|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #ifndef AV1_COMMON_ONYXC_INT_H_ | 
|  | #define AV1_COMMON_ONYXC_INT_H_ | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom/internal/aom_codec_internal.h" | 
|  | #include "aom_util/aom_thread.h" | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/common/av1_loopfilter.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/frame_buffers.h" | 
|  | #include "av1/common/mv.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/restoration.h" | 
|  | #include "av1/common/tile_common.h" | 
|  | #include "av1/common/timing.h" | 
|  | #include "av1/common/odintrin.h" | 
|  | #include "av1/encoder/hash_motion.h" | 
|  | #include "aom_dsp/grain_synthesis.h" | 
|  | #include "aom_dsp/grain_table.h" | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | #if defined(__clang__) && defined(__has_warning) | 
|  | #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") | 
|  | #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT | 
|  | #endif | 
|  | #elif defined(__GNUC__) && __GNUC__ >= 7 | 
|  | #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT | 
|  | #endif | 
|  |  | 
|  | #ifndef AOM_FALLTHROUGH_INTENDED | 
|  | #define AOM_FALLTHROUGH_INTENDED \ | 
|  | do {                           \ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | #define CDEF_MAX_STRENGTHS 16 | 
|  |  | 
|  | /* Constant values while waiting for the sequence header */ | 
|  | #define FRAME_ID_LENGTH 15 | 
|  | #define DELTA_FRAME_ID_LENGTH 14 | 
|  |  | 
|  | #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) | 
|  | // Extra frame context which is always kept at default values | 
|  | #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) | 
|  | #define PRIMARY_REF_BITS 3 | 
|  | #define PRIMARY_REF_NONE 7 | 
|  |  | 
|  | #define NUM_PING_PONG_BUFFERS 2 | 
|  |  | 
|  | #define MAX_NUM_TEMPORAL_LAYERS 8 | 
|  | #define MAX_NUM_SPATIAL_LAYERS 4 | 
|  | /* clang-format off */ | 
|  | // clang-format seems to think this is a pointer dereference and not a | 
|  | // multiplication. | 
|  | #define MAX_NUM_OPERATING_POINTS \ | 
|  | MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS | 
|  | /* clang-format on*/ | 
|  |  | 
|  | // TODO(jingning): Turning this on to set up transform coefficient | 
|  | // processing timer. | 
|  | #define TXCOEFF_TIMER 0 | 
|  | #define TXCOEFF_COST_TIMER 0 | 
|  |  | 
|  | typedef enum { | 
|  | SINGLE_REFERENCE = 0, | 
|  | COMPOUND_REFERENCE = 1, | 
|  | REFERENCE_MODE_SELECT = 2, | 
|  | REFERENCE_MODES = 3, | 
|  | } REFERENCE_MODE; | 
|  |  | 
|  | typedef enum { | 
|  | /** | 
|  | * Frame context updates are disabled | 
|  | */ | 
|  | REFRESH_FRAME_CONTEXT_DISABLED, | 
|  | /** | 
|  | * Update frame context to values resulting from backward probability | 
|  | * updates based on entropy/counts in the decoded frame | 
|  | */ | 
|  | REFRESH_FRAME_CONTEXT_BACKWARD, | 
|  | } REFRESH_FRAME_CONTEXT_MODE; | 
|  |  | 
|  | #define MFMV_STACK_SIZE 3 | 
|  | typedef struct { | 
|  | int_mv mfmv0; | 
|  | uint8_t ref_frame_offset; | 
|  | } TPL_MV_REF; | 
|  |  | 
|  | typedef struct { | 
|  | int_mv mv; | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  | } MV_REF; | 
|  |  | 
|  | typedef struct { | 
|  | int ref_count; | 
|  |  | 
|  | unsigned int cur_frame_offset; | 
|  | unsigned int ref_frame_offset[INTER_REFS_PER_FRAME]; | 
|  |  | 
|  | MV_REF *mvs; | 
|  | uint8_t *seg_map; | 
|  | struct segmentation seg; | 
|  | int mi_rows; | 
|  | int mi_cols; | 
|  | // Width and height give the size of the buffer (before any upscaling, unlike | 
|  | // the sizes that can be derived from the buf structure) | 
|  | int width; | 
|  | int height; | 
|  | WarpedMotionParams global_motion[REF_FRAMES]; | 
|  | int showable_frame;  // frame can be used as show existing frame in future | 
|  | int film_grain_params_present; | 
|  | aom_film_grain_t film_grain_params; | 
|  | aom_codec_frame_buffer_t raw_frame_buffer; | 
|  | YV12_BUFFER_CONFIG buf; | 
|  | hash_table hash_table; | 
|  | uint8_t intra_only; | 
|  | FRAME_TYPE frame_type; | 
|  | // The Following variables will only be used in frame parallel decode. | 
|  |  | 
|  | // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means | 
|  | // that no FrameWorker owns, or is decoding, this buffer. | 
|  | AVxWorker *frame_worker_owner; | 
|  |  | 
|  | // row and col indicate which position frame has been decoded to in real | 
|  | // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX | 
|  | // when the frame is fully decoded. | 
|  | int row; | 
|  | int col; | 
|  |  | 
|  | // Inter frame reference frame delta for loop filter | 
|  | int8_t ref_deltas[REF_FRAMES]; | 
|  |  | 
|  | // 0 = ZERO_MV, MV | 
|  | int8_t mode_deltas[MAX_MODE_LF_DELTAS]; | 
|  | } RefCntBuffer; | 
|  |  | 
|  | typedef struct BufferPool { | 
|  | // Protect BufferPool from being accessed by several FrameWorkers at | 
|  | // the same time during frame parallel decode. | 
|  | // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_t pool_mutex; | 
|  | #endif | 
|  |  | 
|  | // Private data associated with the frame buffer callbacks. | 
|  | void *cb_priv; | 
|  |  | 
|  | aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
|  | aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
|  |  | 
|  | RefCntBuffer frame_bufs[FRAME_BUFFERS]; | 
|  |  | 
|  | // Frame buffers allocated internally by the codec. | 
|  | InternalFrameBufferList int_frame_buffers; | 
|  | } BufferPool; | 
|  |  | 
|  | typedef struct { | 
|  | int base_ctx_table[2 /*row*/][2 /*col*/][3 /*sig_map*/] | 
|  | [BASE_CONTEXT_POSITION_NUM + 1]; | 
|  | } LV_MAP_CTX_TABLE; | 
|  | typedef int BASE_CTX_TABLE[2 /*col*/][3 /*sig_map*/] | 
|  | [BASE_CONTEXT_POSITION_NUM + 1]; | 
|  |  | 
|  | typedef struct BitstreamLevel { | 
|  | uint8_t major; | 
|  | uint8_t minor; | 
|  | } BitstreamLevel; | 
|  |  | 
|  | // Sequence header structure. | 
|  | // Note: All syntax elements of sequence_header_obu that need to be | 
|  | // bit-identical across multiple sequence headers must be part of this struct, | 
|  | // so that consistency is checked by are_seq_headers_consistent() function. | 
|  | typedef struct SequenceHeader { | 
|  | int num_bits_width; | 
|  | int num_bits_height; | 
|  | int max_frame_width; | 
|  | int max_frame_height; | 
|  | int frame_id_numbers_present_flag; | 
|  | int frame_id_length; | 
|  | int delta_frame_id_length; | 
|  | BLOCK_SIZE sb_size;  // Size of the superblock used for this frame | 
|  | int mib_size;        // Size of the superblock in units of MI blocks | 
|  | int mib_size_log2;   // Log 2 of above. | 
|  | int order_hint_bits_minus_1; | 
|  | int force_screen_content_tools;  // 0 - force off | 
|  | // 1 - force on | 
|  | // 2 - adaptive | 
|  | int force_integer_mv;            // 0 - Not to force. MV can be in 1/4 or 1/8 | 
|  | // 1 - force to integer | 
|  | // 2 - adaptive | 
|  | int still_picture;               // Video is a single frame still picture | 
|  | int reduced_still_picture_hdr;   // Use reduced header for still picture | 
|  | int enable_filter_intra;         // enables/disables filterintra | 
|  | int enable_intra_edge_filter;    // enables/disables corner/edge/upsampling | 
|  | int enable_interintra_compound;  // enables/disables interintra_compound | 
|  | int enable_masked_compound;      // enables/disables masked compound | 
|  | int enable_dual_filter;          // 0 - disable dual interpolation filter | 
|  | // 1 - enable vert/horiz filter selection | 
|  | int enable_order_hint;           // 0 - disable order hint, and related tools | 
|  | // jnt_comp, ref_frame_mvs, frame_sign_bias | 
|  | // if 0, enable_jnt_comp and | 
|  | // enable_ref_frame_mvs must be set zs 0. | 
|  | int enable_jnt_comp;             // 0 - disable joint compound modes | 
|  | // 1 - enable it | 
|  | int enable_ref_frame_mvs;        // 0 - disable ref frame mvs | 
|  | // 1 - enable it | 
|  | int enable_warped_motion;        // 0 - disable warped motion for sequence | 
|  | // 1 - enable it for the sequence | 
|  | int enable_superres;     // 0 - Disable superres for the sequence, and disable | 
|  | //     transmitting per-frame superres enabled flag. | 
|  | // 1 - Enable superres for the sequence, and also | 
|  | //     enable per-frame flag to denote if superres is | 
|  | //     enabled for that frame. | 
|  | int enable_cdef;         // To turn on/off CDEF | 
|  | int enable_restoration;  // To turn on/off loop restoration | 
|  | BITSTREAM_PROFILE profile; | 
|  |  | 
|  | // Operating point info. | 
|  | int operating_points_cnt_minus_1; | 
|  | int operating_point_idc[MAX_NUM_OPERATING_POINTS]; | 
|  | int display_model_info_present_flag; | 
|  | int decoder_model_info_present_flag; | 
|  | BitstreamLevel level[MAX_NUM_OPERATING_POINTS]; | 
|  | uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in the spec. One bit: 0 | 
|  | // or 1. | 
|  |  | 
|  | // Color config. | 
|  | aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1, | 
|  | // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. | 
|  | int use_highbitdepth;       // If true, we need to use 16bit frame buffers. | 
|  | int monochrome;             // Monochorme video | 
|  | aom_color_primaries_t color_primaries; | 
|  | aom_transfer_characteristics_t transfer_characteristics; | 
|  | aom_matrix_coefficients_t matrix_coefficients; | 
|  | int color_range; | 
|  | int subsampling_x;          // Chroma subsampling for x | 
|  | int subsampling_y;          // Chroma subsampling for y | 
|  | aom_chroma_sample_position_t chroma_sample_position; | 
|  | int separate_uv_delta_q; | 
|  |  | 
|  | int film_grain_params_present; | 
|  | } SequenceHeader; | 
|  |  | 
|  | typedef struct AV1Common { | 
|  | struct aom_internal_error_info error; | 
|  | int width; | 
|  | int height; | 
|  | int render_width; | 
|  | int render_height; | 
|  | int last_width; | 
|  | int last_height; | 
|  | int timing_info_present; | 
|  | aom_timing_info_t timing_info; | 
|  | int buffer_removal_time_present; | 
|  | aom_dec_model_info_t buffer_model; | 
|  | aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; | 
|  | aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1]; | 
|  | uint32_t frame_presentation_time; | 
|  |  | 
|  | int largest_tile_id; | 
|  | size_t largest_tile_size; | 
|  | int context_update_tile_id; | 
|  |  | 
|  | // Scale of the current frame with respect to itself. | 
|  | struct scale_factors sf_identity; | 
|  |  | 
|  | YV12_BUFFER_CONFIG *frame_to_show; | 
|  | RefCntBuffer *prev_frame; | 
|  |  | 
|  | // TODO(hkuang): Combine this with cur_buf in macroblockd. | 
|  | RefCntBuffer *cur_frame; | 
|  |  | 
|  | int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ | 
|  |  | 
|  | // Prepare ref_frame_map for the next frame. | 
|  | // Only used in frame parallel decode. | 
|  | int next_ref_frame_map[REF_FRAMES]; | 
|  |  | 
|  | // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and | 
|  | // roll new_fb_idx into it. | 
|  |  | 
|  | // Each Inter frame can reference INTER_REFS_PER_FRAME buffers | 
|  | RefBuffer frame_refs[INTER_REFS_PER_FRAME]; | 
|  | int is_skip_mode_allowed; | 
|  | int skip_mode_flag; | 
|  | int ref_frame_idx_0; | 
|  | int ref_frame_idx_1; | 
|  |  | 
|  | int new_fb_idx; | 
|  |  | 
|  | FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ | 
|  | FRAME_TYPE frame_type; | 
|  |  | 
|  | int show_frame; | 
|  | int showable_frame;  // frame can be used as show existing frame in future | 
|  | int last_show_frame; | 
|  | int show_existing_frame; | 
|  | // Flag for a frame used as a reference - not written to the bitstream | 
|  | int is_reference_frame; | 
|  | int reset_decoder_state; | 
|  |  | 
|  | // Flag signaling that the frame is encoded using only INTRA modes. | 
|  | uint8_t intra_only; | 
|  | uint8_t last_intra_only; | 
|  | uint8_t disable_cdf_update; | 
|  | int allow_high_precision_mv; | 
|  | int cur_frame_force_integer_mv;  // 0 the default in AOM, 1 only integer | 
|  |  | 
|  | int allow_screen_content_tools; | 
|  | int allow_intrabc; | 
|  | int allow_warped_motion; | 
|  |  | 
|  | // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in | 
|  | // MB_MODE_INFO (8-pixel) units. | 
|  | int MBs; | 
|  | int mb_rows, mi_rows; | 
|  | int mb_cols, mi_cols; | 
|  | int mi_stride; | 
|  |  | 
|  | /* profile settings */ | 
|  | TX_MODE tx_mode; | 
|  |  | 
|  | #if CONFIG_ENTROPY_STATS | 
|  | int coef_cdf_category; | 
|  | #endif | 
|  |  | 
|  | int base_qindex; | 
|  | int y_dc_delta_q; | 
|  | int u_dc_delta_q; | 
|  | int v_dc_delta_q; | 
|  | int u_ac_delta_q; | 
|  | int v_ac_delta_q; | 
|  |  | 
|  | // The dequantizers below are true dequntizers used only in the | 
|  | // dequantization process.  They have the same coefficient | 
|  | // shift/scale as TX. | 
|  | int16_t y_dequant_QTX[MAX_SEGMENTS][2]; | 
|  | int16_t u_dequant_QTX[MAX_SEGMENTS][2]; | 
|  | int16_t v_dequant_QTX[MAX_SEGMENTS][2]; | 
|  |  | 
|  | // Global quant matrix tables | 
|  | const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
|  | const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; | 
|  |  | 
|  | // Local quant matrix tables for each frame | 
|  | const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  | const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  | const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; | 
|  |  | 
|  | // Encoder | 
|  | int using_qmatrix; | 
|  | int qm_y; | 
|  | int qm_u; | 
|  | int qm_v; | 
|  | int min_qmlevel; | 
|  | int max_qmlevel; | 
|  |  | 
|  | /* We allocate a MB_MODE_INFO struct for each macroblock, together with | 
|  | an extra row on top and column on the left to simplify prediction. */ | 
|  | int mi_alloc_size; | 
|  | MB_MODE_INFO *mip; /* Base of allocated array */ | 
|  | MB_MODE_INFO *mi;  /* Corresponds to upper left visible macroblock */ | 
|  |  | 
|  | // TODO(agrange): Move prev_mi into encoder structure. | 
|  | // prev_mip and prev_mi will only be allocated in encoder. | 
|  | MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */ | 
|  | MB_MODE_INFO *prev_mi;  /* 'mi' from last frame (points into prev_mip) */ | 
|  |  | 
|  | // Separate mi functions between encoder and decoder. | 
|  | int (*alloc_mi)(struct AV1Common *cm, int mi_size); | 
|  | void (*free_mi)(struct AV1Common *cm); | 
|  | void (*setup_mi)(struct AV1Common *cm); | 
|  |  | 
|  | // Grid of pointers to 8x8 MB_MODE_INFO structs.  Any 8x8 not in the visible | 
|  | // area will be NULL. | 
|  | MB_MODE_INFO **mi_grid_base; | 
|  | MB_MODE_INFO **mi_grid_visible; | 
|  | MB_MODE_INFO **prev_mi_grid_base; | 
|  | MB_MODE_INFO **prev_mi_grid_visible; | 
|  |  | 
|  | // Whether to use previous frames' motion vectors for prediction. | 
|  | int allow_ref_frame_mvs; | 
|  |  | 
|  | uint8_t *last_frame_seg_map; | 
|  | uint8_t *current_frame_seg_map; | 
|  | int seg_map_alloc_size; | 
|  |  | 
|  | InterpFilter interp_filter; | 
|  |  | 
|  | int switchable_motion_mode; | 
|  |  | 
|  | loop_filter_info_n lf_info; | 
|  | // The denominator of the superres scale; the numerator is fixed. | 
|  | uint8_t superres_scale_denominator; | 
|  | int superres_upscaled_width; | 
|  | int superres_upscaled_height; | 
|  | RestorationInfo rst_info[MAX_MB_PLANE]; | 
|  |  | 
|  | // rst_end_stripe[i] is one more than the index of the bottom stripe | 
|  | // for tile row i. | 
|  | int rst_end_stripe[MAX_TILE_ROWS]; | 
|  |  | 
|  | // Pointer to a scratch buffer used by self-guided restoration | 
|  | int32_t *rst_tmpbuf; | 
|  | RestorationLineBuffers *rlbs; | 
|  |  | 
|  | // Output of loop restoration | 
|  | YV12_BUFFER_CONFIG rst_frame; | 
|  |  | 
|  | // Flag signaling how frame contexts should be updated at the end of | 
|  | // a frame decode | 
|  | REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; | 
|  |  | 
|  | int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */ | 
|  |  | 
|  | struct loopfilter lf; | 
|  | struct segmentation seg; | 
|  | int coded_lossless;  // frame is fully lossless at the coded resolution. | 
|  | int all_lossless;    // frame is fully lossless at the upscaled resolution. | 
|  |  | 
|  | int reduced_tx_set_used; | 
|  |  | 
|  | // Context probabilities for reference frame prediction | 
|  | MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; | 
|  | MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; | 
|  | REFERENCE_MODE reference_mode; | 
|  |  | 
|  | FRAME_CONTEXT *fc;              /* this frame entropy */ | 
|  | FRAME_CONTEXT *frame_contexts;  // FRAME_CONTEXTS | 
|  | unsigned int frame_context_idx; /* Context to use/update */ | 
|  | int fb_of_context_type[REF_FRAMES]; | 
|  | int primary_ref_frame; | 
|  |  | 
|  | unsigned int frame_offset; | 
|  |  | 
|  | unsigned int current_video_frame; | 
|  |  | 
|  | aom_bit_depth_t dequant_bit_depth;  // bit_depth of current dequantizer | 
|  |  | 
|  | int error_resilient_mode; | 
|  | int force_primary_ref_none; | 
|  |  | 
|  | int tile_cols, tile_rows; | 
|  | int last_tile_cols, last_tile_rows; | 
|  |  | 
|  | int max_tile_width_sb; | 
|  | int min_log2_tile_cols; | 
|  | int max_log2_tile_cols; | 
|  | int max_log2_tile_rows; | 
|  | int min_log2_tile_rows; | 
|  | int min_log2_tiles; | 
|  | int max_tile_height_sb; | 
|  | int uniform_tile_spacing_flag; | 
|  | int log2_tile_cols;                        // only valid for uniform tiles | 
|  | int log2_tile_rows;                        // only valid for uniform tiles | 
|  | int tile_col_start_sb[MAX_TILE_COLS + 1];  // valid for 0 <= i <= tile_cols | 
|  | int tile_row_start_sb[MAX_TILE_ROWS + 1];  // valid for 0 <= i <= tile_rows | 
|  | int tile_width, tile_height;               // In MI units | 
|  |  | 
|  | unsigned int large_scale_tile; | 
|  | unsigned int single_tile_decoding; | 
|  |  | 
|  | int byte_alignment; | 
|  | int skip_loop_filter; | 
|  |  | 
|  | // Private data associated with the frame buffer callbacks. | 
|  | void *cb_priv; | 
|  | aom_get_frame_buffer_cb_fn_t get_fb_cb; | 
|  | aom_release_frame_buffer_cb_fn_t release_fb_cb; | 
|  |  | 
|  | // Handles memory for the codec. | 
|  | InternalFrameBufferList int_frame_buffers; | 
|  |  | 
|  | // External BufferPool passed from outside. | 
|  | BufferPool *buffer_pool; | 
|  |  | 
|  | PARTITION_CONTEXT **above_seg_context; | 
|  | ENTROPY_CONTEXT **above_context[MAX_MB_PLANE]; | 
|  | TXFM_CONTEXT **above_txfm_context; | 
|  | WarpedMotionParams global_motion[REF_FRAMES]; | 
|  | aom_film_grain_t film_grain_params; | 
|  |  | 
|  | int cdef_pri_damping; | 
|  | int cdef_sec_damping; | 
|  | int nb_cdef_strengths; | 
|  | int cdef_strengths[CDEF_MAX_STRENGTHS]; | 
|  | int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; | 
|  | int cdef_bits; | 
|  |  | 
|  | int delta_q_present_flag; | 
|  | // Resolution of delta quant | 
|  | int delta_q_res; | 
|  | int delta_lf_present_flag; | 
|  | // Resolution of delta lf level | 
|  | int delta_lf_res; | 
|  | // This is a flag for number of deltas of loop filter level | 
|  | // 0: use 1 delta, for y_vertical, y_horizontal, u, and v | 
|  | // 1: use separate deltas for each filter level | 
|  | int delta_lf_multi; | 
|  | int num_tg; | 
|  | SequenceHeader seq_params; | 
|  | int current_frame_id; | 
|  | int ref_frame_id[REF_FRAMES]; | 
|  | int valid_for_referencing[REF_FRAMES]; | 
|  | int invalid_delta_frame_id_minus_1; | 
|  | LV_MAP_CTX_TABLE coeff_ctx_table; | 
|  | TPL_MV_REF *tpl_mvs; | 
|  | int tpl_mvs_mem_size; | 
|  | // TODO(jingning): This can be combined with sign_bias later. | 
|  | int8_t ref_frame_side[REF_FRAMES]; | 
|  |  | 
|  | int is_annexb; | 
|  |  | 
|  | int frame_refs_short_signaling; | 
|  | int temporal_layer_id; | 
|  | int spatial_layer_id; | 
|  | unsigned int number_temporal_layers; | 
|  | unsigned int number_spatial_layers; | 
|  | int num_allocated_above_context_mi_col; | 
|  | int num_allocated_above_contexts; | 
|  | int num_allocated_above_context_planes; | 
|  |  | 
|  | #if TXCOEFF_TIMER | 
|  | int64_t cum_txcoeff_timer; | 
|  | int64_t txcoeff_timer; | 
|  | int txb_count; | 
|  | #endif | 
|  |  | 
|  | #if TXCOEFF_COST_TIMER | 
|  | int64_t cum_txcoeff_cost_timer; | 
|  | int64_t txcoeff_cost_timer; | 
|  | int64_t txcoeff_cost_count; | 
|  | #endif | 
|  | const cfg_options_t *options; | 
|  | } AV1_COMMON; | 
|  |  | 
|  | // TODO(hkuang): Don't need to lock the whole pool after implementing atomic | 
|  | // frame reference count. | 
|  | static void lock_buffer_pool(BufferPool *const pool) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_lock(&pool->pool_mutex); | 
|  | #else | 
|  | (void)pool; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void unlock_buffer_pool(BufferPool *const pool) { | 
|  | #if CONFIG_MULTITHREAD | 
|  | pthread_mutex_unlock(&pool->pool_mutex); | 
|  | #else | 
|  | (void)pool; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { | 
|  | if (index < 0 || index >= REF_FRAMES) return NULL; | 
|  | if (cm->ref_frame_map[index] < 0) return NULL; | 
|  | assert(cm->ref_frame_map[index] < FRAME_BUFFERS); | 
|  | return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; | 
|  | } | 
|  |  | 
|  | static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( | 
|  | const AV1_COMMON *const cm) { | 
|  | return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; | 
|  | } | 
|  |  | 
|  | static INLINE int get_free_fb(AV1_COMMON *cm) { | 
|  | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
|  | int i; | 
|  |  | 
|  | lock_buffer_pool(cm->buffer_pool); | 
|  | for (i = 0; i < FRAME_BUFFERS; ++i) | 
|  | if (frame_bufs[i].ref_count == 0) break; | 
|  |  | 
|  | if (i != FRAME_BUFFERS) { | 
|  | if (frame_bufs[i].buf.use_external_reference_buffers) { | 
|  | // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the | 
|  | // external reference buffers. Restore the buffer pointers to point to the | 
|  | // internally allocated memory. | 
|  | YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; | 
|  | ybf->y_buffer = ybf->store_buf_adr[0]; | 
|  | ybf->u_buffer = ybf->store_buf_adr[1]; | 
|  | ybf->v_buffer = ybf->store_buf_adr[2]; | 
|  | ybf->use_external_reference_buffers = 0; | 
|  | } | 
|  |  | 
|  | frame_bufs[i].ref_count = 1; | 
|  | } else { | 
|  | // Reset i to be INVALID_IDX to indicate no free buffer found. | 
|  | i = INVALID_IDX; | 
|  | } | 
|  |  | 
|  | unlock_buffer_pool(cm->buffer_pool); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { | 
|  | const int ref_index = *idx; | 
|  |  | 
|  | if (ref_index >= 0 && bufs[ref_index].ref_count > 0) | 
|  | bufs[ref_index].ref_count--; | 
|  |  | 
|  | *idx = new_idx; | 
|  |  | 
|  | bufs[new_idx].ref_count++; | 
|  | } | 
|  |  | 
|  | static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { | 
|  | return cm->frame_type == KEY_FRAME || cm->intra_only; | 
|  | } | 
|  |  | 
|  | static INLINE int frame_is_sframe(const AV1_COMMON *cm) { | 
|  | return cm->frame_type == S_FRAME; | 
|  | } | 
|  |  | 
|  | static INLINE RefCntBuffer *get_prev_frame(const AV1_COMMON *const cm) { | 
|  | if (cm->primary_ref_frame == PRIMARY_REF_NONE || | 
|  | cm->frame_refs[cm->primary_ref_frame].idx == INVALID_IDX) { | 
|  | return NULL; | 
|  | } else { | 
|  | return &cm->buffer_pool | 
|  | ->frame_bufs[cm->frame_refs[cm->primary_ref_frame].idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns 1 if this frame might allow mvs from some reference frame. | 
|  | static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { | 
|  | return !cm->error_resilient_mode && cm->seq_params.enable_ref_frame_mvs && | 
|  | cm->seq_params.enable_order_hint && !frame_is_intra_only(cm); | 
|  | } | 
|  |  | 
|  | // Returns 1 if this frame might use warped_motion | 
|  | static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { | 
|  | return !cm->error_resilient_mode && !frame_is_intra_only(cm) && | 
|  | cm->seq_params.enable_warped_motion; | 
|  | } | 
|  |  | 
|  | static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { | 
|  | const int buf_rows = buf->mi_rows; | 
|  | const int buf_cols = buf->mi_cols; | 
|  |  | 
|  | if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) { | 
|  | aom_free(buf->mvs); | 
|  | buf->mi_rows = cm->mi_rows; | 
|  | buf->mi_cols = cm->mi_cols; | 
|  | CHECK_MEM_ERROR(cm, buf->mvs, | 
|  | (MV_REF *)aom_calloc( | 
|  | ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1), | 
|  | sizeof(*buf->mvs))); | 
|  | aom_free(buf->seg_map); | 
|  | CHECK_MEM_ERROR(cm, buf->seg_map, | 
|  | (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols, | 
|  | sizeof(*buf->seg_map))); | 
|  | } | 
|  |  | 
|  | const int mem_size = | 
|  | ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1); | 
|  | int realloc = cm->tpl_mvs == NULL; | 
|  | if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size; | 
|  |  | 
|  | if (realloc) { | 
|  | aom_free(cm->tpl_mvs); | 
|  | CHECK_MEM_ERROR(cm, cm->tpl_mvs, | 
|  | (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); | 
|  | cm->tpl_mvs_mem_size = mem_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) { | 
|  | return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
|  | } | 
|  |  | 
|  | static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) { | 
|  | return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
|  | } | 
|  |  | 
|  | void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); | 
|  |  | 
|  | static INLINE int av1_num_planes(const AV1_COMMON *cm) { | 
|  | return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE; | 
|  | } | 
|  |  | 
|  | static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const int tile_row) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int i = 0; i < num_planes; ++i) { | 
|  | xd->above_context[i] = cm->above_context[i][tile_row]; | 
|  | } | 
|  | xd->above_seg_context = cm->above_seg_context[tile_row]; | 
|  | xd->above_txfm_context = cm->above_txfm_context[tile_row]; | 
|  | } | 
|  |  | 
|  | static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | tran_low_t *dqcoeff) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int i = 0; i < num_planes; ++i) { | 
|  | xd->plane[i].dqcoeff = dqcoeff; | 
|  |  | 
|  | if (xd->plane[i].plane_type == PLANE_TYPE_Y) { | 
|  | memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX, | 
|  | sizeof(cm->y_dequant_QTX)); | 
|  | memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); | 
|  |  | 
|  | } else { | 
|  | if (i == AOM_PLANE_U) { | 
|  | memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX, | 
|  | sizeof(cm->u_dequant_QTX)); | 
|  | memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix, | 
|  | sizeof(cm->u_iqmatrix)); | 
|  | } else { | 
|  | memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX, | 
|  | sizeof(cm->v_dequant_QTX)); | 
|  | memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix, | 
|  | sizeof(cm->v_iqmatrix)); | 
|  | } | 
|  | } | 
|  | } | 
|  | xd->mi_stride = cm->mi_stride; | 
|  | xd->error_info = &cm->error; | 
|  | cfl_init(&xd->cfl, &cm->seq_params); | 
|  | } | 
|  |  | 
|  | static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col, | 
|  | const int num_planes) { | 
|  | int i; | 
|  | int row_offset = mi_row; | 
|  | int col_offset = mi_col; | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | struct macroblockd_plane *const pd = &xd->plane[i]; | 
|  | // Offset the buffer pointer | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->sb_type; | 
|  | if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1)) | 
|  | row_offset = mi_row - 1; | 
|  | if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1)) | 
|  | col_offset = mi_col - 1; | 
|  | int above_idx = col_offset; | 
|  | int left_idx = row_offset & MAX_MIB_MASK; | 
|  | pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; | 
|  | pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int calc_mi_size(int len) { | 
|  | // len is in mi units. Align to a multiple of SBs. | 
|  | return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); | 
|  | } | 
|  |  | 
|  | static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, | 
|  | const int num_planes) { | 
|  | int i; | 
|  | for (i = 0; i < num_planes; i++) { | 
|  | xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; | 
|  | xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; | 
|  |  | 
|  | xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); | 
|  | xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, | 
|  | int mi_row, int bh, int mi_col, int bw, | 
|  | int mi_rows, int mi_cols) { | 
|  | xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); | 
|  | xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; | 
|  | xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); | 
|  | xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; | 
|  |  | 
|  | // Are edges available for intra prediction? | 
|  | xd->up_available = (mi_row > tile->mi_row_start); | 
|  |  | 
|  | const int ss_x = xd->plane[1].subsampling_x; | 
|  | const int ss_y = xd->plane[1].subsampling_y; | 
|  |  | 
|  | xd->left_available = (mi_col > tile->mi_col_start); | 
|  | xd->chroma_up_available = xd->up_available; | 
|  | xd->chroma_left_available = xd->left_available; | 
|  | if (ss_x && bw < mi_size_wide[BLOCK_8X8]) | 
|  | xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start; | 
|  | if (ss_y && bh < mi_size_high[BLOCK_8X8]) | 
|  | xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start; | 
|  | if (xd->up_available) { | 
|  | xd->above_mbmi = xd->mi[-xd->mi_stride]; | 
|  | } else { | 
|  | xd->above_mbmi = NULL; | 
|  | } | 
|  |  | 
|  | if (xd->left_available) { | 
|  | xd->left_mbmi = xd->mi[-1]; | 
|  | } else { | 
|  | xd->left_mbmi = NULL; | 
|  | } | 
|  |  | 
|  | const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) && | 
|  | ((mi_col & 0x01) || !(bw & 0x01) || !ss_x); | 
|  | if (chroma_ref) { | 
|  | // To help calculate the "above" and "left" chroma blocks, note that the | 
|  | // current block may cover multiple luma blocks (eg, if partitioned into | 
|  | // 4x4 luma blocks). | 
|  | // First, find the top-left-most luma block covered by this chroma block | 
|  | MB_MODE_INFO **base_mi = | 
|  | &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)]; | 
|  |  | 
|  | // Then, we consider the luma region covered by the left or above 4x4 chroma | 
|  | // prediction. We want to point to the chroma reference block in that | 
|  | // region, which is the bottom-right-most mi unit. | 
|  | // This leads to the following offsets: | 
|  | MB_MODE_INFO *chroma_above_mi = | 
|  | xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; | 
|  | xd->chroma_above_mbmi = chroma_above_mi; | 
|  |  | 
|  | MB_MODE_INFO *chroma_left_mi = | 
|  | xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; | 
|  | xd->chroma_left_mbmi = chroma_left_mi; | 
|  | } | 
|  |  | 
|  | xd->n8_h = bh; | 
|  | xd->n8_w = bw; | 
|  | xd->is_sec_rect = 0; | 
|  | if (xd->n8_w < xd->n8_h) { | 
|  | // Only mark is_sec_rect as 1 for the last block. | 
|  | // For PARTITION_VERT_4, it would be (0, 0, 0, 1); | 
|  | // For other partitions, it would be (0, 1). | 
|  | if (!((mi_col + xd->n8_w) & (xd->n8_h - 1))) xd->is_sec_rect = 1; | 
|  | } | 
|  |  | 
|  | if (xd->n8_w > xd->n8_h) | 
|  | if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, | 
|  | const MB_MODE_INFO *above_mi, | 
|  | const MB_MODE_INFO *left_mi) { | 
|  | const PREDICTION_MODE above = av1_above_block_mode(above_mi); | 
|  | const PREDICTION_MODE left = av1_left_block_mode(left_mi); | 
|  | const int above_ctx = intra_mode_context[above]; | 
|  | const int left_ctx = intra_mode_context[left]; | 
|  | return tile_ctx->kf_y_cdf[above_ctx][left_ctx]; | 
|  | } | 
|  |  | 
|  | static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, BLOCK_SIZE subsize, | 
|  | BLOCK_SIZE bsize) { | 
|  | PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; | 
|  | PARTITION_CONTEXT *const left_ctx = | 
|  | xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
|  |  | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | memset(above_ctx, partition_context_lookup[subsize].above, bw); | 
|  | memset(left_ctx, partition_context_lookup[subsize].left, bh); | 
|  | } | 
|  |  | 
|  | static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, | 
|  | int subsampling_x, int subsampling_y) { | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && | 
|  | ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); | 
|  | return ref_pos; | 
|  | } | 
|  |  | 
|  | static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x, | 
|  | int subsampling_y) { | 
|  | BLOCK_SIZE bs = bsize; | 
|  | switch (bsize) { | 
|  | case BLOCK_4X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X8; | 
|  | break; | 
|  | case BLOCK_4X8: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X8; | 
|  | break; | 
|  | case BLOCK_8X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_8X8; | 
|  | break; | 
|  | case BLOCK_4X16: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_8X16; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_8X16; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_4X16; | 
|  | break; | 
|  | case BLOCK_16X4: | 
|  | if (subsampling_x == 1 && subsampling_y == 1) | 
|  | bs = BLOCK_16X8; | 
|  | else if (subsampling_x == 1) | 
|  | bs = BLOCK_16X4; | 
|  | else if (subsampling_y == 1) | 
|  | bs = BLOCK_16X8; | 
|  | break; | 
|  | default: break; | 
|  | } | 
|  | return bs; | 
|  | } | 
|  |  | 
|  | static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, | 
|  | size_t element) { | 
|  | assert(cdf != NULL); | 
|  | return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; | 
|  | } | 
|  |  | 
|  | static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, | 
|  | const aom_cdf_prob *const in, | 
|  | BLOCK_SIZE bsize) { | 
|  | (void)bsize; | 
|  | out[0] = CDF_PROB_TOP; | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
|  | if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); | 
|  | out[0] = AOM_ICDF(out[0]); | 
|  | out[1] = AOM_ICDF(CDF_PROB_TOP); | 
|  | } | 
|  |  | 
|  | static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, | 
|  | const aom_cdf_prob *const in, | 
|  | BLOCK_SIZE bsize) { | 
|  | (void)bsize; | 
|  | out[0] = CDF_PROB_TOP; | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_SPLIT); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_A); | 
|  | out[0] -= cdf_element_prob(in, PARTITION_VERT_B); | 
|  | if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); | 
|  | out[0] = AOM_ICDF(out[0]); | 
|  | out[1] = AOM_ICDF(CDF_PROB_TOP); | 
|  | } | 
|  |  | 
|  | static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, BLOCK_SIZE subsize, | 
|  | BLOCK_SIZE bsize, | 
|  | PARTITION_TYPE partition) { | 
|  | if (bsize >= BLOCK_8X8) { | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | switch (partition) { | 
|  | case PARTITION_SPLIT: | 
|  | if (bsize != BLOCK_8X8) break; | 
|  | AOM_FALLTHROUGH_INTENDED; | 
|  | case PARTITION_NONE: | 
|  | case PARTITION_HORZ: | 
|  | case PARTITION_VERT: | 
|  | case PARTITION_HORZ_4: | 
|  | case PARTITION_VERT_4: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, bsize); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | update_partition_context(xd, mi_row, mi_col, bsize2, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | update_partition_context(xd, mi_row, mi_col, subsize, subsize); | 
|  | update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); | 
|  | break; | 
|  | default: assert(0 && "Invalid partition type"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize) { | 
|  | const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; | 
|  | const PARTITION_CONTEXT *left_ctx = | 
|  | xd->left_seg_context + (mi_row & MAX_MIB_MASK); | 
|  | // Minimum partition point is 8x8. Offset the bsl accordingly. | 
|  | const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; | 
|  | int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; | 
|  |  | 
|  | assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); | 
|  | assert(bsl >= 0); | 
|  |  | 
|  | return (left * 2 + above) + bsl * PARTITION_PLOFFSET; | 
|  | } | 
|  |  | 
|  | // Return the number of elements in the partition CDF when | 
|  | // partitioning the (square) block with luma block size of bsize. | 
|  | static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { | 
|  | if (bsize <= BLOCK_8X8) | 
|  | return PARTITION_TYPES; | 
|  | else if (bsize == BLOCK_128X128) | 
|  | return EXT_PARTITION_TYPES - 2; | 
|  | else | 
|  | return EXT_PARTITION_TYPES; | 
|  | } | 
|  |  | 
|  | static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
|  | int plane) { | 
|  | int max_blocks_wide = block_size_wide[bsize]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | if (xd->mb_to_right_edge < 0) | 
|  | max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); | 
|  |  | 
|  | // Scale the width in the transform block unit. | 
|  | return max_blocks_wide >> tx_size_wide_log2[0]; | 
|  | } | 
|  |  | 
|  | static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize, | 
|  | int plane) { | 
|  | int max_blocks_high = block_size_high[bsize]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  |  | 
|  | if (xd->mb_to_bottom_edge < 0) | 
|  | max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); | 
|  |  | 
|  | // Scale the height in the transform block unit. | 
|  | return max_blocks_high >> tx_size_high_log2[0]; | 
|  | } | 
|  |  | 
|  | static INLINE int max_intra_block_width(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane) | 
|  | << tx_size_wide_log2[0]; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | static INLINE int max_intra_block_height(const MACROBLOCKD *xd, | 
|  | BLOCK_SIZE plane_bsize, int plane, | 
|  | TX_SIZE tx_size) { | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane) | 
|  | << tx_size_high_log2[0]; | 
|  | return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | int mi_col_start, int mi_col_end, const int tile_row) { | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const int width = mi_col_end - mi_col_start; | 
|  | const int aligned_width = | 
|  | ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2); | 
|  |  | 
|  | const int offset_y = mi_col_start; | 
|  | const int width_y = aligned_width; | 
|  | const int offset_uv = offset_y >> seq_params->subsampling_x; | 
|  | const int width_uv = width_y >> seq_params->subsampling_x; | 
|  |  | 
|  | av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y); | 
|  | if (num_planes > 1) { | 
|  | if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) { | 
|  | av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv); | 
|  | av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv); | 
|  | } else { | 
|  | aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
|  | "Invalid value of planes"); | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width); | 
|  |  | 
|  | memset(cm->above_txfm_context[tile_row] + mi_col_start, | 
|  | tx_size_wide[TX_SIZES_LARGEST], | 
|  | aligned_width * sizeof(TXFM_CONTEXT)); | 
|  | } | 
|  |  | 
|  | static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { | 
|  | av1_zero(xd->left_context); | 
|  | av1_zero(xd->left_seg_context); | 
|  |  | 
|  | memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], | 
|  | sizeof(xd->left_txfm_context_buffer)); | 
|  | } | 
|  |  | 
|  | // Disable array-bounds checks as the TX_SIZE enum contains values larger than | 
|  | // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround | 
|  | // infeasible. The assert is enough for static analysis and this or other tools | 
|  | // asan, valgrind would catch oob access at runtime. | 
|  | #if defined(__GNUC__) && __GNUC__ >= 4 | 
|  | #pragma GCC diagnostic ignored "-Warray-bounds" | 
|  | #endif | 
|  |  | 
|  | #if defined(__GNUC__) && __GNUC__ >= 4 | 
|  | #pragma GCC diagnostic warning "-Warray-bounds" | 
|  | #endif | 
|  |  | 
|  | static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { | 
|  | int i; | 
|  | for (i = 0; i < len; ++i) txfm_ctx[i] = txs; | 
|  | } | 
|  |  | 
|  | static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, int skip, | 
|  | const MACROBLOCKD *xd) { | 
|  | uint8_t bw = tx_size_wide[tx_size]; | 
|  | uint8_t bh = tx_size_high[tx_size]; | 
|  |  | 
|  | if (skip) { | 
|  | bw = n8_w * MI_SIZE; | 
|  | bh = n8_h * MI_SIZE; | 
|  | } | 
|  |  | 
|  | set_txfm_ctx(xd->above_txfm_context, bw, n8_w); | 
|  | set_txfm_ctx(xd->left_txfm_context, bh, n8_h); | 
|  | } | 
|  |  | 
|  | static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, | 
|  | TXFM_CONTEXT *left_ctx, | 
|  | TX_SIZE tx_size, TX_SIZE txb_size) { | 
|  | BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; | 
|  | int bh = mi_size_high[bsize]; | 
|  | int bw = mi_size_wide[bsize]; | 
|  | uint8_t txw = tx_size_wide[tx_size]; | 
|  | uint8_t txh = tx_size_high[tx_size]; | 
|  | int i; | 
|  | for (i = 0; i < bh; ++i) left_ctx[i] = txh; | 
|  | for (i = 0; i < bw; ++i) above_ctx[i] = txw; | 
|  | } | 
|  |  | 
|  | static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { | 
|  | switch (tx_dim) { | 
|  | case 128: | 
|  | case 64: return TX_64X64; break; | 
|  | case 32: return TX_32X32; break; | 
|  | case 16: return TX_16X16; break; | 
|  | case 8: return TX_8X8; break; | 
|  | default: return TX_4X4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE TX_SIZE get_tx_size(int width, int height) { | 
|  | if (width == height) { | 
|  | return get_sqr_tx_size(width); | 
|  | } | 
|  | if (width < height) { | 
|  | if (width + width == height) { | 
|  | switch (width) { | 
|  | case 4: return TX_4X8; break; | 
|  | case 8: return TX_8X16; break; | 
|  | case 16: return TX_16X32; break; | 
|  | case 32: return TX_32X64; break; | 
|  | } | 
|  | } else { | 
|  | switch (width) { | 
|  | case 4: return TX_4X16; break; | 
|  | case 8: return TX_8X32; break; | 
|  | case 16: return TX_16X64; break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (height + height == width) { | 
|  | switch (height) { | 
|  | case 4: return TX_8X4; break; | 
|  | case 8: return TX_16X8; break; | 
|  | case 16: return TX_32X16; break; | 
|  | case 32: return TX_64X32; break; | 
|  | } | 
|  | } else { | 
|  | switch (height) { | 
|  | case 4: return TX_16X4; break; | 
|  | case 8: return TX_32X8; break; | 
|  | case 16: return TX_64X16; break; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(0); | 
|  | return TX_4X4; | 
|  | } | 
|  |  | 
|  | static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, | 
|  | TXFM_CONTEXT *left_ctx, | 
|  | BLOCK_SIZE bsize, TX_SIZE tx_size) { | 
|  | const uint8_t txw = tx_size_wide[tx_size]; | 
|  | const uint8_t txh = tx_size_high[tx_size]; | 
|  | const int above = *above_ctx < txw; | 
|  | const int left = *left_ctx < txh; | 
|  | int category = TXFM_PARTITION_CONTEXTS; | 
|  |  | 
|  | // dummy return, not used by others. | 
|  | if (tx_size <= TX_4X4) return 0; | 
|  |  | 
|  | TX_SIZE max_tx_size = | 
|  | get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); | 
|  |  | 
|  | if (max_tx_size >= TX_8X8) { | 
|  | category = | 
|  | (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + | 
|  | (TX_SIZES - 1 - max_tx_size) * 2; | 
|  | } | 
|  | assert(category != TXFM_PARTITION_CONTEXTS); | 
|  | return category * 3 + above + left; | 
|  | } | 
|  |  | 
|  | // Compute the next partition in the direction of the sb_type stored in the mi | 
|  | // array, starting with bsize. | 
|  | static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, | 
|  | int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID; | 
|  |  | 
|  | const int offset = mi_row * cm->mi_stride + mi_col; | 
|  | MB_MODE_INFO **mi = cm->mi_grid_visible + offset; | 
|  | const BLOCK_SIZE subsize = mi[0]->sb_type; | 
|  |  | 
|  | if (subsize == bsize) return PARTITION_NONE; | 
|  |  | 
|  | const int bhigh = mi_size_high[bsize]; | 
|  | const int bwide = mi_size_wide[bsize]; | 
|  | const int sshigh = mi_size_high[subsize]; | 
|  | const int sswide = mi_size_wide[subsize]; | 
|  |  | 
|  | if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows && | 
|  | mi_col + bhigh / 2 < cm->mi_cols) { | 
|  | // In this case, the block might be using an extended partition | 
|  | // type. | 
|  | const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; | 
|  | const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride]; | 
|  |  | 
|  | if (sswide == bwide) { | 
|  | // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or | 
|  | // PARTITION_HORZ_B. To distinguish the latter two, check if the lower | 
|  | // half was split. | 
|  | if (sshigh * 4 == bhigh) return PARTITION_HORZ_4; | 
|  | assert(sshigh * 2 == bhigh); | 
|  |  | 
|  | if (mbmi_below->sb_type == subsize) | 
|  | return PARTITION_HORZ; | 
|  | else | 
|  | return PARTITION_HORZ_B; | 
|  | } else if (sshigh == bhigh) { | 
|  | // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or | 
|  | // PARTITION_VERT_B. To distinguish the latter two, check if the right | 
|  | // half was split. | 
|  | if (sswide * 4 == bwide) return PARTITION_VERT_4; | 
|  | assert(sswide * 2 == bhigh); | 
|  |  | 
|  | if (mbmi_right->sb_type == subsize) | 
|  | return PARTITION_VERT; | 
|  | else | 
|  | return PARTITION_VERT_B; | 
|  | } else { | 
|  | // Smaller width and smaller height. Might be PARTITION_SPLIT or could be | 
|  | // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both | 
|  | // dimensions, we immediately know this is a split (which will recurse to | 
|  | // get to subsize). Otherwise look down and to the right. With | 
|  | // PARTITION_VERT_A, the right block will have height bhigh; with | 
|  | // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise | 
|  | // it's PARTITION_SPLIT. | 
|  | if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; | 
|  |  | 
|  | if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A; | 
|  | if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A; | 
|  |  | 
|  | return PARTITION_SPLIT; | 
|  | } | 
|  | } | 
|  | const int vert_split = sswide < bwide; | 
|  | const int horz_split = sshigh < bhigh; | 
|  | const int split_idx = (vert_split << 1) | horz_split; | 
|  | assert(split_idx != 0); | 
|  |  | 
|  | static const PARTITION_TYPE base_partitions[4] = { | 
|  | PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT | 
|  | }; | 
|  |  | 
|  | return base_partitions[split_idx]; | 
|  | } | 
|  |  | 
|  | static INLINE void set_use_reference_buffer(AV1_COMMON *const cm, int use) { | 
|  | cm->seq_params.frame_id_numbers_present_flag = use; | 
|  | } | 
|  |  | 
|  | static INLINE void set_sb_size(SequenceHeader *const seq_params, | 
|  | BLOCK_SIZE sb_size) { | 
|  | seq_params->sb_size = sb_size; | 
|  | seq_params->mib_size = mi_size_wide[seq_params->sb_size]; | 
|  | seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size]; | 
|  | } | 
|  |  | 
|  | // Returns true if the frame is fully lossless at the coded resolution. | 
|  | // Note: If super-resolution is used, such a frame will still NOT be lossless at | 
|  | // the upscaled resolution. | 
|  | static INLINE int is_coded_lossless(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd) { | 
|  | int coded_lossless = 1; | 
|  | if (cm->seg.enabled) { | 
|  | for (int i = 0; i < MAX_SEGMENTS; ++i) { | 
|  | if (!xd->lossless[i]) { | 
|  | coded_lossless = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | coded_lossless = xd->lossless[0]; | 
|  | } | 
|  | return coded_lossless; | 
|  | } | 
|  |  | 
|  | static INLINE int is_valid_seq_level_idx(uint8_t seq_level_idx) { | 
|  | return seq_level_idx < 24 || seq_level_idx == 31; | 
|  | } | 
|  |  | 
|  | static INLINE uint8_t major_minor_to_seq_level_idx(BitstreamLevel bl) { | 
|  | assert(bl.major >= LEVEL_MAJOR_MIN && bl.major <= LEVEL_MAJOR_MAX); | 
|  | // Since bl.minor is unsigned a comparison will return a warning: | 
|  | // comparison is always true due to limited range of data type | 
|  | assert(LEVEL_MINOR_MIN == 0); | 
|  | assert(bl.minor <= LEVEL_MINOR_MAX); | 
|  | return ((bl.major - LEVEL_MAJOR_MIN) << LEVEL_MINOR_BITS) + bl.minor; | 
|  | } | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | }  // extern "C" | 
|  | #endif | 
|  |  | 
|  | #endif  // AV1_COMMON_ONYXC_INT_H_ |