|  | } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) { | 
|  | current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col); | 
|  | } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) { | 
|  | current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col); | 
|  | } else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) { | 
|  | current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col); | 
|  | } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_VARIANCE_BOOST) { | 
|  | current_qindex = av1_get_sbq_variance_boost(cpi, x); | 
|  | } | 
|  |  | 
|  | x->rdmult_cur_qindex = current_qindex; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int adjusted_qindex = av1_adjust_q_from_delta_q_res( | 
|  | delta_q_res, xd->current_base_qindex, current_qindex); | 
|  | if (cpi->use_ducky_encode) { | 
|  | assert(adjusted_qindex == current_qindex); | 
|  | } | 
|  | current_qindex = adjusted_qindex; | 
|  |  | 
|  | x->delta_qindex = current_qindex - cm->quant_params.base_qindex; | 
|  | x->rdmult_delta_qindex = x->delta_qindex; | 
|  |  | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | xd->mi[0]->current_qindex = current_qindex; | 
|  | av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); | 
|  |  | 
|  | // keep track of any non-zero delta-q used | 
|  | td->deltaq_used |= (x->delta_qindex != 0); | 
|  |  | 
|  | if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { | 
|  | const int delta_lf_res = delta_q_info->delta_lf_res; | 
|  | const int lfmask = ~(delta_lf_res - 1); | 
|  | const int delta_lf_from_base = | 
|  | ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); | 
|  | const int8_t delta_lf = | 
|  | (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | const int mib_size = cm->seq_params->mib_size; | 
|  |  | 
|  | // pre-set the delta lf for loop filter. Note that this value is set | 
|  | // before mi is assigned for each block in current superblock | 
|  | for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { | 
|  | for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { | 
|  | const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); | 
|  | mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row, | 
|  | int mi_col) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | MACROBLOCK *x = &td->mb; | 
|  | const int frame_idx = cpi->gf_frame_index; | 
|  | TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
|  | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
|  |  | 
|  | av1_zero(x->tpl_keep_ref_frame); | 
|  |  | 
|  | if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return; | 
|  | if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return; | 
|  | if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return; | 
|  |  | 
|  | const int is_overlay = | 
|  | cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE; | 
|  | if (is_overlay) { | 
|  | memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; | 
|  | TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; | 
|  | const int tpl_stride = tpl_frame->stride; | 
|  | int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 }; | 
|  | const int step = 1 << block_mis_log2; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  |  | 
|  | const int mi_row_end = | 
|  | AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows); | 
|  | const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); | 
|  | const int mi_col_sr = | 
|  | coded_to_superres_mi(mi_col, cm->superres_scale_denominator); | 
|  | const int mi_col_end_sr = | 
|  | AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size], | 
|  | cm->superres_scale_denominator), | 
|  | mi_cols_sr); | 
|  | const int row_step = step; | 
|  | const int col_step_sr = | 
|  | coded_to_superres_mi(step, cm->superres_scale_denominator); | 
|  | for (int row = mi_row; row < mi_row_end; row += row_step) { | 
|  | for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) { | 
|  | const TplDepStats *this_stats = | 
|  | &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)]; | 
|  | int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 }; | 
|  | // Find the winner ref frame idx for the current block | 
|  | int64_t best_inter_cost = this_stats->pred_error[0]; | 
|  | int best_rf_idx = 0; | 
|  | for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) { | 
|  | if ((this_stats->pred_error[idx] < best_inter_cost) && | 
|  | (this_stats->pred_error[idx] != 0)) { | 
|  | best_inter_cost = this_stats->pred_error[idx]; | 
|  | best_rf_idx = idx; | 
|  | } | 
|  | } | 
|  | // tpl_pred_error is the pred_error reduction of best_ref w.r.t. | 
|  | // LAST_FRAME. | 
|  | tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] - | 
|  | this_stats->pred_error[LAST_FRAME - 1]; | 
|  |  | 
|  | for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) | 
|  | inter_cost[rf_idx] += tpl_pred_error[rf_idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int rank_index[INTER_REFS_PER_FRAME - 1]; | 
|  | for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { | 
|  | rank_index[idx] = idx + 1; | 
|  | for (int i = idx; i > 0; --i) { | 
|  | if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) { | 
|  | const int tmp = rank_index[i - 1]; | 
|  | rank_index[i - 1] = rank_index[i]; | 
|  | rank_index[i] = tmp; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | x->tpl_keep_ref_frame[INTRA_FRAME] = 1; | 
|  | x->tpl_keep_ref_frame[LAST_FRAME] = 1; | 
|  |  | 
|  | int cutoff_ref = 0; | 
|  | for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) { | 
|  | x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1; | 
|  | if (idx > 2) { | 
|  | if (!cutoff_ref) { | 
|  | // If the predictive coding gains are smaller than the previous more | 
|  | // relevant frame over certain amount, discard this frame and all the | 
|  | // frames afterwards. | 
|  | if (llabs(inter_cost[rank_index[idx]]) < | 
|  | llabs(inter_cost[rank_index[idx - 1]]) / 8 || | 
|  | inter_cost[rank_index[idx]] == 0) | 
|  | cutoff_ref = 1; | 
|  | } | 
|  |  | 
|  | if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x, | 
|  | int mi_row, int mi_col) { | 
|  | const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; | 
|  | const int orig_rdmult = cpi->rd.RDMULT; | 
|  |  | 
|  | assert(IMPLIES(cpi->ppi->gf_group.size > 0, | 
|  | cpi->gf_frame_index < cpi->ppi->gf_group.size)); | 
|  | const int gf_group_index = cpi->gf_frame_index; | 
|  | if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ && | 
|  | cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 && | 
|  | cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) { | 
|  | const int dr = | 
|  | av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult); | 
|  | x->rdmult = dr; | 
|  | } | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #if CONFIG_RT_ML_PARTITIONING | 
|  | // Get a prediction(stored in x->est_pred) for the whole superblock. | 
|  | static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | MACROBLOCK *x, int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int is_key_frame = frame_is_intra_only(cm); | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  |  | 
|  | // TODO(kyslov) Extend to 128x128 | 
|  | assert(cm->seq_params->sb_size == BLOCK_64X64); | 
|  |  | 
|  | av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64); | 
|  |  | 
|  | if (!is_key_frame) { | 
|  | MB_MODE_INFO *mi = xd->mi[0]; | 
|  | const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); | 
|  |  | 
|  | assert(yv12 != NULL); | 
|  |  | 
|  | av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, | 
|  | get_ref_scale_factors(cm, LAST_FRAME), 1); | 
|  | mi->ref_frame[0] = LAST_FRAME; | 
|  | mi->ref_frame[1] = NONE; | 
|  | mi->bsize = BLOCK_64X64; | 
|  | mi->mv[0].as_int = 0; | 
|  | mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); | 
|  |  | 
|  | set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); | 
|  |  | 
|  | xd->plane[0].dst.buf = x->est_pred; | 
|  | xd->plane[0].dst.stride = 64; | 
|  | av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); | 
|  | } else { | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | switch (xd->bd) { | 
|  | case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break; | 
|  | case 10: | 
|  | memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0])); | 
|  | break; | 
|  | case 12: | 
|  | memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0])); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); | 
|  | #endif  // CONFIG_VP9_HIGHBITDEPTH | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_RT_ML_PARTITIONING | 
|  |  | 
|  | #define AVG_CDF_WEIGHT_LEFT 3 | 
|  | #define AVG_CDF_WEIGHT_TOP_RIGHT 1 | 
|  |  | 
|  | /*!\brief Encode a superblock (minimal RD search involved) | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Encodes the superblock by a pre-determined partition pattern, only minor | 
|  | * rd-based searches are allowed to adjust the initial pattern. It is only used | 
|  | * by realtime encoding. | 
|  | */ | 
|  | static inline void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | const int mi_row, const int mi_col, | 
|  | const int seg_skip) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const SPEED_FEATURES *const sf = &cpi->sf; | 
|  | const TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + | 
|  | get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | PC_TREE *const pc_root = td->pc_root; | 
|  |  | 
|  | #if CONFIG_RT_ML_PARTITIONING | 
|  | if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) { | 
|  | RD_STATS dummy_rdc; | 
|  | get_estimated_pred(cpi, tile_info, x, mi_row, mi_col); | 
|  | av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, | 
|  | BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | // Set the partition | 
|  | if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || | 
|  | (sf->rt_sf.use_fast_fixed_part && x->sb_force_fixed_part == 1 && | 
|  | (!frame_is_intra_only(cm) && | 
|  | (!cpi->ppi->use_svc || | 
|  | !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)))) { | 
|  | // set a fixed-size partition | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | BLOCK_SIZE bsize_select = sf->part_sf.fixed_partition_size; | 
|  | if (sf->rt_sf.use_fast_fixed_part && | 
|  | x->content_state_sb.source_sad_nonrd < kLowSad) { | 
|  | bsize_select = cm->seq_params->sb_size; | 
|  | } | 
|  | if (cpi->sf.rt_sf.skip_encoding_non_reference_slide_change && | 
|  | cpi->rc.high_source_sad && cpi->ppi->rtc_ref.non_reference_frame) { | 
|  | bsize_select = cm->seq_params->sb_size; | 
|  | x->force_zeromv_skip_for_sb = 1; | 
|  | } | 
|  | const BLOCK_SIZE bsize = seg_skip ? sb_size : bsize_select; | 
|  | if (x->content_state_sb.source_sad_nonrd > kZeroSad) | 
|  | x->force_color_check_block_level = 1; | 
|  | av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); | 
|  | } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { | 
|  | // set a variance-based partition | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); | 
|  | } | 
|  | assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip || | 
|  | sf->part_sf.partition_search_type == VAR_BASED_PARTITION); | 
|  | set_cb_offsets(td->mb.cb_offset, 0, 0); | 
|  |  | 
|  | // Initialize the flag to skip cdef to 1. | 
|  | if (sf->rt_sf.skip_cdef_sb) { | 
|  | const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1; | 
|  | // If 128x128 block is used, we need to set the flag for all 4 64x64 sub | 
|  | // "blocks". | 
|  | for (int r = 0; r < block64_in_sb; ++r) { | 
|  | for (int c = 0; c < block64_in_sb; ++c) { | 
|  | const int idx_in_sb = | 
|  | r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64; | 
|  | if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, nonrd_use_partition_time); | 
|  | #endif | 
|  | av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
|  | pc_root); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, nonrd_use_partition_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // This function initializes the stats for encode_rd_sb. | 
|  | static inline void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td, | 
|  | const TileDataEnc *tile_data, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_root, | 
|  | RD_STATS *rd_cost, int mi_row, int mi_col, | 
|  | int gather_tpl_data) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const TileInfo *tile_info = &tile_data->tile_info; | 
|  | MACROBLOCK *x = &td->mb; | 
|  |  | 
|  | const SPEED_FEATURES *sf = &cpi->sf; | 
|  | const int use_simple_motion_search = | 
|  | (sf->part_sf.simple_motion_search_split || | 
|  | sf->part_sf.simple_motion_search_prune_rect || | 
|  | sf->part_sf.simple_motion_search_early_term_none || | 
|  | sf->part_sf.ml_early_term_after_part_split_level) && | 
|  | !frame_is_intra_only(cm); | 
|  | if (use_simple_motion_search) { | 
|  | av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root, | 
|  | mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && | 
|  | cpi->oxcf.gf_cfg.lag_in_frames == 0)) { | 
|  | init_ref_frame_space(cpi, td, mi_row, mi_col); | 
|  | x->sb_energy_level = 0; | 
|  | x->part_search_info.cnn_output_valid = 0; | 
|  | if (gather_tpl_data) { | 
|  | if (cm->delta_q_info.delta_q_present_flag) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes); | 
|  | av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | // TODO(jingning): revisit this function. | 
|  | if (cpi->oxcf.algo_cfg.enable_tpl_model && (0)) { | 
|  | adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | (void)tile_info; | 
|  | (void)mi_row; | 
|  | (void)mi_col; | 
|  | (void)gather_tpl_data; | 
|  | #endif | 
|  |  | 
|  | x->reuse_inter_pred = false; | 
|  | x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; | 
|  | reset_mb_rd_record(x->txfm_search_info.mb_rd_record); | 
|  | av1_zero(x->picked_ref_frames_mask); | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | static void sb_qp_sweep_init_quantizers(AV1_COMP *cpi, ThreadData *td, | 
|  | const TileDataEnc *tile_data, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | RD_STATS *rd_cost, int mi_row, | 
|  | int mi_col, int delta_qp_ofs) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | const TileInfo *tile_info = &tile_data->tile_info; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | assert(delta_q_info->delta_q_present_flag); | 
|  | const int delta_q_res = delta_q_info->delta_q_res; | 
|  |  | 
|  | const SPEED_FEATURES *sf = &cpi->sf; | 
|  | const int use_simple_motion_search = | 
|  | (sf->part_sf.simple_motion_search_split || | 
|  | sf->part_sf.simple_motion_search_prune_rect || | 
|  | sf->part_sf.simple_motion_search_early_term_none || | 
|  | sf->part_sf.ml_early_term_after_part_split_level) && | 
|  | !frame_is_intra_only(cm); | 
|  | if (use_simple_motion_search) { | 
|  | av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_tree, | 
|  | mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | int current_qindex = x->rdmult_cur_qindex + delta_qp_ofs; | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | current_qindex = av1_adjust_q_from_delta_q_res( | 
|  | delta_q_res, xd->current_base_qindex, current_qindex); | 
|  |  | 
|  | x->delta_qindex = current_qindex - cm->quant_params.base_qindex; | 
|  |  | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | xd->mi[0]->current_qindex = current_qindex; | 
|  | av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0); | 
|  |  | 
|  | // keep track of any non-zero delta-q used | 
|  | td->deltaq_used |= (x->delta_qindex != 0); | 
|  |  | 
|  | if (cpi->oxcf.tool_cfg.enable_deltalf_mode) { | 
|  | const int delta_lf_res = delta_q_info->delta_lf_res; | 
|  | const int lfmask = ~(delta_lf_res - 1); | 
|  | const int delta_lf_from_base = | 
|  | ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask); | 
|  | const int8_t delta_lf = | 
|  | (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | const int mib_size = cm->seq_params->mib_size; | 
|  |  | 
|  | // pre-set the delta lf for loop filter. Note that this value is set | 
|  | // before mi is assigned for each block in current superblock | 
|  | for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) { | 
|  | for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) { | 
|  | const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k); | 
|  | mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | x->reuse_inter_pred = false; | 
|  | x->txfm_search_params.mode_eval_type = DEFAULT_EVAL; | 
|  | reset_mb_rd_record(x->txfm_search_info.mb_rd_record); | 
|  | av1_zero(x->picked_ref_frames_mask); | 
|  | av1_invalid_rd_stats(rd_cost); | 
|  | } | 
|  |  | 
|  | static int sb_qp_sweep(AV1_COMP *const cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize, | 
|  | SIMPLE_MOTION_DATA_TREE *sms_tree, | 
|  | SB_FIRST_PASS_STATS *sb_org_stats) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | RD_STATS rdc_winner, cur_rdc; | 
|  | av1_invalid_rd_stats(&rdc_winner); | 
|  |  | 
|  | int best_qindex = td->mb.rdmult_delta_qindex; | 
|  | const int start = cm->current_frame.frame_type == KEY_FRAME ? -20 : -12; | 
|  | const int end = cm->current_frame.frame_type == KEY_FRAME ? 20 : 12; | 
|  | const int step = cm->delta_q_info.delta_q_res; | 
|  |  | 
|  | for (int sweep_qp_delta = start; sweep_qp_delta <= end; | 
|  | sweep_qp_delta += step) { | 
|  | sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_tree, &cur_rdc, mi_row, | 
|  | mi_col, sweep_qp_delta); | 
|  |  | 
|  | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
|  | const int backup_current_qindex = | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
|  |  | 
|  | av1_reset_mbmi(&cm->mi_params, bsize, mi_row, mi_col); | 
|  | av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col); | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex; | 
|  |  | 
|  | td->pc_root = av1_alloc_pc_tree_node(bsize); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, | 
|  | &cur_rdc, cur_rdc, td->pc_root, sms_tree, NULL, | 
|  | SB_DRY_PASS, NULL); | 
|  |  | 
|  | if ((rdc_winner.rdcost > cur_rdc.rdcost) || | 
|  | (abs(sweep_qp_delta) < abs(best_qindex - x->rdmult_delta_qindex) && | 
|  | rdc_winner.rdcost == cur_rdc.rdcost)) { | 
|  | rdc_winner = cur_rdc; | 
|  | best_qindex = x->rdmult_delta_qindex + sweep_qp_delta; | 
|  | } | 
|  | } | 
|  |  | 
|  | return best_qindex; | 
|  | } | 
|  | #endif  //! CONFIG_REALTIME_ONLY | 
|  |  | 
|  | /*!\brief Encode a superblock (RD-search-based) | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * Conducts partition search for a superblock, based on rate-distortion costs, | 
|  | * from scratch or adjusting from a pre-calculated partition pattern. | 
|  | */ | 
|  | static inline void encode_rd_sb(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, TokenExtra **tp, | 
|  | const int mi_row, const int mi_col, | 
|  | const int seg_skip) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const SPEED_FEATURES *const sf = &cpi->sf; | 
|  | const TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + | 
|  | get_mi_grid_idx(&cm->mi_params, mi_row, mi_col); | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int dummy_rate; | 
|  | int64_t dummy_dist; | 
|  | RD_STATS dummy_rdc; | 
|  | SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root; | 
|  |  | 
|  | #if CONFIG_REALTIME_ONLY | 
|  | (void)seg_skip; | 
|  | #endif  // CONFIG_REALTIME_ONLY | 
|  |  | 
|  | init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col, | 
|  | 1); | 
|  |  | 
|  | // Encode the superblock | 
|  | if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) { | 
|  | // partition search starting from a variance-based partition | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rd_use_partition_time); | 
|  | #endif | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rate, &dummy_dist, 1, td->pc_root); | 
|  | av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, | 
|  | sf->part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rd_use_partition_time); | 
|  | #endif | 
|  | } | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) { | 
|  | // partition search by adjusting a fixed-size partition | 
|  | av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size); | 
|  | const BLOCK_SIZE bsize = | 
|  | seg_skip ? sb_size : sf->part_sf.fixed_partition_size; | 
|  | av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rate, &dummy_dist, 1, td->pc_root); | 
|  | av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, | 
|  | sf->part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | } else { | 
|  | // The most exhaustive recursive partition search | 
|  | SuperBlockEnc *sb_enc = &x->sb_enc; | 
|  | // No stats for overlay frames. Exclude key frame. | 
|  | av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc); | 
|  |  | 
|  | // Reset the tree for simple motion search data | 
|  | av1_reset_simple_motion_tree_partition(sms_root, sb_size); | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, rd_pick_partition_time); | 
|  | #endif | 
|  |  | 
|  | // Estimate the maximum square partition block size, which will be used | 
|  | // as the starting block size for partitioning the sb | 
|  | set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col); | 
|  |  | 
|  | // The superblock can be searched only once, or twice consecutively for | 
|  | // better quality. Note that the meaning of passes here is different from | 
|  | // the general concept of 1-pass/2-pass encoders. | 
|  | const int num_passes = | 
|  | cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1; | 
|  |  | 
|  | if (cpi->oxcf.sb_qp_sweep && | 
|  | !(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME && | 
|  | cpi->oxcf.gf_cfg.lag_in_frames == 0) && | 
|  | cm->delta_q_info.delta_q_present_flag) { | 
|  | AOM_CHECK_MEM_ERROR( | 
|  | x->e_mbd.error_info, td->mb.sb_stats_cache, | 
|  | (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_stats_cache))); | 
|  | av1_backup_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, | 
|  | mi_col); | 
|  | assert(x->rdmult_delta_qindex == x->delta_qindex); | 
|  |  | 
|  | const int best_qp_diff = | 
|  | sb_qp_sweep(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, sms_root, | 
|  | td->mb.sb_stats_cache) - | 
|  | x->rdmult_delta_qindex; | 
|  |  | 
|  | sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_root, &dummy_rdc, | 
|  | mi_row, mi_col, best_qp_diff); | 
|  |  | 
|  | const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col); | 
|  | const int backup_current_qindex = | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex; | 
|  |  | 
|  | av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); | 
|  | av1_restore_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row, | 
|  | mi_col); | 
|  |  | 
|  | cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = | 
|  | backup_current_qindex; | 
|  | aom_free(td->mb.sb_stats_cache); | 
|  | td->mb.sb_stats_cache = NULL; | 
|  | } | 
|  | if (num_passes == 1) { | 
|  | #if CONFIG_PARTITION_SEARCH_ORDER | 
|  | if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) { | 
|  | av1_reset_part_sf(&cpi->sf.part_sf); | 
|  | av1_reset_sf_for_ext_part(cpi); | 
|  | RD_STATS this_rdc; | 
|  | av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row, | 
|  | mi_col, sb_size, &this_rdc); | 
|  | } else { | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rdc, dummy_rdc, td->pc_root, sms_root, | 
|  | NULL, SB_SINGLE_PASS, NULL); | 
|  | } | 
|  | #else | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
|  | SB_SINGLE_PASS, NULL); | 
|  | #endif  // CONFIG_PARTITION_SEARCH_ORDER | 
|  | } else { | 
|  | // First pass | 
|  | AOM_CHECK_MEM_ERROR( | 
|  | x->e_mbd.error_info, td->mb.sb_fp_stats, | 
|  | (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_fp_stats))); | 
|  | av1_backup_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, | 
|  | mi_col); | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
|  | SB_DRY_PASS, NULL); | 
|  |  | 
|  | // Second pass | 
|  | init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, | 
|  | mi_col, 0); | 
|  | av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col); | 
|  | av1_reset_simple_motion_tree_partition(sms_root, sb_size); | 
|  |  | 
|  | av1_restore_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row, | 
|  | mi_col); | 
|  |  | 
|  | td->pc_root = av1_alloc_pc_tree_node(sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, | 
|  | &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL, | 
|  | SB_WET_PASS, NULL); | 
|  | aom_free(td->mb.sb_fp_stats); | 
|  | td->mb.sb_fp_stats = NULL; | 
|  | } | 
|  |  | 
|  | // Reset to 0 so that it wouldn't be used elsewhere mistakenly. | 
|  | sb_enc->tpl_data_count = 0; | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, rd_pick_partition_time); | 
|  | #endif | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | // Update the inter rd model | 
|  | // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. | 
|  | if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && | 
|  | cm->tiles.cols == 1 && cm->tiles.rows == 1) { | 
|  | av1_inter_mode_data_fit(tile_data, x->rdmult); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the cost update of symbols mode, coeff and dv are tile or off. | 
|  | static inline int is_mode_coeff_dv_upd_freq_tile_or_off( | 
|  | const AV1_COMP *const cpi) { | 
|  | const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; | 
|  |  | 
|  | return (inter_sf->coeff_cost_upd_level <= INTERNAL_COST_UPD_TILE && | 
|  | inter_sf->mode_cost_upd_level <= INTERNAL_COST_UPD_TILE && | 
|  | cpi->sf.intra_sf.dv_cost_upd_level <= INTERNAL_COST_UPD_TILE); | 
|  | } | 
|  |  | 
|  | // When row-mt is enabled and cost update frequencies are set to off/tile, | 
|  | // processing of current SB can start even before processing of top-right SB | 
|  | // is finished. This function checks if it is sufficient to wait for top SB | 
|  | // to finish processing before current SB starts processing. | 
|  | static inline int delay_wait_for_top_right_sb(const AV1_COMP *const cpi) { | 
|  | const MODE mode = cpi->oxcf.mode; | 
|  | if (mode == GOOD) return 0; | 
|  |  | 
|  | if (mode == ALLINTRA) | 
|  | return is_mode_coeff_dv_upd_freq_tile_or_off(cpi); | 
|  | else if (mode == REALTIME) | 
|  | return (is_mode_coeff_dv_upd_freq_tile_or_off(cpi) && | 
|  | cpi->sf.inter_sf.mv_cost_upd_level <= INTERNAL_COST_UPD_TILE); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*!\brief Calculate source SAD at superblock level using 64x64 block source SAD | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | */ | 
|  | static inline uint64_t get_sb_source_sad(const AV1_COMP *cpi, int mi_row, | 
|  | int mi_col) { | 
|  | if (cpi->src_sad_blk_64x64 == NULL) return UINT64_MAX; | 
|  |  | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const int blk_64x64_in_mis = (cm->seq_params->sb_size == BLOCK_128X128) | 
|  | ? (cm->seq_params->mib_size >> 1) | 
|  | : cm->seq_params->mib_size; | 
|  | const int num_blk_64x64_cols = | 
|  | (cm->mi_params.mi_cols + blk_64x64_in_mis - 1) / blk_64x64_in_mis; | 
|  | const int num_blk_64x64_rows = | 
|  | (cm->mi_params.mi_rows + blk_64x64_in_mis - 1) / blk_64x64_in_mis; | 
|  | const int blk_64x64_col_index = mi_col / blk_64x64_in_mis; | 
|  | const int blk_64x64_row_index = mi_row / blk_64x64_in_mis; | 
|  | uint64_t curr_sb_sad = UINT64_MAX; | 
|  | // Avoid the border as sad_blk_64x64 may not be set for the border | 
|  | // in the scene detection. | 
|  | if ((blk_64x64_row_index >= num_blk_64x64_rows - 1) || | 
|  | (blk_64x64_col_index >= num_blk_64x64_cols - 1)) { | 
|  | return curr_sb_sad; | 
|  | } | 
|  | const uint64_t *const src_sad_blk_64x64_data = | 
|  | &cpi->src_sad_blk_64x64[blk_64x64_col_index + | 
|  | blk_64x64_row_index * num_blk_64x64_cols]; | 
|  | if (cm->seq_params->sb_size == BLOCK_128X128) { | 
|  | // Calculate SB source SAD by accumulating source SAD of 64x64 blocks in the | 
|  | // superblock | 
|  | curr_sb_sad = src_sad_blk_64x64_data[0] + src_sad_blk_64x64_data[1] + | 
|  | src_sad_blk_64x64_data[num_blk_64x64_cols] + | 
|  | src_sad_blk_64x64_data[num_blk_64x64_cols + 1]; | 
|  | } else if (cm->seq_params->sb_size == BLOCK_64X64) { | 
|  | curr_sb_sad = src_sad_blk_64x64_data[0]; | 
|  | } | 
|  | return curr_sb_sad; | 
|  | } | 
|  |  | 
|  | /*!\brief Determine whether grading content can be skipped based on sad stat | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | */ | 
|  | static inline bool is_calc_src_content_needed(AV1_COMP *cpi, | 
|  | MACROBLOCK *const x, int mi_row, | 
|  | int mi_col) { | 
|  | if (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1) | 
|  | return true; | 
|  | const uint64_t curr_sb_sad = get_sb_source_sad(cpi, mi_row, mi_col); | 
|  | if (curr_sb_sad == UINT64_MAX) return true; | 
|  | if (curr_sb_sad == 0) { | 
|  | x->content_state_sb.source_sad_nonrd = kZeroSad; | 
|  | return false; | 
|  | } | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | bool do_calc_src_content = true; | 
|  |  | 
|  | if (cpi->oxcf.speed < 9) return do_calc_src_content; | 
|  |  | 
|  | // TODO(yunqing): Tune/validate the thresholds for 128x128 SB size. | 
|  | if (AOMMIN(cm->width, cm->height) < 360) { | 
|  | // Derive Average 64x64 block source SAD from SB source SAD | 
|  | const uint64_t avg_64x64_blk_sad = | 
|  | (cm->seq_params->sb_size == BLOCK_128X128) ? ((curr_sb_sad + 2) >> 2) | 
|  | : curr_sb_sad; | 
|  |  | 
|  | // The threshold is determined based on kLowSad and kHighSad threshold and | 
|  | // test results. | 
|  | uint64_t thresh_low = 15000; | 
|  | uint64_t thresh_high = 40000; | 
|  |  | 
|  | if (cpi->sf.rt_sf.increase_source_sad_thresh) { | 
|  | thresh_low = thresh_low << 1; | 
|  | thresh_high = thresh_high << 1; | 
|  | } | 
|  |  | 
|  | if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) { | 
|  | do_calc_src_content = false; | 
|  | // Note: set x->content_state_sb.source_sad_rd as well if this is extended | 
|  | // to RTC rd path. | 
|  | x->content_state_sb.source_sad_nonrd = kMedSad; | 
|  | } | 
|  | } | 
|  |  | 
|  | return do_calc_src_content; | 
|  | } | 
|  |  | 
|  | /*!\brief Determine whether grading content is needed based on sf and frame stat | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | */ | 
|  | // TODO(any): consolidate sfs to make interface cleaner | 
|  | static inline void grade_source_content_sb(AV1_COMP *cpi, MACROBLOCK *const x, | 
|  | TileDataEnc *tile_data, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | if (cm->current_frame.frame_type == KEY_FRAME || | 
|  | (cpi->ppi->use_svc && | 
|  | cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) { | 
|  | assert(x->content_state_sb.source_sad_nonrd == kMedSad); | 
|  | assert(x->content_state_sb.source_sad_rd == kMedSad); | 
|  | return; | 
|  | } | 
|  | bool calc_src_content = false; | 
|  |  | 
|  | if (cpi->sf.rt_sf.source_metrics_sb_nonrd) { | 
|  | if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) { | 
|  | calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col); | 
|  | } else { | 
|  | x->content_state_sb.source_sad_nonrd = kZeroSad; | 
|  | } | 
|  | } else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) && | 
|  | (cm->width * cm->height <= 352 * 288)) { | 
|  | if (cpi->rc.frame_source_sad > 0) | 
|  | calc_src_content = true; | 
|  | else | 
|  | x->content_state_sb.source_sad_rd = kZeroSad; | 
|  | } | 
|  | if (calc_src_content) | 
|  | av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | /*!\brief Encode a superblock row by breaking it into superblocks | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * Do partition and mode search for an sb row: one row of superblocks filling up | 
|  | * the width of the current tile. | 
|  | */ | 
|  | static inline void encode_sb_row(AV1_COMP *cpi, ThreadData *td, | 
|  | TileDataEnc *tile_data, int mi_row, | 
|  | TokenExtra **tp) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const TileInfo *const tile_info = &tile_data->tile_info; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
|  | AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync; | 
|  | bool row_mt_enabled = mt_info->row_mt_enabled; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); | 
|  | const BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | const int mib_size = cm->seq_params->mib_size; | 
|  | const int mib_size_log2 = cm->seq_params->mib_size_log2; | 
|  | const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2; | 
|  | const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, encode_sb_row_time); | 
|  | #endif | 
|  |  | 
|  | // Initialize the left context for the new SB row | 
|  | av1_zero_left_context(xd); | 
|  |  | 
|  | // Reset delta for quantizer and loof filters at the beginning of every tile | 
|  | if (mi_row == tile_info->mi_row_start || row_mt_enabled) { | 
|  | if (cm->delta_q_info.delta_q_present_flag) | 
|  | xd->current_base_qindex = cm->quant_params.base_qindex; | 
|  | if (cm->delta_q_info.delta_lf_present_flag) { | 
|  | av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
|  | } | 
|  | } | 
|  |  | 
|  | reset_thresh_freq_fact(x); | 
|  |  | 
|  | // Code each SB in the row | 
|  | for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0; | 
|  | mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) { | 
|  | // In realtime/allintra mode and when frequency of cost updates is off/tile, | 
|  | // wait for the top superblock to finish encoding. Otherwise, wait for the | 
|  | // top-right superblock to finish encoding. | 
|  | enc_row_mt->sync_read_ptr( | 
|  | row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi)); | 
|  |  | 
|  | #if CONFIG_MULTITHREAD | 
|  | if (row_mt_enabled) { | 
|  | pthread_mutex_lock(enc_row_mt->mutex_); | 
|  | const bool row_mt_exit = enc_row_mt->row_mt_exit; | 
|  | pthread_mutex_unlock(enc_row_mt->mutex_); | 
|  | // Exit in case any worker has encountered an error. | 
|  | if (row_mt_exit) return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled; | 
|  | if (update_cdf && (tile_info->mi_row_start != mi_row)) { | 
|  | if ((tile_info->mi_col_start == mi_col)) { | 
|  | // restore frame context at the 1st column sb | 
|  | *xd->tile_ctx = *x->row_ctx; | 
|  | } else { | 
|  | // update context | 
|  | int wt_left = AVG_CDF_WEIGHT_LEFT; | 
|  | int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT; | 
|  | if (tile_info->mi_col_end > (mi_col + mib_size)) | 
|  | av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile, | 
|  | wt_left, wt_tr); | 
|  | else | 
|  | av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1, | 
|  | wt_left, wt_tr); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the rate cost tables for some symbols | 
|  | av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col); | 
|  |  | 
|  | // Reset color coding related parameters | 
|  | av1_zero(x->color_sensitivity_sb); | 
|  | av1_zero(x->color_sensitivity_sb_g); | 
|  | av1_zero(x->color_sensitivity_sb_alt); | 
|  | av1_zero(x->color_sensitivity); | 
|  | x->content_state_sb.source_sad_nonrd = kMedSad; | 
|  | x->content_state_sb.source_sad_rd = kMedSad; | 
|  | x->content_state_sb.lighting_change = 0; | 
|  | x->content_state_sb.low_sumdiff = 0; | 
|  | x->force_zeromv_skip_for_sb = 0; | 
|  | x->sb_me_block = 0; | 
|  | x->sb_me_partition = 0; | 
|  | x->sb_me_mv.as_int = 0; | 
|  | x->sb_col_scroll = 0; | 
|  | x->sb_row_scroll = 0; | 
|  | x->sb_force_fixed_part = 1; | 
|  | x->color_palette_thresh = 64; | 
|  | x->force_color_check_block_level = 0; | 
|  | x->nonrd_prune_ref_frame_search = | 
|  | cpi->sf.rt_sf.nonrd_prune_ref_frame_search; | 
|  |  | 
|  | if (cpi->oxcf.mode == ALLINTRA) { | 
|  | x->intra_sb_rdmult_modifier = 128; | 
|  | } | 
|  |  | 
|  | xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv; | 
|  | x->source_variance = UINT_MAX; | 
|  | td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); | 
|  |  | 
|  | // Get segment id and skip flag | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | int seg_skip = 0; | 
|  | if (seg->enabled) { | 
|  | const uint8_t *const map = | 
|  | seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; | 
|  | const uint8_t segment_id = | 
|  | map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col) | 
|  | : 0; | 
|  | seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); | 
|  | } | 
|  |  | 
|  | produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col); | 
|  |  | 
|  | init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks, | 
|  | sb_size); | 
|  |  | 
|  | // Grade the temporal variation of the sb, the grade will be used to decide | 
|  | // fast mode search strategy for coding blocks | 
|  | if (!seg_skip) grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col); | 
|  |  | 
|  | // encode the superblock | 
|  | if (use_nonrd_mode) { | 
|  | encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); | 
|  | } else { | 
|  | encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip); | 
|  | } | 
|  |  | 
|  | // Update the top-right context in row_mt coding | 
|  | if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) { | 
|  | if (sb_cols_in_tile == 1) | 
|  | x->row_ctx[0] = *xd->tile_ctx; | 
|  | else if (sb_col_in_tile >= 1) | 
|  | x->row_ctx[sb_col_in_tile - 1] = *xd->tile_ctx; | 
|  | } | 
|  | enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile, | 
|  | sb_cols_in_tile); | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, encode_sb_row_time); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void init_encode_frame_mb_context(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | // Copy data over into macro block data structures. | 
|  | av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, | 
|  | cm->seq_params->sb_size); | 
|  |  | 
|  | av1_setup_block_planes(xd, cm->seq_params->subsampling_x, | 
|  | cm->seq_params->subsampling_y, num_planes); | 
|  | } | 
|  |  | 
|  | void av1_alloc_tile_data(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  |  | 
|  | av1_row_mt_mem_dealloc(cpi); | 
|  |  | 
|  | aom_free(cpi->tile_data); | 
|  | cpi->allocated_tiles = 0; | 
|  | enc_row_mt->allocated_tile_cols = 0; | 
|  | enc_row_mt->allocated_tile_rows = 0; | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, cpi->tile_data, | 
|  | aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); | 
|  |  | 
|  | cpi->allocated_tiles = tile_cols * tile_rows; | 
|  | enc_row_mt->allocated_tile_cols = tile_cols; | 
|  | enc_row_mt->allocated_tile_rows = tile_rows; | 
|  | for (int tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
|  | for (int tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
|  | const int tile_index = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *const this_tile = &cpi->tile_data[tile_index]; | 
|  | av1_zero(this_tile->row_mt_sync); | 
|  | this_tile->row_ctx = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_init_tile_data(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int tile_col, tile_row; | 
|  | TokenInfo *const token_info = &cpi->token_info; | 
|  | TokenExtra *pre_tok = token_info->tile_tok[0][0]; | 
|  | TokenList *tplist = token_info->tplist[0][0]; | 
|  | unsigned int tile_tok = 0; | 
|  | int tplist_count = 0; | 
|  |  | 
|  | if (!is_stat_generation_stage(cpi) && | 
|  | cm->features.allow_screen_content_tools) { | 
|  | // Number of tokens for which token info needs to be allocated. | 
|  | unsigned int tokens_required = | 
|  | get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols, | 
|  | MAX_SB_SIZE_LOG2, num_planes); | 
|  | // Allocate/reallocate memory for token related info if the number of tokens | 
|  | // required is more than the number of tokens already allocated. This could | 
|  | // occur in case of the following: | 
|  | // 1) If the memory is not yet allocated | 
|  | // 2) If the frame dimensions have changed | 
|  | const bool realloc_tokens = tokens_required > token_info->tokens_allocated; | 
|  | if (realloc_tokens) { | 
|  | free_token_info(token_info); | 
|  | alloc_token_info(cm, token_info, tokens_required); | 
|  | pre_tok = token_info->tile_tok[0][0]; | 
|  | tplist = token_info->tplist[0][0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
|  | for (tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
|  | TileDataEnc *const tile_data = | 
|  | &cpi->tile_data[tile_row * tile_cols + tile_col]; | 
|  | TileInfo *const tile_info = &tile_data->tile_info; | 
|  | av1_tile_init(tile_info, cm, tile_row, tile_col); | 
|  | tile_data->firstpass_top_mv = kZeroMv; | 
|  | tile_data->abs_sum_level = 0; | 
|  |  | 
|  | if (is_token_info_allocated(token_info)) { | 
|  | token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; | 
|  | pre_tok = token_info->tile_tok[tile_row][tile_col]; | 
|  | tile_tok = allocated_tokens( | 
|  | tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, | 
|  | num_planes); | 
|  | token_info->tplist[tile_row][tile_col] = tplist + tplist_count; | 
|  | tplist = token_info->tplist[tile_row][tile_col]; | 
|  | tplist_count = av1_get_sb_rows_in_tile(cm, tile_info); | 
|  | } | 
|  | tile_data->allow_update_cdf = !cm->tiles.large_scale; | 
|  | tile_data->allow_update_cdf = tile_data->allow_update_cdf && | 
|  | !cm->features.disable_cdf_update && | 
|  | !delay_wait_for_top_right_sb(cpi); | 
|  | tile_data->tctx = *cm->fc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Populate the start palette token info prior to encoding an SB row. | 
|  | static inline void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info, | 
|  | int tile_row, int tile_col, int mi_row, | 
|  | TokenExtra **tp) { | 
|  | const TokenInfo *token_info = &cpi->token_info; | 
|  | if (!is_token_info_allocated(token_info)) return; | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col]; | 
|  | const int sb_row_in_tile = | 
|  | (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; | 
|  |  | 
|  | get_start_tok(cpi, tile_row, tile_col, mi_row, tp, | 
|  | cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes); | 
|  | assert(tplist != NULL); | 
|  | tplist[sb_row_in_tile].start = *tp; | 
|  | } | 
|  |  | 
|  | // Populate the token count after encoding an SB row. | 
|  | static inline void populate_token_count(AV1_COMP *cpi, | 
|  | const TileInfo *tile_info, int tile_row, | 
|  | int tile_col, int mi_row, | 
|  | TokenExtra *tok) { | 
|  | const TokenInfo *token_info = &cpi->token_info; | 
|  | if (!is_token_info_allocated(token_info)) return; | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | TokenList *const tplist = token_info->tplist[tile_row][tile_col]; | 
|  | const int sb_row_in_tile = | 
|  | (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2; | 
|  | const int tile_mb_cols = | 
|  | (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; | 
|  | const int num_mb_rows_in_sb = | 
|  | ((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; | 
|  | tplist[sb_row_in_tile].count = | 
|  | (unsigned int)(tok - tplist[sb_row_in_tile].start); | 
|  |  | 
|  | assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <= | 
|  | get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, | 
|  | cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, | 
|  | num_planes)); | 
|  |  | 
|  | (void)num_planes; | 
|  | (void)tile_mb_cols; | 
|  | (void)num_mb_rows_in_sb; | 
|  | } | 
|  |  | 
|  | /*!\brief Encode a superblock row | 
|  | * | 
|  | * \ingroup partition_search | 
|  | */ | 
|  | void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, | 
|  | int tile_col, int mi_row) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; | 
|  | const TileInfo *const tile_info = &this_tile->tile_info; | 
|  | TokenExtra *tok = NULL; | 
|  |  | 
|  | get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok); | 
|  |  | 
|  | encode_sb_row(cpi, td, this_tile, mi_row, &tok); | 
|  |  | 
|  | populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok); | 
|  | } | 
|  |  | 
|  | /*!\brief Encode a tile | 
|  | * | 
|  | * \ingroup partition_search | 
|  | */ | 
|  | void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, | 
|  | int tile_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | TileDataEnc *const this_tile = | 
|  | &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; | 
|  | const TileInfo *const tile_info = &this_tile->tile_info; | 
|  |  | 
|  | if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile); | 
|  |  | 
|  | av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, | 
|  | tile_info->mi_col_end, tile_row); | 
|  | av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, | 
|  | &td->mb.e_mbd); | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra) | 
|  | cfl_init(&td->mb.e_mbd.cfl, cm->seq_params); | 
|  | #endif | 
|  |  | 
|  | if (td->mb.txfm_search_info.mb_rd_record != NULL) { | 
|  | av1_crc32c_calculator_init( | 
|  | &td->mb.txfm_search_info.mb_rd_record->crc_calculator); | 
|  | } | 
|  |  | 
|  | for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; | 
|  | mi_row += cm->seq_params->mib_size) { | 
|  | av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); | 
|  | } | 
|  | this_tile->abs_sum_level = td->abs_sum_level; | 
|  | } | 
|  |  | 
|  | /*!\brief Break one frame into tiles and encode the tiles | 
|  | * | 
|  | * \ingroup partition_search | 
|  | * | 
|  | * \param[in]    cpi    Top-level encoder structure | 
|  | */ | 
|  | static inline void encode_tiles(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int tile_cols = cm->tiles.cols; | 
|  | const int tile_rows = cm->tiles.rows; | 
|  | int tile_col, tile_row; | 
|  |  | 
|  | MACROBLOCK *const mb = &cpi->td.mb; | 
|  | assert(IMPLIES(cpi->tile_data == NULL, | 
|  | cpi->allocated_tiles < tile_cols * tile_rows)); | 
|  | if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi); | 
|  |  | 
|  | av1_init_tile_data(cpi); | 
|  | av1_alloc_mb_data(cpi, mb); | 
|  |  | 
|  | for (tile_row = 0; tile_row < tile_rows; ++tile_row) { | 
|  | for (tile_col = 0; tile_col < tile_cols; ++tile_col) { | 
|  | TileDataEnc *const this_tile = | 
|  | &cpi->tile_data[tile_row * cm->tiles.cols + tile_col]; | 
|  | cpi->td.intrabc_used = 0; | 
|  | cpi->td.deltaq_used = 0; | 
|  | cpi->td.abs_sum_level = 0; | 
|  | cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0; | 
|  | cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0; | 
|  | cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | cpi->td.mb.tile_pb_ctx = &this_tile->tctx; | 
|  | av1_init_rtc_counters(&cpi->td.mb); | 
|  | cpi->td.mb.palette_pixels = 0; | 
|  | av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); | 
|  | if (!frame_is_intra_only(&cpi->common)) | 
|  | av1_accumulate_rtc_counters(cpi, &cpi->td.mb); | 
|  | cpi->palette_pixel_num += cpi->td.mb.palette_pixels; | 
|  | cpi->intrabc_used |= cpi->td.intrabc_used; | 
|  | cpi->deltaq_used |= cpi->td.deltaq_used; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_dealloc_mb_data(mb, av1_num_planes(cm)); | 
|  | } | 
|  |  | 
|  | // Set the relative distance of a reference frame w.r.t. current frame | 
|  | static inline void set_rel_frame_dist( | 
|  | const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info, | 
|  | const int ref_frame_flags) { | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  | int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX; | 
|  | ref_frame_dist_info->nearest_past_ref = NONE_FRAME; | 
|  | ref_frame_dist_info->nearest_future_ref = NONE_FRAME; | 
|  | for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
|  | ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0; | 
|  | if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { | 
|  | int dist = av1_encoder_get_relative_dist( | 
|  | cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME], | 
|  | cm->current_frame.display_order_hint); | 
|  | ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist; | 
|  | // Get the nearest ref_frame in the past | 
|  | if (abs(dist) < min_past_dist && dist < 0) { | 
|  | ref_frame_dist_info->nearest_past_ref = ref_frame; | 
|  | min_past_dist = abs(dist); | 
|  | } | 
|  | // Get the nearest ref_frame in the future | 
|  | if (dist < min_future_dist && dist > 0) { | 
|  | ref_frame_dist_info->nearest_future_ref = ref_frame; | 
|  | min_future_dist = dist; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int refs_are_one_sided(const AV1_COMMON *cm) { | 
|  | assert(!frame_is_intra_only(cm)); | 
|  |  | 
|  | int one_sided_refs = 1; | 
|  | const int cur_display_order_hint = cm->current_frame.display_order_hint; | 
|  | for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) { | 
|  | const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref); | 
|  | if (buf == NULL) continue; | 
|  | if (av1_encoder_get_relative_dist(buf->display_order_hint, | 
|  | cur_display_order_hint) > 0) { | 
|  | one_sided_refs = 0;  // bwd reference | 
|  | break; | 
|  | } | 
|  | } | 
|  | return one_sided_refs; | 
|  | } | 
|  |  | 
|  | static inline void get_skip_mode_ref_offsets(const AV1_COMMON *cm, | 
|  | int ref_order_hint[2]) { | 
|  | const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; | 
|  | ref_order_hint[0] = ref_order_hint[1] = 0; | 
|  | if (!skip_mode_info->skip_mode_allowed) return; | 
|  |  | 
|  | const RefCntBuffer *const buf_0 = | 
|  | get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0); | 
|  | const RefCntBuffer *const buf_1 = | 
|  | get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1); | 
|  | assert(buf_0 != NULL && buf_1 != NULL); | 
|  |  | 
|  | ref_order_hint[0] = buf_0->order_hint; | 
|  | ref_order_hint[1] = buf_1->order_hint; | 
|  | } | 
|  |  | 
|  | static int check_skip_mode_enabled(AV1_COMP *const cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  |  | 
|  | av1_setup_skip_mode_allowed(cm); | 
|  | if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0; | 
|  |  | 
|  | // Turn off skip mode if the temporal distances of the reference pair to the | 
|  | // current frame are different by more than 1 frame. | 
|  | const int cur_offset = (int)cm->current_frame.order_hint; | 
|  | int ref_offset[2]; | 
|  | get_skip_mode_ref_offsets(cm, ref_offset); | 
|  | const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info, | 
|  | cur_offset, ref_offset[0]); | 
|  | const int cur_to_ref1 = abs(get_relative_dist( | 
|  | &cm->seq_params->order_hint_info, cur_offset, ref_offset[1])); | 
|  | if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; | 
|  |  | 
|  | // High Latency: Turn off skip mode if all refs are fwd. | 
|  | if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0; | 
|  |  | 
|  | const int ref_frame[2] = { | 
|  | cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME, | 
|  | cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME | 
|  | }; | 
|  | if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[0]]) || | 
|  | !(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[1]])) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void set_default_interp_skip_flags( | 
|  | const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | interp_search_flags->default_interp_skip_flags = | 
|  | (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA | 
|  | : INTERP_SKIP_LUMA_SKIP_CHROMA; | 
|  | } | 
|  |  | 
|  | static inline void setup_prune_ref_frame_mask(AV1_COMP *cpi) { | 
|  | if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp || | 
|  | cpi->sf.inter_sf.disable_onesided_comp) && | 
|  | cpi->all_one_sided_refs) { | 
|  | // Disable all compound references | 
|  | cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES); | 
|  | } else if (!cpi->sf.rt_sf.use_nonrd_pick_mode && | 
|  | cpi->sf.inter_sf.selective_ref_frame >= 2) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int cur_frame_display_order_hint = | 
|  | cm->current_frame.display_order_hint; | 
|  | unsigned int *ref_display_order_hint = | 
|  | cm->cur_frame->ref_display_order_hint; | 
|  | const int arf2_dist = av1_encoder_get_relative_dist( | 
|  | ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME], | 
|  | cur_frame_display_order_hint); | 
|  | const int bwd_dist = av1_encoder_get_relative_dist( | 
|  | ref_display_order_hint[BWDREF_FRAME - LAST_FRAME], | 
|  | cur_frame_display_order_hint); | 
|  |  | 
|  | for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) { | 
|  | MV_REFERENCE_FRAME rf[2]; | 
|  | av1_set_ref_frame(rf, ref_idx); | 
|  | if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) || | 
|  | !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!cpi->all_one_sided_refs) { | 
|  | int ref_dist[2]; | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | ref_dist[i] = av1_encoder_get_relative_dist( | 
|  | ref_display_order_hint[rf[i] - LAST_FRAME], | 
|  | cur_frame_display_order_hint); | 
|  | } | 
|  |  | 
|  | // One-sided compound is used only when all reference frames are | 
|  | // one-sided. | 
|  | if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) { | 
|  | cpi->prune_ref_frame_mask |= 1 << ref_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpi->sf.inter_sf.selective_ref_frame >= 4 && | 
|  | (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) && | 
|  | (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { | 
|  | // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. | 
|  | if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) { | 
|  | // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer | 
|  | // reference to the current frame than ALTREF2_FRAME | 
|  | cpi->prune_ref_frame_mask |= 1 << ref_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int allow_deltaq_mode(AV1_COMP *cpi) { | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | BLOCK_SIZE sb_size = cm->seq_params->sb_size; | 
|  | int sbs_wide = mi_size_wide[sb_size]; | 
|  | int sbs_high = mi_size_high[sb_size]; | 
|  |  | 
|  | int64_t delta_rdcost = 0; | 
|  | for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) { | 
|  | for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) { | 
|  | int64_t this_delta_rdcost = 0; | 
|  | av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size, | 
|  | mi_row, mi_col); | 
|  | delta_rdcost += this_delta_rdcost; | 
|  | } | 
|  | } | 
|  | return delta_rdcost < 0; | 
|  | #else | 
|  | (void)cpi; | 
|  | return 1; | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  | } | 
|  |  | 
|  | #define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000 | 
|  | #define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4 | 
|  |  | 
|  | // Populates block level thresholds for force zeromv-skip decision | 
|  | static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) { | 
|  | if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return; | 
|  |  | 
|  | // Threshold for forcing zeromv-skip decision is as below: | 
|  | // For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103. | 
|  | // For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221 | 
|  | // allowing slightly higher error for smaller blocks. | 
|  | // Per Pixel Threshold of 64x64 block        Area of 64x64 block         1  1 | 
|  | // ------------------------------------=sqrt(---------------------)=sqrt(-)=- | 
|  | // Per Pixel Threshold of 128x128 block      Area of 128x128 block       4  2 | 
|  | // Thus, per pixel thresholds for blocks of size 32x32, 16x16,...  can be | 
|  | // chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for | 
|  | // small blocks, the same is clipped to 4. | 
|  | const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF; | 
|  | const int num_128x128_pix = | 
|  | block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128]; | 
|  |  | 
|  | for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) { | 
|  | const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize]; | 
|  |  | 
|  | // Calculate the threshold for zeromv-skip decision based on area of the | 
|  | // partition | 
|  | unsigned int thresh_exit_part_blk = | 
|  | (unsigned int)(thresh_exit_128x128_part * | 
|  | sqrt((double)num_block_pix / num_128x128_pix) + | 
|  | 0.5); | 
|  | thresh_exit_part_blk = AOMMIN( | 
|  | thresh_exit_part_blk, | 
|  | (unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix)); | 
|  | cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_block_hash_buffers(uint32_t *block_hash_values[2][2], | 
|  | int8_t *is_block_same[2][3]) { | 
|  | for (int k = 0; k < 2; ++k) { | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | aom_free(block_hash_values[k][j]); | 
|  | } | 
|  |  | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | aom_free(is_block_same[k][j]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Determines delta_q_res value for Variance Boost modulation. | 
|  | */ | 
|  | static int aom_get_variance_boost_delta_q_res(int qindex) { | 
|  | // Signaling delta_q changes across superblocks comes with inherent syntax | 
|  | // element overhead, which adds up to total payload size. This overhead | 
|  | // becomes proportionally bigger the higher the base qindex (i.e. lower | 
|  | // quality, smaller file size), so a balance needs to be struck. | 
|  | // - Smaller delta_q_res: more granular delta_q control, more bits spent | 
|  | // signaling deltas. | 
|  | // - Larger delta_q_res: coarser delta_q control, less bits spent signaling | 
|  | // deltas. | 
|  | // | 
|  | // At the same time, SB qindex fluctuations become larger the higher | 
|  | // the base qindex (between lowest and highest-variance regions): | 
|  | // - For QP 5: up to 8 qindexes | 
|  | // - For QP 60: up to 52 qindexes | 
|  | // | 
|  | // With these factors in mind, it was found that the best strategy that | 
|  | // maximizes quality per bitrate is by having very finely-grained delta_q | 
|  | // values for the lowest picture qindexes (to preserve tiny qindex SB deltas), | 
|  | // and progressively making them coarser as base qindex increases (to reduce | 
|  | // total signaling overhead). | 
|  | int delta_q_res = 1; | 
|  |  | 
|  | if (qindex >= 160) { | 
|  | delta_q_res = 8; | 
|  | } else if (qindex >= 120) { | 
|  | delta_q_res = 4; | 
|  | } else if (qindex >= 80) { | 
|  | delta_q_res = 2; | 
|  | } else { | 
|  | delta_q_res = 1; | 
|  | } | 
|  |  | 
|  | return delta_q_res; | 
|  | } | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | static float get_thresh_based_on_q(int qindex, int speed) { | 
|  | const float min_threshold_arr[2] = { 0.06f, 0.09f }; | 
|  | const float max_threshold_arr[2] = { 0.10f, 0.13f }; | 
|  |  | 
|  | const float min_thresh = min_threshold_arr[speed >= 3]; | 
|  | const float max_thresh = max_threshold_arr[speed >= 3]; | 
|  | const float thresh = min_thresh + (max_thresh - min_thresh) * | 
|  | ((float)MAXQ - (float)qindex) / | 
|  | (float)(MAXQ - MINQ); | 
|  | return thresh; | 
|  | } | 
|  |  | 
|  | static int get_mv_err(MV cur_mv, MV ref_mv) { | 
|  | const MV diff = { cur_mv.row - ref_mv.row, cur_mv.col - ref_mv.col }; | 
|  | const MV abs_diff = { abs(diff.row), abs(diff.col) }; | 
|  | const int mv_err = (abs_diff.row + abs_diff.col); | 
|  | return mv_err; | 
|  | } | 
|  |  | 
|  | static void check_mv_err_and_update(MV cur_mv, MV ref_mv, int *best_mv_err) { | 
|  | const int mv_err = get_mv_err(cur_mv, ref_mv); | 
|  | *best_mv_err = AOMMIN(mv_err, *best_mv_err); | 
|  | } | 
|  |  | 
|  | static int is_inside_frame_border(int mi_row, int mi_col, int row_offset, | 
|  | int col_offset, int num_mi_rows, | 
|  | int num_mi_cols) { | 
|  | if (mi_row + row_offset < 0 || mi_row + row_offset >= num_mi_rows || | 
|  | mi_col + col_offset < 0 || mi_col + col_offset >= num_mi_cols) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Compute the minimum MV error between current MV and spatial MV predictors. | 
|  | static int get_spatial_mvpred_err(AV1_COMMON *cm, TplParams *const tpl_data, | 
|  | int tpl_idx, int mi_row, int mi_col, | 
|  | int ref_idx, int_mv cur_mv, int allow_hp, | 
|  | int is_integer) { | 
|  | const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
|  | TplDepStats *tpl_ptr = tpl_frame->tpl_stats_ptr; | 
|  | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
|  |  | 
|  | int mv_err = INT32_MAX; | 
|  | const int step = 1 << block_mis_log2; | 
|  | const int mv_pred_pos_in_mis[6][2] = { | 
|  | { -step, 0 },     { 0, -step },     { -step, step }, | 
|  | { -step, -step }, { -2 * step, 0 }, { 0, -2 * step }, | 
|  | }; | 
|  |  | 
|  | for (int i = 0; i < 6; i++) { | 
|  | int row_offset = mv_pred_pos_in_mis[i][0]; | 
|  | int col_offset = mv_pred_pos_in_mis[i][1]; | 
|  | if (!is_inside_frame_border(mi_row, mi_col, row_offset, col_offset, | 
|  | tpl_frame->mi_rows, tpl_frame->mi_cols)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const TplDepStats *tpl_stats = | 
|  | &tpl_ptr[av1_tpl_ptr_pos(mi_row + row_offset, mi_col + col_offset, | 
|  | tpl_frame->stride, block_mis_log2)]; | 
|  | int_mv this_refmv = tpl_stats->mv[ref_idx]; | 
|  | lower_mv_precision(&this_refmv.as_mv, allow_hp, is_integer); | 
|  | check_mv_err_and_update(cur_mv.as_mv, this_refmv.as_mv, &mv_err); | 
|  | } | 
|  |  | 
|  | // Check MV error w.r.t. Global MV / Zero MV | 
|  | int_mv gm_mv = { 0 }; | 
|  | if (cm->global_motion[ref_idx + LAST_FRAME].wmtype > TRANSLATION) { | 
|  | const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); | 
|  | gm_mv = gm_get_motion_vector(&cm->global_motion[ref_idx + LAST_FRAME], | 
|  | allow_hp, bsize, mi_col, mi_row, is_integer); | 
|  | } | 
|  | check_mv_err_and_update(cur_mv.as_mv, gm_mv.as_mv, &mv_err); | 
|  |  | 
|  | return mv_err; | 
|  | } | 
|  |  | 
|  | // Compute the minimum MV error between current MV and temporal MV predictors. | 
|  | static int get_temporal_mvpred_err(AV1_COMMON *cm, int mi_row, int mi_col, | 
|  | int num_mi_rows, int num_mi_cols, | 
|  | int ref_idx, int_mv cur_mv, int allow_hp, | 
|  | int is_integer) { | 
|  | const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, ref_idx + LAST_FRAME); | 
|  | if (ref_buf == NULL) return INT32_MAX; | 
|  | int cur_to_ref_dist = | 
|  | get_relative_dist(&cm->seq_params->order_hint_info, | 
|  | cm->cur_frame->order_hint, ref_buf->order_hint); | 
|  |  | 
|  | int mv_err = INT32_MAX; | 
|  | const int mv_pred_pos_in_mis[7][2] = { | 
|  | { 0, 0 }, { 0, 2 }, { 2, 0 }, { 2, 2 }, { 4, -2 }, { 4, 4 }, { 2, 4 }, | 
|  | }; | 
|  |  | 
|  | for (int i = 0; i < 7; i++) { | 
|  | int row_offset = mv_pred_pos_in_mis[i][0]; | 
|  | int col_offset = mv_pred_pos_in_mis[i][1]; | 
|  | if (!is_inside_frame_border(mi_row, mi_col, row_offset, col_offset, | 
|  | num_mi_rows, num_mi_cols)) { | 
|  | continue; | 
|  | } | 
|  | const TPL_MV_REF *ref_mvs = | 
|  | cm->tpl_mvs + | 
|  | ((mi_row + row_offset) >> 1) * (cm->mi_params.mi_stride >> 1) + | 
|  | ((mi_col + col_offset) >> 1); | 
|  | if (ref_mvs->mfmv0.as_int == INVALID_MV) continue; | 
|  |  | 
|  | int_mv this_refmv; | 
|  | av1_get_mv_projection(&this_refmv.as_mv, ref_mvs->mfmv0.as_mv, | 
|  | cur_to_ref_dist, ref_mvs->ref_frame_offset); | 
|  | lower_mv_precision(&this_refmv.as_mv, allow_hp, is_integer); | 
|  | check_mv_err_and_update(cur_mv.as_mv, this_refmv.as_mv, &mv_err); | 
|  | } | 
|  |  | 
|  | return mv_err; | 
|  | } | 
|  |  | 
|  | // Determine whether to disable temporal MV prediction for the current frame | 
|  | // based on TPL and motion field data. Temporal MV prediction is disabled if the | 
|  | // reduction in MV error by including temporal MVs as MV predictors is small. | 
|  | static void check_to_disable_ref_frame_mvs(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | if (!cm->features.allow_ref_frame_mvs || cpi->sf.hl_sf.ref_frame_mvs_lvl != 1) | 
|  | return; | 
|  |  | 
|  | const int tpl_idx = cpi->gf_frame_index; | 
|  | TplParams *const tpl_data = &cpi->ppi->tpl_data; | 
|  | if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return; | 
|  |  | 
|  | const SUBPEL_FORCE_STOP tpl_subpel_precision = | 
|  | cpi->sf.tpl_sf.subpel_force_stop; | 
|  | const int allow_high_precision_mv = tpl_subpel_precision == EIGHTH_PEL && | 
|  | cm->features.allow_high_precision_mv; | 
|  | const int force_integer_mv = tpl_subpel_precision == FULL_PEL || | 
|  | cm->features.cur_frame_force_integer_mv; | 
|  |  | 
|  | const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; | 
|  | TplDepStats *tpl_ptr = tpl_frame->tpl_stats_ptr; | 
|  | const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; | 
|  | const int step = 1 << block_mis_log2; | 
|  |  | 
|  | uint64_t accum_spatial_mvpred_err = 0; | 
|  | uint64_t accum_best_err = 0; | 
|  |  | 
|  | for (int mi_row = 0; mi_row < tpl_frame->mi_rows; mi_row += step) { | 
|  | for (int mi_col = 0; mi_col < tpl_frame->mi_cols; mi_col += step) { | 
|  | TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos( | 
|  | mi_row, mi_col, tpl_frame->stride, block_mis_log2)]; | 
|  | const int cur_best_ref_idx = tpl_stats_ptr->ref_frame_index[0]; | 
|  | if (cur_best_ref_idx == NONE_FRAME) continue; | 
|  |  | 
|  | int_mv cur_mv = tpl_stats_ptr->mv[cur_best_ref_idx]; | 
|  | lower_mv_precision(&cur_mv.as_mv, allow_high_precision_mv, | 
|  | force_integer_mv); | 
|  |  | 
|  | const int cur_spatial_mvpred_err = get_spatial_mvpred_err( | 
|  | cm, tpl_data, tpl_idx, mi_row, mi_col, cur_best_ref_idx, cur_mv, | 
|  | allow_high_precision_mv, force_integer_mv); | 
|  |  | 
|  | const int cur_temporal_mvpred_err = get_temporal_mvpred_err( | 
|  | cm, mi_row, mi_col, tpl_frame->mi_rows, tpl_frame->mi_cols, | 
|  | cur_best_ref_idx, cur_mv, allow_high_precision_mv, force_integer_mv); | 
|  |  | 
|  | const int cur_best_err = | 
|  | AOMMIN(cur_spatial_mvpred_err, cur_temporal_mvpred_err); | 
|  | accum_spatial_mvpred_err += cur_spatial_mvpred_err; | 
|  | accum_best_err += cur_best_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | const float threshold = | 
|  | get_thresh_based_on_q(cm->quant_params.base_qindex, cpi->oxcf.speed); | 
|  | const float mv_err_reduction = | 
|  | (float)(accum_spatial_mvpred_err - accum_best_err); | 
|  |  | 
|  | if (mv_err_reduction <= threshold * accum_spatial_mvpred_err) | 
|  | cm->features.allow_ref_frame_mvs = 0; | 
|  | } | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | /*!\brief Encoder setup(only for the current frame), encoding, and recontruction | 
|  | * for a single frame | 
|  | * | 
|  | * \ingroup high_level_algo | 
|  | */ | 
|  | static inline void encode_frame_internal(AV1_COMP *cpi) { | 
|  | ThreadData *const td = &cpi->td; | 
|  | MACROBLOCK *const x = &td->mb; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | FeatureFlags *const features = &cm->features; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | RD_COUNTS *const rdc = &cpi->td.rd_counts; | 
|  | #if CONFIG_FPMT_TEST | 
|  | FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs; | 
|  | FrameProbInfo *const temp_frame_probs_simulation = | 
|  | &cpi->ppi->temp_frame_probs_simulation; | 
|  | #endif | 
|  | FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs; | 
|  | IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info; | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode; | 
|  | int i; | 
|  |  | 
|  | if (!cpi->sf.rt_sf.use_nonrd_pick_mode) { | 
|  | mi_params->setup_mi(mi_params); | 
|  | } | 
|  |  | 
|  | set_mi_offsets(mi_params, xd, 0, 0); | 
|  |  | 
|  | av1_zero(*td->counts); | 
|  | av1_zero(rdc->tx_type_used); | 
|  | av1_zero(rdc->obmc_used); | 
|  | av1_zero(rdc->warped_used); | 
|  | av1_zero(rdc->seg_tmp_pred_cost); | 
|  |  | 
|  | // Reset the flag. | 
|  | cpi->intrabc_used = 0; | 
|  | // Need to disable intrabc when superres is selected | 
|  | if (av1_superres_scaled(cm)) { | 
|  | features->allow_intrabc = 0; | 
|  | } | 
|  |  | 
|  | features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc); | 
|  |  | 
|  | if (features->allow_warped_motion && | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | int warped_probability = | 
|  | #if CONFIG_FPMT_TEST | 
|  | cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE | 
|  | ? temp_frame_probs->warped_probs[update_type] | 
|  | : | 
|  | #endif  // CONFIG_FPMT_TEST | 
|  | frame_probs->warped_probs[update_type]; | 
|  | if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh) | 
|  | features->allow_warped_motion = 0; | 
|  | } | 
|  |  | 
|  | int hash_table_created = 0; | 
|  | if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) && | 
|  | !cpi->sf.rt_sf.use_nonrd_pick_mode) { | 
|  | // TODO(any): move this outside of the recoding loop to avoid recalculating | 
|  | // the hash table. | 
|  | // add to hash table | 
|  | const int pic_width = cpi->source->y_crop_width; | 
|  | const int pic_height = cpi->source->y_crop_height; | 
|  | uint32_t *block_hash_values[2][2] = { { NULL } }; | 
|  | int8_t *is_block_same[2][3] = { { NULL } }; | 
|  | int k, j; | 
|  | bool error = false; | 
|  |  | 
|  | for (k = 0; k < 2 && !error; ++k) { | 
|  | for (j = 0; j < 2; ++j) { | 
|  | block_hash_values[k][j] = (uint32_t *)aom_malloc( | 
|  | sizeof(*block_hash_values[0][0]) * pic_width * pic_height); | 
|  | if (!block_hash_values[k][j]) { | 
|  | error = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = 0; j < 3 && !error; ++j) { | 
|  | is_block_same[k][j] = (int8_t *)aom_malloc( | 
|  | sizeof(*is_block_same[0][0]) * pic_width * pic_height); | 
|  | if (!is_block_same[k][j]) error = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_hash_table_init(intrabc_hash_info); | 
|  | if (error || | 
|  | !av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) { | 
|  | free_block_hash_buffers(block_hash_values, is_block_same); | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Error allocating intrabc_hash_table and buffers"); | 
|  | } | 
|  | hash_table_created = 1; | 
|  | av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source, | 
|  | block_hash_values[0], is_block_same[0]); | 
|  | // Hash data generated for screen contents is used for intraBC ME | 
|  | const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize]; | 
|  | const int max_sb_size = | 
|  | (1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)); | 
|  | int src_idx = 0; | 
|  | for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) { | 
|  | const int dst_idx = !src_idx; | 
|  | av1_generate_block_hash_value( | 
|  | intrabc_hash_info, cpi->source, size, block_hash_values[src_idx], | 
|  | block_hash_values[dst_idx], is_block_same[src_idx], | 
|  | is_block_same[dst_idx]); | 
|  | if (size >= min_alloc_size) { | 
|  | if (!av1_add_to_hash_map_by_row_with_precal_data( | 
|  | &intrabc_hash_info->intrabc_hash_table, | 
|  | block_hash_values[dst_idx], is_block_same[dst_idx][2], | 
|  | pic_width, pic_height, size)) { | 
|  | error = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | free_block_hash_buffers(block_hash_values, is_block_same); | 
|  |  | 
|  | if (error) { | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Error adding data to intrabc_hash_table"); | 
|  | } | 
|  | } | 
|  |  | 
|  | const CommonQuantParams *quant_params = &cm->quant_params; | 
|  | for (i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | const int qindex = | 
|  | cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex) | 
|  | : quant_params->base_qindex; | 
|  | xd->lossless[i] = | 
|  | qindex == 0 && quant_params->y_dc_delta_q == 0 && | 
|  | quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 && | 
|  | quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0; | 
|  | if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1; | 
|  | xd->qindex[i] = qindex; | 
|  | if (xd->lossless[i]) { | 
|  | cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT; | 
|  | } else { | 
|  | cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients; | 
|  | } | 
|  | } | 
|  | features->coded_lossless = is_coded_lossless(cm, xd); | 
|  | features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); | 
|  |  | 
|  | // Fix delta q resolution for the moment | 
|  |  | 
|  | cm->delta_q_info.delta_q_res = 0; | 
|  | if (cpi->use_ducky_encode) { | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_DUCKY_ENCODE; | 
|  | } else if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ) { | 
|  | if (deltaq_mode == DELTA_Q_OBJECTIVE) | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE; | 
|  | else if (deltaq_mode == DELTA_Q_PERCEPTUAL) | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
|  | else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI) | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
|  | else if (deltaq_mode == DELTA_Q_USER_RATING_BASED) | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
|  | else if (deltaq_mode == DELTA_Q_HDR) | 
|  | cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL; | 
|  | else if (deltaq_mode == DELTA_Q_VARIANCE_BOOST) | 
|  | cm->delta_q_info.delta_q_res = | 
|  | aom_get_variance_boost_delta_q_res(quant_params->base_qindex); | 
|  | // Set delta_q_present_flag before it is used for the first time | 
|  | cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES; | 
|  | cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q; | 
|  |  | 
|  | // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q | 
|  | // is used for ineligible frames. That effectively will turn off row_mt | 
|  | // usage. Note objective delta_q and tpl eligible frames are only altref | 
|  | // frames currently. | 
|  | const GF_GROUP *gf_group = &cpi->ppi->gf_group; | 
|  | if (cm->delta_q_info.delta_q_present_flag) { | 
|  | if (deltaq_mode == DELTA_Q_OBJECTIVE && | 
|  | gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE) | 
|  | cm->delta_q_info.delta_q_present_flag = 0; | 
|  |  | 
|  | if (deltaq_mode == DELTA_Q_OBJECTIVE && | 
|  | cm->delta_q_info.delta_q_present_flag) { | 
|  | cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset delta_q_used flag | 
|  | cpi->deltaq_used = 0; | 
|  |  | 
|  | cm->delta_q_info.delta_lf_present_flag = | 
|  | cm->delta_q_info.delta_q_present_flag && | 
|  | oxcf->tool_cfg.enable_deltalf_mode; | 
|  | cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI; | 
|  |  | 
|  | // update delta_q_present_flag and delta_lf_present_flag based on | 
|  | // base_qindex | 
|  | cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0; | 
|  | cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0; | 
|  | } else if (cpi->cyclic_refresh->apply_cyclic_refresh || | 
|  | cpi->svc.number_temporal_layers == 1) { | 
|  | cpi->cyclic_refresh->actual_num_seg1_blocks = 0; | 
|  | cpi->cyclic_refresh->actual_num_seg2_blocks = 0; | 
|  | } | 
|  | cpi->rc.cnt_zeromv = 0; | 
|  |  | 
|  | av1_frame_init_quantizer(cpi); | 
|  | init_encode_frame_mb_context(cpi); | 
|  | set_default_interp_skip_flags(cm, &cpi->interp_search_flags); | 
|  |  | 
|  | if (cm->prev_frame && cm->prev_frame->seg.enabled && | 
|  | cpi->svc.number_spatial_layers == 1) | 
|  | cm->last_frame_seg_map = cm->prev_frame->seg_map; | 
|  | else | 
|  | cm->last_frame_seg_map = NULL; | 
|  | if (features->allow_intrabc || features->coded_lossless) { | 
|  | av1_set_default_ref_deltas(cm->lf.ref_deltas); | 
|  | av1_set_default_mode_deltas(cm->lf.mode_deltas); | 
|  | } else if (cm->prev_frame) { | 
|  | memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); | 
|  | memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); | 
|  | } | 
|  | memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); | 
|  | memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); | 
|  |  | 
|  | cpi->all_one_sided_refs = | 
|  | frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm); | 
|  |  | 
|  | cpi->prune_ref_frame_mask = 0; | 
|  | // Figure out which ref frames can be skipped at frame level. | 
|  | setup_prune_ref_frame_mask(cpi); | 
|  |  | 
|  | x->txfm_search_info.txb_split_count = 0; | 
|  | #if CONFIG_SPEED_STATS | 
|  | x->txfm_search_info.tx_search_count = 0; | 
|  | #endif  // CONFIG_SPEED_STATS | 
|  |  | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_compute_global_motion_time); | 
|  | #endif | 
|  | av1_compute_global_motion_facade(cpi); | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_compute_global_motion_time); | 
|  | #endif | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | start_timing(cpi, av1_setup_motion_field_time); | 
|  | #endif | 
|  | av1_calculate_ref_frame_side(cm); | 
|  |  | 
|  | features->allow_ref_frame_mvs &= !(cpi->sf.hl_sf.ref_frame_mvs_lvl == 2); | 
|  | if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm); | 
|  | #if !CONFIG_REALTIME_ONLY | 
|  | check_to_disable_ref_frame_mvs(cpi); | 
|  | #endif  // !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #if CONFIG_COLLECT_COMPONENT_TIMING | 
|  | end_timing(cpi, av1_setup_motion_field_time); | 
|  | #endif | 
|  |  | 
|  | cm->current_frame.skip_mode_info.skip_mode_flag = | 
|  | check_skip_mode_enabled(cpi); | 
|  |  | 
|  | // Initialization of skip mode cost depends on the value of | 
|  | // 'skip_mode_flag'. This initialization happens in the function | 
|  | // av1_fill_mode_rates(), which is in turn called in | 
|  | // av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts() | 
|  | // has to be called after 'skip_mode_flag' is initialized. | 
|  | av1_initialize_rd_consts(cpi); | 
|  | av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex); | 
|  | populate_thresh_to_force_zeromv_skip(cpi); | 
|  |  | 
|  | enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy; | 
|  | enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy; | 
|  | mt_info->row_mt_enabled = 0; | 
|  | mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS], | 
|  | cm->tiles.cols * cm->tiles.rows) > 1; | 
|  |  | 
|  | if (oxcf->row_mt && (mt_info->num_workers > 1)) { | 
|  | mt_info->row_mt_enabled = 1; | 
|  | enc_row_mt->sync_read_ptr = av1_row_mt_sync_read; | 
|  | enc_row_mt->sync_write_ptr = av1_row_mt_sync_write; | 
|  | av1_encode_tiles_row_mt(cpi); | 
|  | } else { | 
|  | if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) { | 
|  | av1_encode_tiles_mt(cpi); | 
|  | } else { | 
|  | // Preallocate the pc_tree for realtime coding to reduce the cost of | 
|  | // memory allocation. | 
|  | const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; | 
|  | if (use_nonrd_mode) { | 
|  | td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size); | 
|  | if (!td->pc_root) | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate PC_TREE"); | 
|  | } else { | 
|  | td->pc_root = NULL; | 
|  | } | 
|  |  | 
|  | encode_tiles(cpi); | 
|  | av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, | 
|  | cpi->sf.part_sf.partition_search_type); | 
|  | td->pc_root = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If intrabc is allowed but never selected, reset the allow_intrabc flag. | 
|  | if (features->allow_intrabc && !cpi->intrabc_used) { | 
|  | features->allow_intrabc = 0; | 
|  | } | 
|  | if (features->allow_intrabc) { | 
|  | cm->delta_q_info.delta_lf_present_flag = 0; | 
|  | } | 
|  |  | 
|  | if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { | 
|  | cm->delta_q_info.delta_q_present_flag = 0; | 
|  | } | 
|  |  | 
|  | // Set the transform size appropriately before bitstream creation | 
|  | const MODE_EVAL_TYPE eval_type = | 
|  | cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch | 
|  | ? WINNER_MODE_EVAL | 
|  | : DEFAULT_EVAL; | 
|  | const TX_SIZE_SEARCH_METHOD tx_search_type = | 
|  | cpi->winner_mode_params.tx_size_search_methods[eval_type]; | 
|  | assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL); | 
|  | features->tx_mode = select_tx_mode(cm, tx_search_type); | 
|  |  | 
|  | // Retain the frame level probability update conditions for parallel frames. | 
|  | // These conditions will be consumed during postencode stage to update the | 
|  | // probability. | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] = | 
|  | cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats; | 
|  | cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] = | 
|  | (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && | 
|  | cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX); | 
|  | cpi->do_update_frame_probs_warp[cpi->num_frame_recode] = | 
|  | (features->allow_warped_motion && | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0); | 
|  | cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] = | 
|  | (cm->current_frame.frame_type != KEY_FRAME && | 
|  | cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && | 
|  | features->interp_filter == SWITCHABLE); | 
|  | } | 
|  |  | 
|  | if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats || | 
|  | ((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != | 
|  | INT_MAX) && | 
|  | (cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | for (i = 0; i < TX_SIZES_ALL; i++) { | 
|  | int sum = 0; | 
|  | int j; | 
|  | int left = MAX_TX_TYPE_PROB; | 
|  |  | 
|  | for (j = 0; j < TX_TYPES; j++) | 
|  | sum += cpi->td.rd_counts.tx_type_used[i][j]; | 
|  |  | 
|  | for (j = TX_TYPES - 1; j >= 0; j--) { | 
|  | int update_txtype_frameprobs = 1; | 
|  | const int new_prob = | 
|  | sum ? (int)((int64_t)MAX_TX_TYPE_PROB * | 
|  | cpi->td.rd_counts.tx_type_used[i][j] / sum) | 
|  | : (j ? 0 : MAX_TX_TYPE_PROB); | 
|  | #if CONFIG_FPMT_TEST | 
|  | if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == | 
|  | 0) { | 
|  | int prob = | 
|  | (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] + | 
|  | new_prob) >> | 
|  | 1; | 
|  | left -= prob; | 
|  | if (j == 0) prob += left; | 
|  | temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = | 
|  | prob; | 
|  | // Copy temp_frame_probs_simulation to temp_frame_probs | 
|  | for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
|  | update_type_idx++) { | 
|  | temp_frame_probs->tx_type_probs[update_type_idx][i][j] = | 
|  | temp_frame_probs_simulation | 
|  | ->tx_type_probs[update_type_idx][i][j]; | 
|  | } | 
|  | } | 
|  | update_txtype_frameprobs = 0; | 
|  | } | 
|  | #endif  // CONFIG_FPMT_TEST | 
|  | // Track the frame probabilities of parallel encode frames to update | 
|  | // during postencode stage. | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | update_txtype_frameprobs = 0; | 
|  | cpi->frame_new_probs[cpi->num_frame_recode] | 
|  | .tx_type_probs[update_type][i][j] = new_prob; | 
|  | } | 
|  | if (update_txtype_frameprobs) { | 
|  | int prob = | 
|  | (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; | 
|  | left -= prob; | 
|  | if (j == 0) prob += left; | 
|  | frame_probs->tx_type_probs[update_type][i][j] = prob; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->seg.enabled) { | 
|  | cm->seg.temporal_update = 1; | 
|  | if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1]) | 
|  | cm->seg.temporal_update = 0; | 
|  | } | 
|  |  | 
|  | if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && | 
|  | cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  |  | 
|  | for (i = 0; i < BLOCK_SIZES_ALL; i++) { | 
|  | int sum = 0; | 
|  | int update_obmc_frameprobs = 1; | 
|  | for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j]; | 
|  |  | 
|  | const int new_prob = | 
|  | sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0; | 
|  | #if CONFIG_FPMT_TEST | 
|  | if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { | 
|  | temp_frame_probs_simulation->obmc_probs[update_type][i] = | 
|  | (temp_frame_probs_simulation->obmc_probs[update_type][i] + | 
|  | new_prob) >> | 
|  | 1; | 
|  | // Copy temp_frame_probs_simulation to temp_frame_probs | 
|  | for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
|  | update_type_idx++) { | 
|  | temp_frame_probs->obmc_probs[update_type_idx][i] = | 
|  | temp_frame_probs_simulation->obmc_probs[update_type_idx][i]; | 
|  | } | 
|  | } | 
|  | update_obmc_frameprobs = 0; | 
|  | } | 
|  | #endif  // CONFIG_FPMT_TEST | 
|  | // Track the frame probabilities of parallel encode frames to update | 
|  | // during postencode stage. | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | update_obmc_frameprobs = 0; | 
|  | cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] = | 
|  | new_prob; | 
|  | } | 
|  | if (update_obmc_frameprobs) { | 
|  | frame_probs->obmc_probs[update_type][i] = | 
|  | (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features->allow_warped_motion && | 
|  | cpi->sf.inter_sf.prune_warped_prob_thresh > 0) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | int update_warp_frameprobs = 1; | 
|  | int sum = 0; | 
|  | for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i]; | 
|  | const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0; | 
|  | #if CONFIG_FPMT_TEST | 
|  | if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) { | 
|  | temp_frame_probs_simulation->warped_probs[update_type] = | 
|  | (temp_frame_probs_simulation->warped_probs[update_type] + | 
|  | new_prob) >> | 
|  | 1; | 
|  | // Copy temp_frame_probs_simulation to temp_frame_probs | 
|  | for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
|  | update_type_idx++) { | 
|  | temp_frame_probs->warped_probs[update_type_idx] = | 
|  | temp_frame_probs_simulation->warped_probs[update_type_idx]; | 
|  | } | 
|  | } | 
|  | update_warp_frameprobs = 0; | 
|  | } | 
|  | #endif  // CONFIG_FPMT_TEST | 
|  | // Track the frame probabilities of parallel encode frames to update | 
|  | // during postencode stage. | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | update_warp_frameprobs = 0; | 
|  | cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] = | 
|  | new_prob; | 
|  | } | 
|  | if (update_warp_frameprobs) { | 
|  | frame_probs->warped_probs[update_type] = | 
|  | (frame_probs->warped_probs[update_type] + new_prob) >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->current_frame.frame_type != KEY_FRAME && | 
|  | cpi->sf.interp_sf.adaptive_interp_filter_search == 2 && | 
|  | features->interp_filter == SWITCHABLE) { | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  |  | 
|  | for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { | 
|  | int sum = 0; | 
|  | int j; | 
|  | int left = 1536; | 
|  |  | 
|  | for (j = 0; j < SWITCHABLE_FILTERS; j++) { | 
|  | sum += cpi->td.counts->switchable_interp[i][j]; | 
|  | } | 
|  |  | 
|  | for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { | 
|  | int update_interpfilter_frameprobs = 1; | 
|  | const int new_prob = | 
|  | sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum | 
|  | : (j ? 0 : 1536); | 
|  | #if CONFIG_FPMT_TEST | 
|  | if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == | 
|  | 0) { | 
|  | int prob = (temp_frame_probs_simulation | 
|  | ->switchable_interp_probs[update_type][i][j] + | 
|  | new_prob) >> | 
|  | 1; | 
|  | left -= prob; | 
|  | if (j == 0) prob += left; | 
|  | temp_frame_probs_simulation | 
|  | ->switchable_interp_probs[update_type][i][j] = prob; | 
|  | // Copy temp_frame_probs_simulation to temp_frame_probs | 
|  | for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; | 
|  | update_type_idx++) { | 
|  | temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] = | 
|  | temp_frame_probs_simulation | 
|  | ->switchable_interp_probs[update_type_idx][i][j]; | 
|  | } | 
|  | } | 
|  | update_interpfilter_frameprobs = 0; | 
|  | } | 
|  | #endif  // CONFIG_FPMT_TEST | 
|  | // Track the frame probabilities of parallel encode frames to update | 
|  | // during postencode stage. | 
|  | if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { | 
|  | update_interpfilter_frameprobs = 0; | 
|  | cpi->frame_new_probs[cpi->num_frame_recode] | 
|  | .switchable_interp_probs[update_type][i][j] = new_prob; | 
|  | } | 
|  | if (update_interpfilter_frameprobs) { | 
|  | int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + | 
|  | new_prob) >> | 
|  | 1; | 
|  | left -= prob; | 
|  | if (j == 0) prob += left; | 
|  | frame_probs->switchable_interp_probs[update_type][i][j] = prob; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (hash_table_created) { | 
|  | av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*!\brief Setup reference frame buffers and encode a frame | 
|  | * | 
|  | * \ingroup high_level_algo | 
|  | * \callgraph | 
|  | * \callergraph | 
|  | * | 
|  | * \param[in]    cpi    Top-level encoder structure | 
|  | */ | 
|  | void av1_encode_frame(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | CurrentFrame *const current_frame = &cm->current_frame; | 
|  | FeatureFlags *const features = &cm->features; | 
|  | RD_COUNTS *const rdc = &cpi->td.rd_counts; | 
|  | const AV1EncoderConfig *const oxcf = &cpi->oxcf; | 
|  | // Indicates whether or not to use a default reduced set for ext-tx | 
|  | // rather than the potential full set of 16 transforms | 
|  | features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set; | 
|  |  | 
|  | // Make sure segment_id is no larger than last_active_segid. | 
|  | if (cm->seg.enabled && cm->seg.update_map) { | 
|  | const int mi_rows = cm->mi_params.mi_rows; | 
|  | const int mi_cols = cm->mi_params.mi_cols; | 
|  | const int last_active_segid = cm->seg.last_active_segid; | 
|  | uint8_t *map = cpi->enc_seg.map; | 
|  | for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { | 
|  | for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { | 
|  | map[mi_col] = AOMMIN(map[mi_col], last_active_segid); | 
|  | } | 
|  | map += mi_cols; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_setup_frame_buf_refs(cm); | 
|  | enforce_max_ref_frames(cpi, &cpi->ref_frame_flags, | 
|  | cm->cur_frame->ref_display_order_hint, | 
|  | cm->current_frame.display_order_hint); | 
|  | set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info, | 
|  | cpi->ref_frame_flags); | 
|  | av1_setup_frame_sign_bias(cm); | 
|  |  | 
|  | // If global motion is enabled, then every buffer which is used as either | 
|  | // a source or a ref frame should have an image pyramid allocated. | 
|  | // Check here so that issues can be caught early in debug mode | 
|  | #if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY | 
|  | if (cpi->alloc_pyramid) { | 
|  | assert(cpi->source->y_pyramid); | 
|  | for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
|  | const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame); | 
|  | if (buf != NULL) { | 
|  | assert(buf->buf.y_pyramid); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // !defined(NDEBUG) && !CONFIG_REALTIME_ONLY | 
|  |  | 
|  | #if CONFIG_MISMATCH_DEBUG | 
|  | mismatch_reset_frame(av1_num_planes(cm)); | 
|  | #endif | 
|  |  | 
|  | rdc->newmv_or_intra_blocks = 0; | 
|  | cpi->palette_pixel_num = 0; | 
|  |  | 
|  | if (cpi->sf.hl_sf.frame_parameter_update || | 
|  | cpi->sf.rt_sf.use_comp_ref_nonrd) { | 
|  | if (frame_is_intra_only(cm)) | 
|  | current_frame->reference_mode = SINGLE_REFERENCE; | 
|  | else | 
|  | current_frame->reference_mode = REFERENCE_MODE_SELECT; | 
|  |  | 
|  | features->interp_filter = SWITCHABLE; | 
|  | if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR; | 
|  |  | 
|  | features->switchable_motion_mode = is_switchable_motion_mode_allowed( | 
|  | features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc); | 
|  |  | 
|  | rdc->compound_ref_used_flag = 0; | 
|  | rdc->skip_mode_used_flag = 0; | 
|  |  | 
|  | encode_frame_internal(cpi); | 
|  |  | 
|  | if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { | 
|  | // Use a flag that includes 4x4 blocks | 
|  | if (rdc->compound_ref_used_flag == 0) { | 
|  | current_frame->reference_mode = SINGLE_REFERENCE; | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | av1_zero(cpi->td.counts->comp_inter); | 
|  | #endif  // CONFIG_ENTROPY_STATS | 
|  | } | 
|  | } | 
|  | // Re-check on the skip mode status as reference mode may have been | 
|  | // changed. | 
|  | SkipModeInfo *const skip_mode_info = ¤t_frame->skip_mode_info; | 
|  | if (frame_is_intra_only(cm) || | 
|  | current_frame->reference_mode == SINGLE_REFERENCE) { | 
|  | skip_mode_info->skip_mode_allowed = 0; | 
|  | skip_mode_info->skip_mode_flag = 0; | 
|  | } | 
|  | if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0) | 
|  | skip_mode_info->skip_mode_flag = 0; | 
|  |  | 
|  | if (!cm->tiles.large_scale) { | 
|  | if (features->tx_mode == TX_MODE_SELECT && | 
|  | cpi->td.mb.txfm_search_info.txb_split_count == 0) | 
|  | features->tx_mode = TX_MODE_LARGEST; | 
|  | } | 
|  | } else { | 
|  | // This is needed if real-time speed setting is changed on the fly | 
|  | // from one using compound prediction to one using single reference. | 
|  | if (current_frame->reference_mode == REFERENCE_MODE_SELECT) | 
|  | current_frame->reference_mode = SINGLE_REFERENCE; | 
|  | encode_frame_internal(cpi); | 
|  | } | 
|  | } |