|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "test/hiprec_convolve_test_util.h" | 
|  |  | 
|  | #include "av1/common/restoration.h" | 
|  |  | 
|  | using ::testing::make_tuple; | 
|  | using ::testing::tuple; | 
|  |  | 
|  | namespace libaom_test { | 
|  |  | 
|  | // Generate a random pair of filter kernels, using the ranges | 
|  | // of possible values from the loop-restoration experiment | 
|  | static void generate_kernels(ACMRandom *rnd, InterpKernel hkernel, | 
|  | InterpKernel vkernel) { | 
|  | hkernel[0] = hkernel[6] = | 
|  | WIENER_FILT_TAP0_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); | 
|  | hkernel[1] = hkernel[5] = | 
|  | WIENER_FILT_TAP1_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); | 
|  | hkernel[2] = hkernel[4] = | 
|  | WIENER_FILT_TAP2_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); | 
|  | hkernel[3] = -(hkernel[0] + hkernel[1] + hkernel[2]); | 
|  | hkernel[7] = 0; | 
|  |  | 
|  | vkernel[0] = vkernel[6] = | 
|  | WIENER_FILT_TAP0_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); | 
|  | vkernel[1] = vkernel[5] = | 
|  | WIENER_FILT_TAP1_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); | 
|  | vkernel[2] = vkernel[4] = | 
|  | WIENER_FILT_TAP2_MINV + | 
|  | rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); | 
|  | vkernel[3] = -(vkernel[0] + vkernel[1] + vkernel[2]); | 
|  | vkernel[7] = 0; | 
|  | } | 
|  |  | 
|  | namespace AV1HiprecConvolve { | 
|  |  | 
|  | ::testing::internal::ParamGenerator<HiprecConvolveParam> BuildParams( | 
|  | hiprec_convolve_func filter) { | 
|  | const HiprecConvolveParam params[] = { | 
|  | make_tuple(8, 8, 50000, filter),   make_tuple(8, 4, 50000, filter), | 
|  | make_tuple(64, 24, 1000, filter),  make_tuple(64, 64, 1000, filter), | 
|  | make_tuple(64, 56, 1000, filter),  make_tuple(32, 8, 10000, filter), | 
|  | make_tuple(32, 28, 10000, filter), make_tuple(32, 32, 10000, filter), | 
|  | make_tuple(16, 34, 10000, filter), make_tuple(32, 34, 10000, filter), | 
|  | make_tuple(64, 34, 1000, filter),  make_tuple(8, 17, 10000, filter), | 
|  | make_tuple(16, 17, 10000, filter), make_tuple(32, 17, 10000, filter) | 
|  | }; | 
|  | return ::testing::ValuesIn(params); | 
|  | } | 
|  |  | 
|  | AV1HiprecConvolveTest::~AV1HiprecConvolveTest() {} | 
|  | void AV1HiprecConvolveTest::SetUp() { | 
|  | rnd_.Reset(ACMRandom::DeterministicSeed()); | 
|  | } | 
|  |  | 
|  | void AV1HiprecConvolveTest::TearDown() { libaom_test::ClearSystemState(); } | 
|  |  | 
|  | void AV1HiprecConvolveTest::RunCheckOutput(hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2); | 
|  | int i, j; | 
|  | const ConvolveParams conv_params = get_conv_params_wiener(8); | 
|  |  | 
|  | uint8_t *input_ = new uint8_t[h * w]; | 
|  | uint8_t *input = input_; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint8_t *output = new uint8_t[output_n]; | 
|  | uint8_t *output2 = new uint8_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | generate_kernels(&rnd_, hkernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); | 
|  |  | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | // Choose random locations within the source block | 
|  | int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); | 
|  | int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); | 
|  | av1_wiener_convolve_add_src_c(input + offset_r * w + offset_c, w, output, | 
|  | out_w, hkernel, 16, vkernel, 16, out_w, out_h, | 
|  | &conv_params); | 
|  | test_impl(input + offset_r * w + offset_c, w, output2, out_w, hkernel, 16, | 
|  | vkernel, 16, out_w, out_h, &conv_params); | 
|  |  | 
|  | for (j = 0; j < out_w * out_h; ++j) | 
|  | ASSERT_EQ(output[j], output2[j]) | 
|  | << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " | 
|  | << (j / out_w) << ") on iteration " << i; | 
|  | } | 
|  | delete[] input_; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  |  | 
|  | void AV1HiprecConvolveTest::RunSpeedTest(hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2) / 500; | 
|  | int i, j, k; | 
|  | const ConvolveParams conv_params = get_conv_params_wiener(8); | 
|  |  | 
|  | uint8_t *input_ = new uint8_t[h * w]; | 
|  | uint8_t *input = input_; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint8_t *output = new uint8_t[output_n]; | 
|  | uint8_t *output2 = new uint8_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | generate_kernels(&rnd_, hkernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); | 
|  |  | 
|  | aom_usec_timer ref_timer; | 
|  | aom_usec_timer_start(&ref_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | av1_wiener_convolve_add_src_c(input + j * w + k, w, output, out_w, | 
|  | hkernel, 16, vkernel, 16, out_w, out_h, | 
|  | &conv_params); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&ref_timer); | 
|  | const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); | 
|  |  | 
|  | aom_usec_timer tst_timer; | 
|  | aom_usec_timer_start(&tst_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | test_impl(input + j * w + k, w, output2, out_w, hkernel, 16, vkernel, | 
|  | 16, out_w, out_h, &conv_params); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&tst_timer); | 
|  | const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); | 
|  |  | 
|  | std::cout << "[          ] C time = " << ref_time / 1000 | 
|  | << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; | 
|  |  | 
|  | EXPECT_GT(ref_time, tst_time) | 
|  | << "Error: AV1HiprecConvolveTest.SpeedTest, SIMD slower than C.\n" | 
|  | << "C time: " << ref_time << " us\n" | 
|  | << "SIMD time: " << tst_time << " us\n"; | 
|  |  | 
|  | delete[] input_; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  | }  // namespace AV1HiprecConvolve | 
|  |  | 
|  | namespace AV1HighbdHiprecConvolve { | 
|  |  | 
|  | ::testing::internal::ParamGenerator<HighbdHiprecConvolveParam> BuildParams( | 
|  | highbd_hiprec_convolve_func filter) { | 
|  | const HighbdHiprecConvolveParam params[] = { | 
|  | make_tuple(8, 8, 50000, 8, filter),   make_tuple(64, 64, 1000, 8, filter), | 
|  | make_tuple(32, 8, 10000, 8, filter),  make_tuple(8, 8, 50000, 10, filter), | 
|  | make_tuple(64, 64, 1000, 10, filter), make_tuple(32, 8, 10000, 10, filter), | 
|  | make_tuple(8, 8, 50000, 12, filter),  make_tuple(64, 64, 1000, 12, filter), | 
|  | make_tuple(32, 8, 10000, 12, filter), | 
|  | }; | 
|  | return ::testing::ValuesIn(params); | 
|  | } | 
|  |  | 
|  | AV1HighbdHiprecConvolveTest::~AV1HighbdHiprecConvolveTest() {} | 
|  | void AV1HighbdHiprecConvolveTest::SetUp() { | 
|  | rnd_.Reset(ACMRandom::DeterministicSeed()); | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::TearDown() { | 
|  | libaom_test::ClearSystemState(); | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::RunCheckOutput( | 
|  | highbd_hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2); | 
|  | const int bd = GET_PARAM(3); | 
|  | int i, j; | 
|  | const ConvolveParams conv_params = get_conv_params_wiener(bd); | 
|  |  | 
|  | uint16_t *input = new uint16_t[h * w]; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint16_t *output = new uint16_t[output_n]; | 
|  | uint16_t *output2 = new uint16_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | generate_kernels(&rnd_, hkernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); | 
|  |  | 
|  | uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input); | 
|  | uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output); | 
|  | uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2); | 
|  |  | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | // Choose random locations within the source block | 
|  | int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); | 
|  | int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); | 
|  | av1_highbd_wiener_convolve_add_src_c( | 
|  | input_ptr + offset_r * w + offset_c, w, output_ptr, out_w, hkernel, 16, | 
|  | vkernel, 16, out_w, out_h, &conv_params, bd); | 
|  | test_impl(input_ptr + offset_r * w + offset_c, w, output2_ptr, out_w, | 
|  | hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); | 
|  |  | 
|  | for (j = 0; j < out_w * out_h; ++j) | 
|  | ASSERT_EQ(output[j], output2[j]) | 
|  | << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " | 
|  | << (j / out_w) << ") on iteration " << i; | 
|  | } | 
|  | delete[] input; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  |  | 
|  | void AV1HighbdHiprecConvolveTest::RunSpeedTest( | 
|  | highbd_hiprec_convolve_func test_impl) { | 
|  | const int w = 128, h = 128; | 
|  | const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); | 
|  | const int num_iters = GET_PARAM(2) / 500; | 
|  | const int bd = GET_PARAM(3); | 
|  | int i, j, k; | 
|  | const ConvolveParams conv_params = get_conv_params_wiener(bd); | 
|  |  | 
|  | uint16_t *input = new uint16_t[h * w]; | 
|  |  | 
|  | // The AVX2 convolve functions always write rows with widths that are | 
|  | // multiples of 16. So to avoid a buffer overflow, we may need to pad | 
|  | // rows to a multiple of 16. | 
|  | int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; | 
|  | uint16_t *output = new uint16_t[output_n]; | 
|  | uint16_t *output2 = new uint16_t[output_n]; | 
|  |  | 
|  | // Generate random filter kernels | 
|  | DECLARE_ALIGNED(16, InterpKernel, hkernel); | 
|  | DECLARE_ALIGNED(16, InterpKernel, vkernel); | 
|  |  | 
|  | generate_kernels(&rnd_, hkernel, vkernel); | 
|  |  | 
|  | for (i = 0; i < h; ++i) | 
|  | for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); | 
|  |  | 
|  | uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input); | 
|  | uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output); | 
|  | uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2); | 
|  |  | 
|  | aom_usec_timer ref_timer; | 
|  | aom_usec_timer_start(&ref_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | av1_highbd_wiener_convolve_add_src_c( | 
|  | input_ptr + j * w + k, w, output_ptr, out_w, hkernel, 16, vkernel, | 
|  | 16, out_w, out_h, &conv_params, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&ref_timer); | 
|  | const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); | 
|  |  | 
|  | aom_usec_timer tst_timer; | 
|  | aom_usec_timer_start(&tst_timer); | 
|  | for (i = 0; i < num_iters; ++i) { | 
|  | for (j = 3; j < h - out_h - 4; j++) { | 
|  | for (k = 3; k < w - out_w - 4; k++) { | 
|  | test_impl(input_ptr + j * w + k, w, output2_ptr, out_w, hkernel, 16, | 
|  | vkernel, 16, out_w, out_h, &conv_params, bd); | 
|  | } | 
|  | } | 
|  | } | 
|  | aom_usec_timer_mark(&tst_timer); | 
|  | const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); | 
|  |  | 
|  | std::cout << "[          ] C time = " << ref_time / 1000 | 
|  | << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; | 
|  |  | 
|  | EXPECT_GT(ref_time, tst_time) | 
|  | << "Error: AV1HighbdHiprecConvolveTest.SpeedTest, SIMD slower than C.\n" | 
|  | << "C time: " << ref_time << " us\n" | 
|  | << "SIMD time: " << tst_time << " us\n"; | 
|  |  | 
|  | delete[] input; | 
|  | delete[] output; | 
|  | delete[] output2; | 
|  | } | 
|  | }  // namespace AV1HighbdHiprecConvolve | 
|  | }  // namespace libaom_test |