| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <vector> | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "av1/common/av1_inv_txfm1d_cfg.h" | 
 | #include "av1/common/scan.h" | 
 | #include "test/acm_random.h" | 
 | #include "test/av1_txfm_test.h" | 
 | #include "test/util.h" | 
 |  | 
 | using libaom_test::ACMRandom; | 
 | using libaom_test::InvTxfm2dFunc; | 
 | using libaom_test::LbdInvTxfm2dFunc; | 
 | using libaom_test::bd; | 
 | using libaom_test::compute_avg_abs_error; | 
 | using libaom_test::input_base; | 
 |  | 
 | using ::testing::Combine; | 
 | using ::testing::Range; | 
 | using ::testing::Values; | 
 |  | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 |  | 
 | // AV1InvTxfm2dParam argument list: | 
 | // tx_type_, tx_size_, max_error_, max_avg_error_ | 
 | typedef ::testing::tuple<TX_TYPE, TX_SIZE, int, double> AV1InvTxfm2dParam; | 
 |  | 
 | class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> { | 
 |  public: | 
 |   virtual void SetUp() { | 
 |     tx_type_ = GET_PARAM(0); | 
 |     tx_size_ = GET_PARAM(1); | 
 |     max_error_ = GET_PARAM(2); | 
 |     max_avg_error_ = GET_PARAM(3); | 
 |   } | 
 |  | 
 |   void RunRoundtripCheck() { | 
 |     int tx_w = tx_size_wide[tx_size_]; | 
 |     int tx_h = tx_size_high[tx_size_]; | 
 |     int txfm2d_size = tx_w * tx_h; | 
 |     const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_]; | 
 |     const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_]; | 
 |     double avg_abs_error = 0; | 
 |     ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
 |  | 
 |     const int count = 500; | 
 |  | 
 |     for (int ci = 0; ci < count; ci++) { | 
 |       DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 }; | 
 |       ASSERT_LE(txfm2d_size, NELEMENTS(input)); | 
 |  | 
 |       for (int ni = 0; ni < txfm2d_size; ++ni) { | 
 |         if (ci == 0) { | 
 |           int extreme_input = input_base - 1; | 
 |           input[ni] = extreme_input;  // extreme case | 
 |         } else { | 
 |           input[ni] = rnd.Rand16() % input_base; | 
 |         } | 
 |       } | 
 |  | 
 |       DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 }; | 
 |       ASSERT_LE(txfm2d_size, NELEMENTS(expected)); | 
 |       if (TxfmUsesApproximation()) { | 
 |         // Compare reference forward HT + inverse HT vs forward HT + inverse HT. | 
 |         double ref_input[64 * 64]; | 
 |         ASSERT_LE(txfm2d_size, NELEMENTS(ref_input)); | 
 |         for (int ni = 0; ni < txfm2d_size; ++ni) { | 
 |           ref_input[ni] = input[ni]; | 
 |         } | 
 |         double ref_coeffs[64 * 64] = { 0 }; | 
 |         ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs)); | 
 |         ASSERT_EQ(tx_type_, DCT_DCT); | 
 |         libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_, | 
 |                                          tx_size_); | 
 |         DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 }; | 
 |         ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int)); | 
 |         for (int ni = 0; ni < txfm2d_size; ++ni) { | 
 |           ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]); | 
 |         } | 
 |         inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd); | 
 |       } else { | 
 |         // Compare original input vs forward HT + inverse HT. | 
 |         for (int ni = 0; ni < txfm2d_size; ++ni) { | 
 |           expected[ni] = input[ni]; | 
 |         } | 
 |       } | 
 |  | 
 |       DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 }; | 
 |       ASSERT_LE(txfm2d_size, NELEMENTS(coeffs)); | 
 |       fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd); | 
 |  | 
 |       DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 }; | 
 |       ASSERT_LE(txfm2d_size, NELEMENTS(actual)); | 
 |       inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd); | 
 |  | 
 |       double actual_max_error = 0; | 
 |       for (int ni = 0; ni < txfm2d_size; ++ni) { | 
 |         const double this_error = abs(expected[ni] - actual[ni]); | 
 |         actual_max_error = AOMMAX(actual_max_error, this_error); | 
 |       } | 
 |       EXPECT_GE(max_error_, actual_max_error) | 
 |           << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_; | 
 |       if (actual_max_error > max_error_) {  // exit early. | 
 |         break; | 
 |       } | 
 |       avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>( | 
 |           expected, actual, txfm2d_size); | 
 |     } | 
 |  | 
 |     avg_abs_error /= count; | 
 |     EXPECT_GE(max_avg_error_, avg_abs_error) | 
 |         << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_; | 
 |   } | 
 |  | 
 |  private: | 
 |   bool TxfmUsesApproximation() { | 
 |     if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) { | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   int max_error_; | 
 |   double max_avg_error_; | 
 |   TX_TYPE tx_type_; | 
 |   TX_SIZE tx_size_; | 
 | }; | 
 |  | 
 | static int max_error_ls[TX_SIZES_ALL] = { | 
 |   2,  // 4x4 transform | 
 |   2,  // 8x8 transform | 
 |   2,  // 16x16 transform | 
 |   4,  // 32x32 transform | 
 |   3,  // 64x64 transform | 
 |   2,  // 4x8 transform | 
 |   2,  // 8x4 transform | 
 |   2,  // 8x16 transform | 
 |   2,  // 16x8 transform | 
 |   3,  // 16x32 transform | 
 |   3,  // 32x16 transform | 
 |   5,  // 32x64 transform | 
 |   5,  // 64x32 transform | 
 |   2,  // 4x16 transform | 
 |   2,  // 16x4 transform | 
 |   2,  // 8x32 transform | 
 |   2,  // 32x8 transform | 
 |   3,  // 16x64 transform | 
 |   3,  // 64x16 transform | 
 | }; | 
 |  | 
 | static double avg_error_ls[TX_SIZES_ALL] = { | 
 |   0.002,  // 4x4 transform | 
 |   0.05,   // 8x8 transform | 
 |   0.07,   // 16x16 transform | 
 |   0.4,    // 32x32 transform | 
 |   0.3,    // 64x64 transform | 
 |   0.02,   // 4x8 transform | 
 |   0.02,   // 8x4 transform | 
 |   0.04,   // 8x16 transform | 
 |   0.07,   // 16x8 transform | 
 |   0.4,    // 16x32 transform | 
 |   0.5,    // 32x16 transform | 
 |   0.38,   // 32x64 transform | 
 |   0.39,   // 64x32 transform | 
 |   0.2,    // 4x16 transform | 
 |   0.2,    // 16x4 transform | 
 |   0.2,    // 8x32 transform | 
 |   0.2,    // 32x8 transform | 
 |   0.38,   // 16x64 transform | 
 |   0.38,   // 64x16 transform | 
 | }; | 
 |  | 
 | vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() { | 
 |   vector<AV1InvTxfm2dParam> param_list; | 
 |   for (int s = 0; s < TX_SIZES; ++s) { | 
 |     const int max_error = max_error_ls[s]; | 
 |     const double avg_error = avg_error_ls[s]; | 
 |     for (int t = 0; t < TX_TYPES; ++t) { | 
 |       const TX_TYPE tx_type = static_cast<TX_TYPE>(t); | 
 |       const TX_SIZE tx_size = static_cast<TX_SIZE>(s); | 
 |       if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { | 
 |         param_list.push_back( | 
 |             AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error)); | 
 |       } | 
 |     } | 
 |   } | 
 |   return param_list; | 
 | } | 
 |  | 
 | INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm2d, | 
 |                         ::testing::ValuesIn(GetInvTxfm2dParamList())); | 
 |  | 
 | TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); } | 
 |  | 
 | TEST(AV1InvTxfm2d, CfgTest) { | 
 |   for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { | 
 |     int bd = libaom_test::bd_arr[bd_idx]; | 
 |     int8_t low_range = libaom_test::low_range_arr[bd_idx]; | 
 |     int8_t high_range = libaom_test::high_range_arr[bd_idx]; | 
 |     for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { | 
 |       for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { | 
 |         if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size), | 
 |                                            static_cast<TX_TYPE>(tx_type)) == | 
 |             false) { | 
 |           continue; | 
 |         } | 
 |         TXFM_2D_FLIP_CFG cfg; | 
 |         av1_get_inv_txfm_cfg(static_cast<TX_TYPE>(tx_type), | 
 |                              static_cast<TX_SIZE>(tx_size), &cfg); | 
 |         int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; | 
 |         int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; | 
 |         av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg, | 
 |                                 (TX_SIZE)tx_size, bd); | 
 |         libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, | 
 |                                             cfg.cos_bit_col, low_range, | 
 |                                             high_range); | 
 |         libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, | 
 |                                             cfg.cos_bit_row, low_range, | 
 |                                             high_range); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | typedef ::testing::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam; | 
 | class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> { | 
 |  public: | 
 |   virtual void SetUp() { target_func_ = GET_PARAM(0); } | 
 |   void RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, int run_times); | 
 |  | 
 |  private: | 
 |   LbdInvTxfm2dFunc target_func_; | 
 | }; | 
 |  | 
 | void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, | 
 |                                           int run_times) { | 
 |   FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size]; | 
 |   InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size]; | 
 |   if (fwd_func_ == NULL || ref_func_ == NULL || target_func_ == NULL) { | 
 |     return; | 
 |   } | 
 |   const int bd = 8; | 
 |   const int BLK_WIDTH = 64; | 
 |   const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH; | 
 |   DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 }; | 
 |   DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 }; | 
 |   DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 }; | 
 |   DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 }; | 
 |   int stride = BLK_WIDTH; | 
 |   int rows = tx_size_high[tx_size]; | 
 |   int cols = tx_size_wide[tx_size]; | 
 |   const int rows_nonezero = AOMMIN(32, rows); | 
 |   const int cols_nonezero = AOMMIN(32, cols); | 
 |   run_times /= (rows * cols); | 
 |   run_times = AOMMAX(1, run_times); | 
 |   const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type); | 
 |   const int16_t *scan = scan_order->scan; | 
 |   const int16_t eobmax = rows_nonezero * cols_nonezero; | 
 |   ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
 |   int randTimes = run_times == 1 ? (eobmax + 500) : 1; | 
 |   for (int cnt = 0; cnt < randTimes; ++cnt) { | 
 |     const int16_t max_in = (1 << (bd)) - 1; | 
 |     for (int r = 0; r < BLK_WIDTH; ++r) { | 
 |       for (int c = 0; c < BLK_WIDTH; ++c) { | 
 |         input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes(); | 
 |         output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8(); | 
 |         ref_output[r * stride + c] = output[r * stride + c]; | 
 |       } | 
 |     } | 
 |     fwd_func_(input, inv_input, stride, tx_type, bd); | 
 |  | 
 |     // produce eob input by setting high freq coeffs to zero | 
 |     const int eob = AOMMIN(cnt + 1, eobmax); | 
 |     for (int i = eob; i < eobmax; i++) { | 
 |       inv_input[scan[i]] = 0; | 
 |     } | 
 |  | 
 |     aom_usec_timer timer; | 
 |     aom_usec_timer_start(&timer); | 
 |     for (int i = 0; i < run_times; ++i) { | 
 |       ref_func_(inv_input, ref_output, stride, tx_type, bd); | 
 |     } | 
 |     aom_usec_timer_mark(&timer); | 
 |     const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |     aom_usec_timer_start(&timer); | 
 |     for (int i = 0; i < run_times; ++i) { | 
 |       target_func_(inv_input, output, stride, tx_type, tx_size, eob); | 
 |     } | 
 |     aom_usec_timer_mark(&timer); | 
 |     const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
 |     if (run_times > 10) { | 
 |       printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1, | 
 |              time2); | 
 |       printf("(%3.2f)\n", time1 / time2); | 
 |     } | 
 |     for (int r = 0; r < rows; ++r) { | 
 |       for (int c = 0; c < cols; ++c) { | 
 |         uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]); | 
 |         ASSERT_EQ(ref_value, output[r * stride + c]) | 
 |             << "[" << r << "," << c << "] " << cnt | 
 |             << " tx_size: " << static_cast<int>(tx_size) | 
 |             << " tx_type: " << tx_type << " eob " << eob; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(AV1LbdInvTxfm2d, match) { | 
 |   for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { | 
 |     for (int i = 0; i < (int)TX_TYPES; ++i) { | 
 |       if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j), | 
 |                                          static_cast<TX_TYPE>(i))) { | 
 |         RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j), | 
 |                             1); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) { | 
 |   for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { | 
 |     for (int i = 0; i < (int)TX_TYPES; ++i) { | 
 |       if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j), | 
 |                                          static_cast<TX_TYPE>(i))) { | 
 |         RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j), | 
 |                             10000000); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if HAVE_SSSE3 | 
 | #if defined(_MSC_VER) || defined(__SSSE3__) | 
 | #include "av1/common/x86/av1_inv_txfm_ssse3.h" | 
 | INSTANTIATE_TEST_CASE_P(SSSE3, AV1LbdInvTxfm2d, | 
 |                         ::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3)); | 
 | #endif  // _MSC_VER || __SSSE3__ | 
 | #endif  // HAVE_SSSE3 | 
 |  | 
 | #if HAVE_AVX2 | 
 | extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input, | 
 |                                               uint8_t *output, int stride, | 
 |                                               TX_TYPE tx_type, TX_SIZE tx_size, | 
 |                                               int eob); | 
 |  | 
 | INSTANTIATE_TEST_CASE_P(AVX2, AV1LbdInvTxfm2d, | 
 |                         ::testing::Values(av1_lowbd_inv_txfm2d_add_avx2)); | 
 | #endif  // HAVE_AVX2 | 
 |  | 
 | #if HAVE_NEON | 
 |  | 
 | extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input, | 
 |                                               uint8_t *output, int stride, | 
 |                                               TX_TYPE tx_type, TX_SIZE tx_size, | 
 |                                               int eob); | 
 |  | 
 | INSTANTIATE_TEST_CASE_P(NEON, AV1LbdInvTxfm2d, | 
 |                         ::testing::Values(av1_lowbd_inv_txfm2d_add_neon)); | 
 | #endif  // HAVE_NEON | 
 |  | 
 | }  // namespace |