| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AV1_COMMON_BLOCKD_H_ | 
 | #define AV1_COMMON_BLOCKD_H_ | 
 |  | 
 | #include "config/aom_config.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_scale/yv12config.h" | 
 |  | 
 | #include "av1/common/common_data.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/mv.h" | 
 | #include "av1/common/scale.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/tile_common.h" | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #define USE_B_QUANT_NO_TRELLIS 1 | 
 |  | 
 | #define MAX_MB_PLANE 3 | 
 |  | 
 | #define MAX_DIFFWTD_MASK_BITS 1 | 
 |  | 
 | // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS | 
 | typedef enum { | 
 |   DIFFWTD_38 = 0, | 
 |   DIFFWTD_38_INV, | 
 |   DIFFWTD_MASK_TYPES, | 
 | } DIFFWTD_MASK_TYPE; | 
 |  | 
 | typedef enum { | 
 |   KEY_FRAME = 0, | 
 |   INTER_FRAME = 1, | 
 |   INTRA_ONLY_FRAME = 2,  // replaces intra-only | 
 |   S_FRAME = 3, | 
 |   FRAME_TYPES, | 
 | } FRAME_TYPE; | 
 |  | 
 | static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) { | 
 |   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 | } | 
 |  | 
 | static INLINE int is_inter_mode(PREDICTION_MODE mode) { | 
 |   return mode >= NEARESTMV && mode <= NEW_NEWMV; | 
 | } | 
 |  | 
 | typedef struct { | 
 |   uint8_t *plane[MAX_MB_PLANE]; | 
 |   int stride[MAX_MB_PLANE]; | 
 | } BUFFER_SET; | 
 |  | 
 | static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) { | 
 |   return mode >= NEARESTMV && mode <= NEWMV; | 
 | } | 
 | static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) { | 
 |   return mode >= NEAREST_NEARESTMV && mode <= NEW_NEWMV; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) { | 
 |   static PREDICTION_MODE lut[] = { | 
 |     MB_MODE_COUNT,  // DC_PRED | 
 |     MB_MODE_COUNT,  // V_PRED | 
 |     MB_MODE_COUNT,  // H_PRED | 
 |     MB_MODE_COUNT,  // D45_PRED | 
 |     MB_MODE_COUNT,  // D135_PRED | 
 |     MB_MODE_COUNT,  // D113_PRED | 
 |     MB_MODE_COUNT,  // D157_PRED | 
 |     MB_MODE_COUNT,  // D203_PRED | 
 |     MB_MODE_COUNT,  // D67_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_V_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_H_PRED | 
 |     MB_MODE_COUNT,  // PAETH_PRED | 
 |     MB_MODE_COUNT,  // NEARESTMV | 
 |     MB_MODE_COUNT,  // NEARMV | 
 |     MB_MODE_COUNT,  // GLOBALMV | 
 |     MB_MODE_COUNT,  // NEWMV | 
 |     NEARESTMV,      // NEAREST_NEARESTMV | 
 |     NEARMV,         // NEAR_NEARMV | 
 |     NEARESTMV,      // NEAREST_NEWMV | 
 |     NEWMV,          // NEW_NEARESTMV | 
 |     NEARMV,         // NEAR_NEWMV | 
 |     NEWMV,          // NEW_NEARMV | 
 |     GLOBALMV,       // GLOBAL_GLOBALMV | 
 |     NEWMV,          // NEW_NEWMV | 
 |   }; | 
 |   assert(NELEMENTS(lut) == MB_MODE_COUNT); | 
 |   assert(is_inter_compound_mode(mode)); | 
 |   return lut[mode]; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) { | 
 |   static PREDICTION_MODE lut[] = { | 
 |     MB_MODE_COUNT,  // DC_PRED | 
 |     MB_MODE_COUNT,  // V_PRED | 
 |     MB_MODE_COUNT,  // H_PRED | 
 |     MB_MODE_COUNT,  // D45_PRED | 
 |     MB_MODE_COUNT,  // D135_PRED | 
 |     MB_MODE_COUNT,  // D113_PRED | 
 |     MB_MODE_COUNT,  // D157_PRED | 
 |     MB_MODE_COUNT,  // D203_PRED | 
 |     MB_MODE_COUNT,  // D67_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_V_PRED | 
 |     MB_MODE_COUNT,  // SMOOTH_H_PRED | 
 |     MB_MODE_COUNT,  // PAETH_PRED | 
 |     MB_MODE_COUNT,  // NEARESTMV | 
 |     MB_MODE_COUNT,  // NEARMV | 
 |     MB_MODE_COUNT,  // GLOBALMV | 
 |     MB_MODE_COUNT,  // NEWMV | 
 |     NEARESTMV,      // NEAREST_NEARESTMV | 
 |     NEARMV,         // NEAR_NEARMV | 
 |     NEWMV,          // NEAREST_NEWMV | 
 |     NEARESTMV,      // NEW_NEARESTMV | 
 |     NEWMV,          // NEAR_NEWMV | 
 |     NEARMV,         // NEW_NEARMV | 
 |     GLOBALMV,       // GLOBAL_GLOBALMV | 
 |     NEWMV,          // NEW_NEWMV | 
 |   }; | 
 |   assert(NELEMENTS(lut) == MB_MODE_COUNT); | 
 |   assert(is_inter_compound_mode(mode)); | 
 |   return lut[mode]; | 
 | } | 
 |  | 
 | static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) { | 
 |   return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV || | 
 |           mode == NEW_NEARMV); | 
 | } | 
 |  | 
 | static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { | 
 |   return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || | 
 |           mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); | 
 | } | 
 |  | 
 | static INLINE int use_masked_motion_search(COMPOUND_TYPE type) { | 
 |   return (type == COMPOUND_WEDGE); | 
 | } | 
 |  | 
 | static INLINE int is_masked_compound_type(COMPOUND_TYPE type) { | 
 |   return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD); | 
 | } | 
 |  | 
 | /* For keyframes, intra block modes are predicted by the (already decoded) | 
 |    modes for the Y blocks to the left and above us; for interframes, there | 
 |    is a single probability table. */ | 
 |  | 
 | typedef int8_t MV_REFERENCE_FRAME; | 
 |  | 
 | typedef struct { | 
 |   // Number of base colors for Y (0) and UV (1) | 
 |   uint8_t palette_size[2]; | 
 |   // Value of base colors for Y, U, and V | 
 |   uint16_t palette_colors[3 * PALETTE_MAX_SIZE]; | 
 | } PALETTE_MODE_INFO; | 
 |  | 
 | typedef struct { | 
 |   uint8_t use_filter_intra; | 
 |   FILTER_INTRA_MODE filter_intra_mode; | 
 | } FILTER_INTRA_MODE_INFO; | 
 |  | 
 | static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = { | 
 |   DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED | 
 | }; | 
 |  | 
 | #if CONFIG_RD_DEBUG | 
 | #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE) | 
 | #endif | 
 |  | 
 | typedef struct RD_STATS { | 
 |   int rate; | 
 |   int64_t dist; | 
 |   // Please be careful of using rdcost, it's not guaranteed to be set all the | 
 |   // time. | 
 |   // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In | 
 |   // these functions, make sure rdcost is always up-to-date according to | 
 |   // rate/dist. | 
 |   int64_t rdcost; | 
 |   int64_t sse; | 
 |   int skip;  // sse should equal to dist when skip == 1 | 
 |   int64_t ref_rdcost; | 
 |   int zero_rate; | 
 |   uint8_t invalid_rate; | 
 | #if CONFIG_RD_DEBUG | 
 |   int txb_coeff_cost[MAX_MB_PLANE]; | 
 |   int txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE] | 
 |                         [TXB_COEFF_COST_MAP_SIZE]; | 
 | #endif  // CONFIG_RD_DEBUG | 
 | } RD_STATS; | 
 |  | 
 | // This struct is used to group function args that are commonly | 
 | // sent together in functions related to interinter compound modes | 
 | typedef struct { | 
 |   int wedge_index; | 
 |   int wedge_sign; | 
 |   DIFFWTD_MASK_TYPE mask_type; | 
 |   uint8_t *seg_mask; | 
 |   COMPOUND_TYPE type; | 
 | } INTERINTER_COMPOUND_DATA; | 
 |  | 
 | #define INTER_TX_SIZE_BUF_LEN 16 | 
 | #define TXK_TYPE_BUF_LEN 64 | 
 | // This structure now relates to 4x4 block regions. | 
 | typedef struct MB_MODE_INFO { | 
 |   // Common for both INTER and INTRA blocks | 
 |   BLOCK_SIZE sb_type; | 
 |   PREDICTION_MODE mode; | 
 |   TX_SIZE tx_size; | 
 |   uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN]; | 
 |   int8_t skip; | 
 |   int8_t skip_mode; | 
 |   int8_t segment_id; | 
 |   int8_t seg_id_predicted;  // valid only when temporal_update is enabled | 
 |  | 
 |   // Only for INTRA blocks | 
 |   UV_PREDICTION_MODE uv_mode; | 
 |  | 
 |   PALETTE_MODE_INFO palette_mode_info; | 
 |   uint8_t use_intrabc; | 
 |  | 
 |   // Only for INTER blocks | 
 |   InterpFilters interp_filters; | 
 |   MV_REFERENCE_FRAME ref_frame[2]; | 
 |  | 
 |   TX_TYPE txk_type[TXK_TYPE_BUF_LEN]; | 
 |  | 
 |   FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
 |  | 
 |   // The actual prediction angle is the base angle + (angle_delta * step). | 
 |   int8_t angle_delta[PLANE_TYPES]; | 
 |  | 
 |   // interintra members | 
 |   INTERINTRA_MODE interintra_mode; | 
 |   // TODO(debargha): Consolidate these flags | 
 |   int use_wedge_interintra; | 
 |   int interintra_wedge_index; | 
 |   int interintra_wedge_sign; | 
 |   // interinter members | 
 |   INTERINTER_COMPOUND_DATA interinter_comp; | 
 |   MOTION_MODE motion_mode; | 
 |   int overlappable_neighbors[2]; | 
 |   int_mv mv[2]; | 
 |   uint8_t ref_mv_idx; | 
 |   PARTITION_TYPE partition; | 
 |   /* deringing gain *per-superblock* */ | 
 |   int8_t cdef_strength; | 
 |   int current_qindex; | 
 |   int delta_lf_from_base; | 
 |   int delta_lf[FRAME_LF_COUNT]; | 
 | #if CONFIG_RD_DEBUG | 
 |   RD_STATS rd_stats; | 
 |   int mi_row; | 
 |   int mi_col; | 
 | #endif | 
 |   int num_proj_ref[2]; | 
 |   WarpedMotionParams wm_params[2]; | 
 |  | 
 |   // Index of the alpha Cb and alpha Cr combination | 
 |   int cfl_alpha_idx; | 
 |   // Joint sign of alpha Cb and alpha Cr | 
 |   int cfl_alpha_signs; | 
 |  | 
 |   int compound_idx; | 
 |   int comp_group_idx; | 
 | } MB_MODE_INFO; | 
 |  | 
 | static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->use_intrabc; | 
 | } | 
 |  | 
 | static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) { | 
 |   assert(mode < UV_INTRA_MODES); | 
 |   static const PREDICTION_MODE uv2y[] = { | 
 |     DC_PRED,        // UV_DC_PRED | 
 |     V_PRED,         // UV_V_PRED | 
 |     H_PRED,         // UV_H_PRED | 
 |     D45_PRED,       // UV_D45_PRED | 
 |     D135_PRED,      // UV_D135_PRED | 
 |     D113_PRED,      // UV_D113_PRED | 
 |     D157_PRED,      // UV_D157_PRED | 
 |     D203_PRED,      // UV_D203_PRED | 
 |     D67_PRED,       // UV_D67_PRED | 
 |     SMOOTH_PRED,    // UV_SMOOTH_PRED | 
 |     SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED | 
 |     SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED | 
 |     PAETH_PRED,     // UV_PAETH_PRED | 
 |     DC_PRED,        // UV_CFL_PRED | 
 |     INTRA_INVALID,  // UV_INTRA_MODES | 
 |     INTRA_INVALID,  // UV_MODE_INVALID | 
 |   }; | 
 |   return uv2y[mode]; | 
 | } | 
 |  | 
 | static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { | 
 |   return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME; | 
 | } | 
 |  | 
 | static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->ref_frame[1] > INTRA_FRAME; | 
 | } | 
 |  | 
 | static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) { | 
 |   return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^ | 
 |                                     (mbmi->ref_frame[1] >= BWDREF_FRAME))); | 
 | } | 
 |  | 
 | static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { | 
 |   static const MV_REFERENCE_FRAME lut[] = { | 
 |     LAST_FRAME,     // LAST_LAST2_FRAMES, | 
 |     LAST_FRAME,     // LAST_LAST3_FRAMES, | 
 |     LAST_FRAME,     // LAST_GOLDEN_FRAMES, | 
 |     BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES, | 
 |     LAST2_FRAME,    // LAST2_LAST3_FRAMES | 
 |     LAST2_FRAME,    // LAST2_GOLDEN_FRAMES, | 
 |     LAST3_FRAME,    // LAST3_GOLDEN_FRAMES, | 
 |     BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES, | 
 |     ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES, | 
 |   }; | 
 |   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); | 
 |   return lut[ref_idx]; | 
 | } | 
 |  | 
 | static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { | 
 |   static const MV_REFERENCE_FRAME lut[] = { | 
 |     LAST2_FRAME,    // LAST_LAST2_FRAMES, | 
 |     LAST3_FRAME,    // LAST_LAST3_FRAMES, | 
 |     GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES, | 
 |     ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES, | 
 |     LAST3_FRAME,    // LAST2_LAST3_FRAMES | 
 |     GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES, | 
 |     GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES, | 
 |     ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES, | 
 |     ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES, | 
 |   }; | 
 |   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); | 
 |   return lut[ref_idx]; | 
 | } | 
 |  | 
 | PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi); | 
 |  | 
 | PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi); | 
 |  | 
 | static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, | 
 |                                      TransformationType type) { | 
 |   const PREDICTION_MODE mode = mbmi->mode; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const int block_size_allowed = | 
 |       AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 |   return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && | 
 |          block_size_allowed; | 
 | } | 
 |  | 
 | #if CONFIG_MISMATCH_DEBUG | 
 | static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col, | 
 |                                    int mi_row, int tx_blk_col, int tx_blk_row, | 
 |                                    int subsampling_x, int subsampling_y) { | 
 |   *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) + | 
 |              (tx_blk_col << tx_size_wide_log2[0]); | 
 |   *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) + | 
 |              (tx_blk_row << tx_size_high_log2[0]); | 
 | } | 
 | #endif | 
 |  | 
 | enum mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 }; | 
 |  | 
 | struct buf_2d { | 
 |   uint8_t *buf; | 
 |   uint8_t *buf0; | 
 |   int width; | 
 |   int height; | 
 |   int stride; | 
 | }; | 
 |  | 
 | typedef struct eob_info { | 
 |   uint16_t eob; | 
 |   uint16_t max_scan_line; | 
 | } eob_info; | 
 |  | 
 | typedef struct { | 
 |   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]); | 
 |   eob_info eob_data[MAX_MB_PLANE] | 
 |                    [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; | 
 |   DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]); | 
 | } CB_BUFFER; | 
 |  | 
 | typedef struct macroblockd_plane { | 
 |   tran_low_t *dqcoeff; | 
 |   tran_low_t *dqcoeff_block; | 
 |   eob_info *eob_data; | 
 |   PLANE_TYPE plane_type; | 
 |   int subsampling_x; | 
 |   int subsampling_y; | 
 |   struct buf_2d dst; | 
 |   struct buf_2d pre[2]; | 
 |   ENTROPY_CONTEXT *above_context; | 
 |   ENTROPY_CONTEXT *left_context; | 
 |  | 
 |   // The dequantizers below are true dequntizers used only in the | 
 |   // dequantization process.  They have the same coefficient | 
 |   // shift/scale as TX. | 
 |   int16_t seg_dequant_QTX[MAX_SEGMENTS][2]; | 
 |   uint8_t *color_index_map; | 
 |  | 
 |   // block size in pixels | 
 |   uint8_t width, height; | 
 |  | 
 |   qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |   qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
 |  | 
 |   // the 'dequantizers' below are not literal dequantizer values. | 
 |   // They're used by encoder RDO to generate ad-hoc lambda values. | 
 |   // They use a hardwired Q3 coeff shift and do not necessarily match | 
 |   // the TX scale in use. | 
 |   const int16_t *dequant_Q3; | 
 | } MACROBLOCKD_PLANE; | 
 |  | 
 | #define BLOCK_OFFSET(x, i) \ | 
 |   ((x) + (i) * (1 << (tx_size_wide_log2[0] + tx_size_high_log2[0]))) | 
 |  | 
 | typedef struct RefBuffer { | 
 |   int idx;      // frame buf idx | 
 |   int map_idx;  // frame map idx | 
 |   YV12_BUFFER_CONFIG *buf; | 
 |   struct scale_factors sf; | 
 | } RefBuffer; | 
 |  | 
 | typedef struct { | 
 |   DECLARE_ALIGNED(16, InterpKernel, vfilter); | 
 |   DECLARE_ALIGNED(16, InterpKernel, hfilter); | 
 | } WienerInfo; | 
 |  | 
 | typedef struct { | 
 |   int ep; | 
 |   int xqd[2]; | 
 | } SgrprojInfo; | 
 |  | 
 | #if CONFIG_DEBUG | 
 | #define CFL_SUB8X8_VAL_MI_SIZE (4) | 
 | #define CFL_SUB8X8_VAL_MI_SQUARE \ | 
 |   (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE) | 
 | #endif  // CONFIG_DEBUG | 
 | #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32) | 
 | #define CFL_BUF_LINE (32) | 
 | #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3) | 
 | #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4) | 
 | #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE) | 
 | typedef struct cfl_ctx { | 
 |   // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid | 
 |   // shifts) | 
 |   uint16_t recon_buf_q3[CFL_BUF_SQUARE]; | 
 |   // Q3 AC contributions (reconstructed luma pixels - tx block avg) | 
 |   int16_t ac_buf_q3[CFL_BUF_SQUARE]; | 
 |  | 
 |   // Cache the DC_PRED when performing RDO, so it does not have to be recomputed | 
 |   // for every scaling parameter | 
 |   int dc_pred_is_cached[CFL_PRED_PLANES]; | 
 |   // The DC_PRED cache is disable when decoding | 
 |   int use_dc_pred_cache; | 
 |   // Only cache the first row of the DC_PRED | 
 |   int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE]; | 
 |  | 
 |   // Height and width currently used in the CfL prediction buffer. | 
 |   int buf_height, buf_width; | 
 |  | 
 |   int are_parameters_computed; | 
 |  | 
 |   // Chroma subsampling | 
 |   int subsampling_x, subsampling_y; | 
 |  | 
 |   int mi_row, mi_col; | 
 |  | 
 |   // Whether the reconstructed luma pixels need to be stored | 
 |   int store_y; | 
 |  | 
 | #if CONFIG_DEBUG | 
 |   int rate; | 
 | #endif  // CONFIG_DEBUG | 
 |  | 
 |   int is_chroma_reference; | 
 | } CFL_CTX; | 
 |  | 
 | typedef struct jnt_comp_params { | 
 |   int use_jnt_comp_avg; | 
 |   int fwd_offset; | 
 |   int bck_offset; | 
 | } JNT_COMP_PARAMS; | 
 |  | 
 | typedef struct macroblockd { | 
 |   struct macroblockd_plane plane[MAX_MB_PLANE]; | 
 |  | 
 |   TileInfo tile; | 
 |  | 
 |   int mi_stride; | 
 |  | 
 |   MB_MODE_INFO **mi; | 
 |   MB_MODE_INFO *left_mbmi; | 
 |   MB_MODE_INFO *above_mbmi; | 
 |   MB_MODE_INFO *chroma_left_mbmi; | 
 |   MB_MODE_INFO *chroma_above_mbmi; | 
 |  | 
 |   int up_available; | 
 |   int left_available; | 
 |   int chroma_up_available; | 
 |   int chroma_left_available; | 
 |  | 
 |   /* Distance of MB away from frame edges in subpixels (1/8th pixel)  */ | 
 |   int mb_to_left_edge; | 
 |   int mb_to_right_edge; | 
 |   int mb_to_top_edge; | 
 |   int mb_to_bottom_edge; | 
 |  | 
 |   /* pointers to reference frames */ | 
 |   const RefBuffer *block_refs[2]; | 
 |  | 
 |   /* pointer to current frame */ | 
 |   const YV12_BUFFER_CONFIG *cur_buf; | 
 |  | 
 |   ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; | 
 |   ENTROPY_CONTEXT left_context[MAX_MB_PLANE][MAX_MIB_SIZE]; | 
 |  | 
 |   PARTITION_CONTEXT *above_seg_context; | 
 |   PARTITION_CONTEXT left_seg_context[MAX_MIB_SIZE]; | 
 |  | 
 |   TXFM_CONTEXT *above_txfm_context; | 
 |   TXFM_CONTEXT *left_txfm_context; | 
 |   TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]; | 
 |  | 
 |   WienerInfo wiener_info[MAX_MB_PLANE]; | 
 |   SgrprojInfo sgrproj_info[MAX_MB_PLANE]; | 
 |  | 
 |   // block dimension in the unit of mode_info. | 
 |   uint8_t n8_w, n8_h; | 
 |  | 
 |   uint8_t ref_mv_count[MODE_CTX_REF_FRAMES]; | 
 |   CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; | 
 |   uint8_t is_sec_rect; | 
 |  | 
 |   // Counts of each reference frame in the above and left neighboring blocks. | 
 |   // NOTE: Take into account both single and comp references. | 
 |   uint8_t neighbors_ref_counts[REF_FRAMES]; | 
 |  | 
 |   FRAME_CONTEXT *tile_ctx; | 
 |   /* Bit depth: 8, 10, 12 */ | 
 |   int bd; | 
 |  | 
 |   int qindex[MAX_SEGMENTS]; | 
 |   int lossless[MAX_SEGMENTS]; | 
 |   int corrupted; | 
 |   int cur_frame_force_integer_mv; | 
 |   // same with that in AV1_COMMON | 
 |   struct aom_internal_error_info *error_info; | 
 |   const WarpedMotionParams *global_motion; | 
 |   int delta_qindex; | 
 |   int current_qindex; | 
 |   // Since actual frame level loop filtering level value is not available | 
 |   // at the beginning of the tile (only available during actual filtering) | 
 |   // at encoder side.we record the delta_lf (against the frame level loop | 
 |   // filtering level) and code the delta between previous superblock's delta | 
 |   // lf and current delta lf. It is equivalent to the delta between previous | 
 |   // superblock's actual lf and current lf. | 
 |   int delta_lf_from_base; | 
 |   // For this experiment, we have four frame filter levels for different plane | 
 |   // and direction. So, to support the per superblock update, we need to add | 
 |   // a few more params as below. | 
 |   // 0: delta loop filter level for y plane vertical | 
 |   // 1: delta loop filter level for y plane horizontal | 
 |   // 2: delta loop filter level for u plane | 
 |   // 3: delta loop filter level for v plane | 
 |   // To make it consistent with the reference to each filter level in segment, | 
 |   // we need to -1, since | 
 |   // SEG_LVL_ALT_LF_Y_V = 1; | 
 |   // SEG_LVL_ALT_LF_Y_H = 2; | 
 |   // SEG_LVL_ALT_LF_U   = 3; | 
 |   // SEG_LVL_ALT_LF_V   = 4; | 
 |   int delta_lf[FRAME_LF_COUNT]; | 
 |   int cdef_preset[4]; | 
 |  | 
 |   DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); | 
 |   uint8_t *mc_buf[2]; | 
 |   CFL_CTX cfl; | 
 |  | 
 |   JNT_COMP_PARAMS jcp_param; | 
 |  | 
 |   uint16_t cb_offset[MAX_MB_PLANE]; | 
 |   uint16_t txb_offset[MAX_MB_PLANE]; | 
 |   uint16_t color_index_map_offset[2]; | 
 | } MACROBLOCKD; | 
 |  | 
 | static INLINE int get_bitdepth_data_path_index(const MACROBLOCKD *xd) { | 
 |   return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0; | 
 | } | 
 |  | 
 | static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) { | 
 |   return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) | 
 |              ? CONVERT_TO_BYTEPTR(buf16) | 
 |              : buf16; | 
 | } | 
 |  | 
 | static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) { | 
 |   switch (bsize) { | 
 |     case BLOCK_4X4: return 0; | 
 |     case BLOCK_8X8: return 1; | 
 |     case BLOCK_16X16: return 2; | 
 |     case BLOCK_32X32: return 3; | 
 |     case BLOCK_64X64: return 4; | 
 |     case BLOCK_128X128: return 5; | 
 |     default: return SQR_BLOCK_SIZES; | 
 |   } | 
 | } | 
 |  | 
 | // Note: the input block size should be square. | 
 | // Otherwise it's considered invalid. | 
 | static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize, | 
 |                                                PARTITION_TYPE partition) { | 
 |   if (partition == PARTITION_INVALID) { | 
 |     return BLOCK_INVALID; | 
 |   } else { | 
 |     const int sqr_bsize_idx = get_sqr_bsize_idx(bsize); | 
 |     return sqr_bsize_idx >= SQR_BLOCK_SIZES | 
 |                ? BLOCK_INVALID | 
 |                : subsize_lookup[partition][sqr_bsize_idx]; | 
 |   } | 
 | } | 
 |  | 
 | static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi, | 
 |                                      PLANE_TYPE plane_type) { | 
 |   static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = { | 
 |     DCT_DCT,    // DC | 
 |     ADST_DCT,   // V | 
 |     DCT_ADST,   // H | 
 |     DCT_DCT,    // D45 | 
 |     ADST_ADST,  // D135 | 
 |     ADST_DCT,   // D117 | 
 |     DCT_ADST,   // D153 | 
 |     DCT_ADST,   // D207 | 
 |     ADST_DCT,   // D63 | 
 |     ADST_ADST,  // SMOOTH | 
 |     ADST_DCT,   // SMOOTH_V | 
 |     DCT_ADST,   // SMOOTH_H | 
 |     ADST_ADST,  // PAETH | 
 |   }; | 
 |   const PREDICTION_MODE mode = | 
 |       (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode); | 
 |   assert(mode < INTRA_MODES); | 
 |   return _intra_mode_to_tx_type[mode]; | 
 | } | 
 |  | 
 | static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; } | 
 |  | 
 | static INLINE int block_signals_txsize(BLOCK_SIZE bsize) { | 
 |   return bsize > BLOCK_4X4; | 
 | } | 
 |  | 
 | // Number of transform types in each set type | 
 | static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = { | 
 |   1, 2, 5, 7, 12, 16, | 
 | }; | 
 |  | 
 | static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = { | 
 |   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 }, | 
 |   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, | 
 | }; | 
 |  | 
 | static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = { | 
 |   0x0001,  // 0000 0000 0000 0001 | 
 |   0x0201,  // 0000 0010 0000 0001 | 
 |   0x020F,  // 0000 0010 0000 1111 | 
 |   0x0E0F,  // 0000 1110 0000 1111 | 
 |   0x0FFF,  // 0000 1111 1111 1111 | 
 |   0xFFFF,  // 1111 1111 1111 1111 | 
 | }; | 
 |  | 
 | static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter, | 
 |                                                 int use_reduced_set) { | 
 |   const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; | 
 |   if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY; | 
 |   if (tx_size_sqr_up == TX_32X32) | 
 |     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY; | 
 |   if (use_reduced_set) | 
 |     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX; | 
 |   const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size]; | 
 |   if (is_inter) { | 
 |     return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT9_IDTX_1DDCT | 
 |                                     : EXT_TX_SET_ALL16); | 
 |   } else { | 
 |     return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT4_IDTX | 
 |                                     : EXT_TX_SET_DTT4_IDTX_1DDCT); | 
 |   } | 
 | } | 
 |  | 
 | // Maps tx set types to the indices. | 
 | static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = { | 
 |   { // Intra | 
 |     0, -1, 2, 1, -1, -1 }, | 
 |   { // Inter | 
 |     0, 3, -1, -1, 2, 1 }, | 
 | }; | 
 |  | 
 | static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter, | 
 |                                  int use_reduced_set) { | 
 |   const TxSetType set_type = | 
 |       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); | 
 |   return ext_tx_set_index[is_inter][set_type]; | 
 | } | 
 |  | 
 | static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter, | 
 |                                    int use_reduced_set) { | 
 |   const int set_type = | 
 |       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set); | 
 |   return av1_num_ext_tx_set[set_type]; | 
 | } | 
 |  | 
 | #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2)) | 
 | #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2)) | 
 |  | 
 | static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) { | 
 |   const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; | 
 |   const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize]; | 
 |   if (bsize == BLOCK_4X4) | 
 |     return AOMMIN(max_txsize_lookup[bsize], largest_tx_size); | 
 |   if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size) | 
 |     return max_rect_tx_size; | 
 |   else | 
 |     return largest_tx_size; | 
 | } | 
 |  | 
 | extern const int16_t dr_intra_derivative[90]; | 
 | static const uint8_t mode_to_angle_map[] = { | 
 |   0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0, | 
 | }; | 
 |  | 
 | // Converts block_index for given transform size to index of the block in raster | 
 | // order. | 
 | static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size, | 
 |                                                   int block_idx) { | 
 |   // For transform size 4x8, the possible block_idx values are 0 & 2, because | 
 |   // block_idx values are incremented in steps of size 'tx_width_unit x | 
 |   // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to | 
 |   // block number 1 in raster order, inside an 8x8 MI block. | 
 |   // For any other transform size, the two indices are equivalent. | 
 |   return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx; | 
 | } | 
 |  | 
 | // Inverse of above function. | 
 | // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now. | 
 | static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size, | 
 |                                                   int raster_order) { | 
 |   assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4); | 
 |   // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4. | 
 |   return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0; | 
 | } | 
 |  | 
 | static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type, | 
 |                                           const MACROBLOCKD *xd, | 
 |                                           TX_SIZE tx_size) { | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |  | 
 |   if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y || | 
 |       xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32) | 
 |     return DCT_DCT; | 
 |  | 
 |   return intra_mode_to_tx_type(mbmi, plane_type); | 
 | } | 
 |  | 
 | static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize, | 
 |                                               int subsampling_x, | 
 |                                               int subsampling_y) { | 
 |   if (bsize == BLOCK_INVALID) return BLOCK_INVALID; | 
 |   return ss_size_lookup[bsize][subsampling_x][subsampling_y]; | 
 | } | 
 |  | 
 | static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row, | 
 |                                          int blk_col) { | 
 |   TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |   for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) | 
 |     txs = sub_tx_size_map[txs]; | 
 |   const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |   const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |   const int bw_log2 = mi_size_wide_log2[bsize]; | 
 |   const int stride_log2 = bw_log2 - tx_w_log2; | 
 |   const int index = | 
 |       ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2); | 
 |   assert(index < INTER_TX_SIZE_BUF_LEN); | 
 |   return index; | 
 | } | 
 |  | 
 | static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row, | 
 |                                          int blk_col) { | 
 |   TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |   for (int level = 0; level < MAX_VARTX_DEPTH; ++level) | 
 |     txs = sub_tx_size_map[txs]; | 
 |   const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |   const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |   const int bw_uint_log2 = mi_size_wide_log2[bsize]; | 
 |   const int stride_log2 = bw_uint_log2 - tx_w_log2; | 
 |   const int index = | 
 |       ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2); | 
 |   assert(index < TXK_TYPE_BUF_LEN); | 
 |   return index; | 
 | } | 
 |  | 
 | static INLINE void update_txk_array(TX_TYPE *txk_type, BLOCK_SIZE bsize, | 
 |                                     int blk_row, int blk_col, TX_SIZE tx_size, | 
 |                                     TX_TYPE tx_type) { | 
 |   const int txk_type_idx = av1_get_txk_type_index(bsize, blk_row, blk_col); | 
 |   txk_type[txk_type_idx] = tx_type; | 
 |  | 
 |   const int txw = tx_size_wide_unit[tx_size]; | 
 |   const int txh = tx_size_high_unit[tx_size]; | 
 |   // The 16x16 unit is due to the constraint from tx_64x64 which sets the | 
 |   // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block | 
 |   // size, the constraint takes effect in 32x16 / 16x32 size too. To solve | 
 |   // the intricacy, cover all the 16x16 units inside a 64 level transform. | 
 |   if (txw == tx_size_wide_unit[TX_64X64] || | 
 |       txh == tx_size_high_unit[TX_64X64]) { | 
 |     const int tx_unit = tx_size_wide_unit[TX_16X16]; | 
 |     for (int idy = 0; idy < txh; idy += tx_unit) { | 
 |       for (int idx = 0; idx < txw; idx += tx_unit) { | 
 |         const int this_index = | 
 |             av1_get_txk_type_index(bsize, blk_row + idy, blk_col + idx); | 
 |         txk_type[this_index] = tx_type; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_TYPE av1_get_tx_type(PLANE_TYPE plane_type, | 
 |                                       const MACROBLOCKD *xd, int blk_row, | 
 |                                       int blk_col, TX_SIZE tx_size, | 
 |                                       int reduced_tx_set) { | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane_type]; | 
 |   const TxSetType tx_set_type = | 
 |       av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set); | 
 |  | 
 |   TX_TYPE tx_type; | 
 |   if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) { | 
 |     tx_type = DCT_DCT; | 
 |   } else { | 
 |     if (plane_type == PLANE_TYPE_Y) { | 
 |       const int txk_type_idx = | 
 |           av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col); | 
 |       tx_type = mbmi->txk_type[txk_type_idx]; | 
 |     } else if (is_inter_block(mbmi)) { | 
 |       // scale back to y plane's coordinate | 
 |       blk_row <<= pd->subsampling_y; | 
 |       blk_col <<= pd->subsampling_x; | 
 |       const int txk_type_idx = | 
 |           av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col); | 
 |       tx_type = mbmi->txk_type[txk_type_idx]; | 
 |     } else { | 
 |       // In intra mode, uv planes don't share the same prediction mode as y | 
 |       // plane, so the tx_type should not be shared | 
 |       tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV); | 
 |     } | 
 |   } | 
 |   assert(tx_type < TX_TYPES); | 
 |   if (!av1_ext_tx_used[tx_set_type][tx_type]) return DCT_DCT; | 
 |   return tx_type; | 
 | } | 
 |  | 
 | void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y, | 
 |                             const int num_planes); | 
 |  | 
 | static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) { | 
 |   TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; | 
 |   int depth = 0; | 
 |   while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) { | 
 |     depth++; | 
 |     tx_size = sub_tx_size_map[tx_size]; | 
 |   } | 
 |   return depth; | 
 | } | 
 |  | 
 | static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) { | 
 |   TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; | 
 |   assert(tx_size != TX_4X4); | 
 |   int depth = 0; | 
 |   while (tx_size != TX_4X4) { | 
 |     depth++; | 
 |     tx_size = sub_tx_size_map[tx_size]; | 
 |     assert(depth < 10); | 
 |   } | 
 |   assert(depth <= MAX_TX_CATS); | 
 |   return depth - 1; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) { | 
 |   TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
 |   TX_SIZE tx_size = max_tx_size; | 
 |   for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size]; | 
 |   return tx_size; | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) { | 
 |   switch (tx_size) { | 
 |     case TX_64X64: | 
 |     case TX_64X32: | 
 |     case TX_32X64: return TX_32X32; | 
 |     case TX_64X16: return TX_32X16; | 
 |     case TX_16X64: return TX_16X32; | 
 |     default: return tx_size; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x, | 
 |                                             int subsampling_y) { | 
 |   const BLOCK_SIZE plane_bsize = | 
 |       get_plane_block_size(bsize, subsampling_x, subsampling_y); | 
 |   assert(plane_bsize < BLOCK_SIZES_ALL); | 
 |   const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize]; | 
 |   return av1_get_adjusted_tx_size(uv_tx); | 
 | } | 
 |  | 
 | static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) { | 
 |   const MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   if (xd->lossless[mbmi->segment_id]) return TX_4X4; | 
 |   if (plane == 0) return mbmi->tx_size; | 
 |   const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; | 
 |   return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, | 
 |                                pd->subsampling_y); | 
 | } | 
 |  | 
 | void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, | 
 |                             BLOCK_SIZE bsize, const int num_planes); | 
 |  | 
 | void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes); | 
 |  | 
 | void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes); | 
 |  | 
 | typedef void (*foreach_transformed_block_visitor)(int plane, int block, | 
 |                                                   int blk_row, int blk_col, | 
 |                                                   BLOCK_SIZE plane_bsize, | 
 |                                                   TX_SIZE tx_size, void *arg); | 
 |  | 
 | void av1_foreach_transformed_block_in_plane( | 
 |     const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, | 
 |     foreach_transformed_block_visitor visit, void *arg); | 
 |  | 
 | void av1_foreach_transformed_block(const MACROBLOCKD *const xd, | 
 |                                    BLOCK_SIZE bsize, int mi_row, int mi_col, | 
 |                                    foreach_transformed_block_visitor visit, | 
 |                                    void *arg, const int num_planes); | 
 |  | 
 | void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd, | 
 |                       int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
 |                       int has_eob, int aoff, int loff); | 
 |  | 
 | #define MAX_INTERINTRA_SB_SQUARE 32 * 32 | 
 | static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) { | 
 |   return (mbmi->ref_frame[0] > INTRA_FRAME && | 
 |           mbmi->ref_frame[1] == INTRA_FRAME); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) { | 
 |   return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) { | 
 |   return (mode >= NEARESTMV) && (mode <= NEWMV); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) { | 
 |   return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) { | 
 |   return is_interintra_allowed_bsize(mbmi->sb_type) && | 
 |          is_interintra_allowed_mode(mbmi->mode) && | 
 |          is_interintra_allowed_ref(mbmi->ref_frame); | 
 | } | 
 |  | 
 | static INLINE int is_interintra_allowed_bsize_group(int group) { | 
 |   int i; | 
 |   for (i = 0; i < BLOCK_SIZES_ALL; i++) { | 
 |     if (size_group_lookup[i] == group && | 
 |         is_interintra_allowed_bsize((BLOCK_SIZE)i)) { | 
 |       return 1; | 
 |     } | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) { | 
 |   return mbmi->ref_frame[0] > INTRA_FRAME && | 
 |          mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi); | 
 | } | 
 |  | 
 | static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
 |                                        int plane) { | 
 |   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; | 
 |   const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize]; | 
 |   if (plane == 0) return max_txsize;            // luma | 
 |   return av1_get_adjusted_tx_size(max_txsize);  // chroma | 
 | } | 
 |  | 
 | static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) { | 
 |   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; | 
 | } | 
 |  | 
 | static INLINE int is_motion_variation_allowed_compound( | 
 |     const MB_MODE_INFO *mbmi) { | 
 |   if (!has_second_ref(mbmi)) | 
 |     return 1; | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | // input: log2 of length, 0(4), 1(8), ... | 
 | static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 }; | 
 |  | 
 | static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) { | 
 |   return !(mbmi->overlappable_neighbors[0] == 0 && | 
 |            mbmi->overlappable_neighbors[1] == 0); | 
 | } | 
 |  | 
 | static INLINE MOTION_MODE | 
 | motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd, | 
 |                     const MB_MODE_INFO *mbmi, int allow_warped_motion) { | 
 |   if (xd->cur_frame_force_integer_mv == 0) { | 
 |     const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype; | 
 |     if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION; | 
 |   } | 
 |   if (is_motion_variation_allowed_bsize(mbmi->sb_type) && | 
 |       is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME && | 
 |       is_motion_variation_allowed_compound(mbmi)) { | 
 |     if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION; | 
 |     assert(!has_second_ref(mbmi)); | 
 |     if (mbmi->num_proj_ref[0] >= 1 && | 
 |         (allow_warped_motion && !av1_is_scaled(&(xd->block_refs[0]->sf)))) { | 
 |       if (xd->cur_frame_force_integer_mv) { | 
 |         return OBMC_CAUSAL; | 
 |       } | 
 |       return WARPED_CAUSAL; | 
 |     } | 
 |     return OBMC_CAUSAL; | 
 |   } else { | 
 |     return SIMPLE_TRANSLATION; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE void assert_motion_mode_valid(MOTION_MODE mode, | 
 |                                             const WarpedMotionParams *gm_params, | 
 |                                             const MACROBLOCKD *xd, | 
 |                                             const MB_MODE_INFO *mbmi, | 
 |                                             int allow_warped_motion) { | 
 |   const MOTION_MODE last_motion_mode_allowed = | 
 |       motion_mode_allowed(gm_params, xd, mbmi, allow_warped_motion); | 
 |  | 
 |   // Check that the input mode is not illegal | 
 |   if (last_motion_mode_allowed < mode) | 
 |     assert(0 && "Illegal motion mode selected"); | 
 | } | 
 |  | 
 | static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) { | 
 |   return (is_inter_block(mbmi)); | 
 | } | 
 |  | 
 | static INLINE int av1_allow_palette(int allow_screen_content_tools, | 
 |                                     BLOCK_SIZE sb_type) { | 
 |   return allow_screen_content_tools && block_size_wide[sb_type] <= 64 && | 
 |          block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8; | 
 | } | 
 |  | 
 | // Returns sub-sampled dimensions of the given block. | 
 | // The output values for 'rows_within_bounds' and 'cols_within_bounds' will | 
 | // differ from 'height' and 'width' when part of the block is outside the | 
 | // right | 
 | // and/or bottom image boundary. | 
 | static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane, | 
 |                                             const MACROBLOCKD *xd, int *width, | 
 |                                             int *height, | 
 |                                             int *rows_within_bounds, | 
 |                                             int *cols_within_bounds) { | 
 |   const int block_height = block_size_high[bsize]; | 
 |   const int block_width = block_size_wide[bsize]; | 
 |   const int block_rows = (xd->mb_to_bottom_edge >= 0) | 
 |                              ? block_height | 
 |                              : (xd->mb_to_bottom_edge >> 3) + block_height; | 
 |   const int block_cols = (xd->mb_to_right_edge >= 0) | 
 |                              ? block_width | 
 |                              : (xd->mb_to_right_edge >> 3) + block_width; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); | 
 |   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); | 
 |   assert(block_width >= block_cols); | 
 |   assert(block_height >= block_rows); | 
 |   const int plane_block_width = block_width >> pd->subsampling_x; | 
 |   const int plane_block_height = block_height >> pd->subsampling_y; | 
 |   // Special handling for chroma sub8x8. | 
 |   const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4; | 
 |   const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4; | 
 |   if (width) *width = plane_block_width + 2 * is_chroma_sub8_x; | 
 |   if (height) *height = plane_block_height + 2 * is_chroma_sub8_y; | 
 |   if (rows_within_bounds) { | 
 |     *rows_within_bounds = | 
 |         (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y; | 
 |   } | 
 |   if (cols_within_bounds) { | 
 |     *cols_within_bounds = | 
 |         (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x; | 
 |   } | 
 | } | 
 |  | 
 | /* clang-format off */ | 
 | typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS] | 
 |                               [CDF_SIZE(PALETTE_COLORS)]; | 
 | typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS] | 
 |                               [PALETTE_COLORS]; | 
 | /* clang-format on */ | 
 |  | 
 | typedef struct { | 
 |   int rows; | 
 |   int cols; | 
 |   int n_colors; | 
 |   int plane_width; | 
 |   int plane_height; | 
 |   uint8_t *color_map; | 
 |   MapCdf map_cdf; | 
 |   ColorCost color_cost; | 
 | } Av1ColorMapParam; | 
 |  | 
 | static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd, | 
 |                                             const MB_MODE_INFO *mbmi) { | 
 |   int ref; | 
 |  | 
 |   // First check if all modes are GLOBALMV | 
 |   if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0; | 
 |  | 
 |   if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2) | 
 |     return 0; | 
 |  | 
 |   // Now check if all global motion is non translational | 
 |   for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { | 
 |     if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static INLINE PLANE_TYPE get_plane_type(int plane) { | 
 |   return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; | 
 | } | 
 |  | 
 | static INLINE void transpose_uint8(uint8_t *dst, int dst_stride, | 
 |                                    const uint8_t *src, int src_stride, int w, | 
 |                                    int h) { | 
 |   int r, c; | 
 |   for (r = 0; r < h; ++r) | 
 |     for (c = 0; c < w; ++c) dst[c * dst_stride + r] = src[r * src_stride + c]; | 
 | } | 
 |  | 
 | static INLINE void transpose_uint16(uint16_t *dst, int dst_stride, | 
 |                                     const uint16_t *src, int src_stride, int w, | 
 |                                     int h) { | 
 |   int r, c; | 
 |   for (r = 0; r < h; ++r) | 
 |     for (c = 0; c < w; ++c) dst[c * dst_stride + r] = src[r * src_stride + c]; | 
 | } | 
 |  | 
 | static INLINE void transpose_int16(int16_t *dst, int dst_stride, | 
 |                                    const int16_t *src, int src_stride, int w, | 
 |                                    int h) { | 
 |   int r, c; | 
 |   for (r = 0; r < h; ++r) | 
 |     for (c = 0; c < w; ++c) dst[c * dst_stride + r] = src[r * src_stride + c]; | 
 | } | 
 |  | 
 | static INLINE void transpose_int32(int32_t *dst, int dst_stride, | 
 |                                    const int32_t *src, int src_stride, int w, | 
 |                                    int h) { | 
 |   int r, c; | 
 |   for (r = 0; r < h; ++r) | 
 |     for (c = 0; c < w; ++c) dst[c * dst_stride + r] = src[r * src_stride + c]; | 
 | } | 
 |  | 
 | static INLINE int av1_get_max_eob(TX_SIZE tx_size) { | 
 |   if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) { | 
 |     return 1024; | 
 |   } | 
 |   if (tx_size == TX_16X64 || tx_size == TX_64X16) { | 
 |     return 512; | 
 |   } | 
 |   return tx_size_2d[tx_size]; | 
 | } | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AV1_COMMON_BLOCKD_H_ |