|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <limits.h> | 
|  |  | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  |  | 
|  | #include "av1/encoder/cost.h" | 
|  | #include "av1/encoder/segmentation.h" | 
|  |  | 
|  | void av1_enable_segmentation(struct segmentation *seg) { | 
|  | seg->enabled = 1; | 
|  | seg->update_map = 1; | 
|  | seg->update_data = 1; | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  |  | 
|  | void av1_disable_segmentation(struct segmentation *seg) { | 
|  | seg->enabled = 0; | 
|  | seg->update_map = 0; | 
|  | seg->update_data = 0; | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  |  | 
|  | void av1_disable_segfeature(struct segmentation *seg, int segment_id, | 
|  | SEG_LVL_FEATURES feature_id) { | 
|  | seg->feature_mask[segment_id] &= ~(1 << feature_id); | 
|  | } | 
|  |  | 
|  | void av1_clear_segdata(struct segmentation *seg, int segment_id, | 
|  | SEG_LVL_FEATURES feature_id) { | 
|  | seg->feature_data[segment_id][feature_id] = 0; | 
|  | } | 
|  |  | 
|  | static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const TileInfo *tile, MB_MODE_INFO **mi, | 
|  | unsigned *no_pred_segcounts, | 
|  | unsigned (*temporal_predictor_count)[2], | 
|  | unsigned *t_unpred_seg_counts, int bw, int bh, | 
|  | int mi_row, int mi_col) { | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | xd->mi = mi; | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, | 
|  | mi_params->mi_cols); | 
|  |  | 
|  | // Count the number of hits on each segment with no prediction | 
|  | const int segment_id = xd->mi[0]->segment_id; | 
|  | no_pred_segcounts[segment_id]++; | 
|  |  | 
|  | // Temporal prediction not allowed on key frames | 
|  | if (cm->current_frame.frame_type != KEY_FRAME) { | 
|  | const BLOCK_SIZE bsize = xd->mi[0]->bsize; | 
|  | // Test to see if the segment id matches the predicted value. | 
|  | const int pred_segment_id = | 
|  | cm->last_frame_seg_map | 
|  | ? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row, | 
|  | mi_col) | 
|  | : 0; | 
|  | const int pred_flag = pred_segment_id == segment_id; | 
|  | const int pred_context = av1_get_pred_context_seg_id(xd); | 
|  |  | 
|  | // Store the prediction status for this mb and update counts | 
|  | // as appropriate | 
|  | xd->mi[0]->seg_id_predicted = pred_flag; | 
|  | temporal_predictor_count[pred_context][pred_flag]++; | 
|  |  | 
|  | // Update the "unpredicted" segment count | 
|  | if (!pred_flag) t_unpred_seg_counts[segment_id]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const TileInfo *tile, MB_MODE_INFO **mi, | 
|  | unsigned *no_pred_segcounts, | 
|  | unsigned (*temporal_predictor_count)[2], | 
|  | unsigned *t_unpred_seg_counts, int mi_row, int mi_col, | 
|  | BLOCK_SIZE bsize) { | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const int mis = mi_params->mi_stride; | 
|  | const int bs = mi_size_wide[bsize], hbs = bs / 2; | 
|  | PARTITION_TYPE partition; | 
|  | const int qbs = bs / 4; | 
|  |  | 
|  | if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; | 
|  |  | 
|  | #define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff)                              \ | 
|  | count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff),               \ | 
|  | no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \ | 
|  | (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff)); | 
|  |  | 
|  | if (bsize == BLOCK_8X8) | 
|  | partition = PARTITION_NONE; | 
|  | else | 
|  | partition = get_partition(cm, mi_row, mi_col, bsize); | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break; | 
|  | case PARTITION_HORZ: | 
|  | CSEGS(bs, hbs, 0, 0); | 
|  | CSEGS(bs, hbs, hbs, 0); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | CSEGS(hbs, bs, 0, 0); | 
|  | CSEGS(hbs, bs, 0, hbs); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | CSEGS(hbs, hbs, 0, 0); | 
|  | CSEGS(hbs, hbs, 0, hbs); | 
|  | CSEGS(bs, hbs, hbs, 0); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | CSEGS(bs, hbs, 0, 0); | 
|  | CSEGS(hbs, hbs, hbs, 0); | 
|  | CSEGS(hbs, hbs, hbs, hbs); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | CSEGS(hbs, hbs, 0, 0); | 
|  | CSEGS(hbs, hbs, hbs, 0); | 
|  | CSEGS(hbs, bs, 0, hbs); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | CSEGS(hbs, bs, 0, 0); | 
|  | CSEGS(hbs, hbs, 0, hbs); | 
|  | CSEGS(hbs, hbs, hbs, hbs); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | CSEGS(bs, qbs, 0, 0); | 
|  | CSEGS(bs, qbs, qbs, 0); | 
|  | CSEGS(bs, qbs, 2 * qbs, 0); | 
|  | if (mi_row + 3 * qbs < mi_params->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0); | 
|  | break; | 
|  |  | 
|  | case PARTITION_VERT_4: | 
|  | CSEGS(qbs, bs, 0, 0); | 
|  | CSEGS(qbs, bs, 0, qbs); | 
|  | CSEGS(qbs, bs, 0, 2 * qbs); | 
|  | if (mi_col + 3 * qbs < mi_params->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs); | 
|  | break; | 
|  |  | 
|  | case PARTITION_SPLIT: { | 
|  | const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); | 
|  | int n; | 
|  | assert(subsize < BLOCK_SIZES_ALL); | 
|  |  | 
|  | for (n = 0; n < 4; n++) { | 
|  | const int mi_dc = hbs * (n & 1); | 
|  | const int mi_dr = hbs * (n >> 1); | 
|  |  | 
|  | count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, | 
|  | temporal_predictor_count, t_unpred_seg_counts, | 
|  | mi_row + mi_dr, mi_col + mi_dc, subsize); | 
|  | } | 
|  | } break; | 
|  | default: assert(0); | 
|  | } | 
|  |  | 
|  | #undef CSEGS | 
|  | } | 
|  |  | 
|  | void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) { | 
|  | struct segmentation *seg = &cm->seg; | 
|  | struct segmentation_probs *segp = &cm->fc->seg; | 
|  | int no_pred_cost; | 
|  | int t_pred_cost = INT_MAX; | 
|  | int tile_col, tile_row, mi_row, mi_col; | 
|  | unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } }; | 
|  | unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 }; | 
|  | unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; | 
|  | (void)xd; | 
|  | int scale_up = cm->prev_frame && (cm->width > cm->prev_frame->width || | 
|  | cm->height > cm->prev_frame->height); | 
|  | // First of all generate stats regarding how well the last segment map | 
|  | // predicts this one | 
|  | if (!scale_up) { | 
|  | for (tile_row = 0; tile_row < cm->tiles.rows; tile_row++) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  | for (tile_col = 0; tile_col < cm->tiles.cols; tile_col++) { | 
|  | MB_MODE_INFO **mi_ptr; | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  | mi_ptr = cm->mi_params.mi_grid_base + | 
|  | tile_info.mi_row_start * cm->mi_params.mi_stride + | 
|  | tile_info.mi_col_start; | 
|  | for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; | 
|  | mi_row += cm->seq_params.mib_size, | 
|  | mi_ptr += cm->seq_params.mib_size * cm->mi_params.mi_stride) { | 
|  | MB_MODE_INFO **mi = mi_ptr; | 
|  | for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; | 
|  | mi_col += cm->seq_params.mib_size, | 
|  | mi += cm->seq_params.mib_size) { | 
|  | count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts, | 
|  | temporal_predictor_count, t_unpred_seg_counts, mi_row, | 
|  | mi_col, cm->seq_params.sb_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int seg_id_cost[MAX_SEGMENTS]; | 
|  | av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL); | 
|  | no_pred_cost = 0; | 
|  | for (int i = 0; i < MAX_SEGMENTS; ++i) | 
|  | no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i]; | 
|  |  | 
|  | // Frames without past dependency cannot use temporal prediction | 
|  | if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) { | 
|  | int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2]; | 
|  | for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) | 
|  | av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL); | 
|  | t_pred_cost = 0; | 
|  | // Cost for signaling the prediction flag. | 
|  | for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) { | 
|  | for (int j = 0; j < 2; ++j) | 
|  | t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j]; | 
|  | } | 
|  | // Cost for signaling the unpredicted segment id. | 
|  | for (int i = 0; i < MAX_SEGMENTS; ++i) | 
|  | t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i]; | 
|  | } | 
|  |  | 
|  | // Now choose which coding method to use. | 
|  | if (t_pred_cost < no_pred_cost) { | 
|  | assert(!cm->features.error_resilient_mode); | 
|  | seg->temporal_update = 1; | 
|  | } else { | 
|  | seg->temporal_update = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_reset_segment_features(AV1_COMMON *cm) { | 
|  | struct segmentation *seg = &cm->seg; | 
|  |  | 
|  | // Set up default state for MB feature flags | 
|  | seg->enabled = 0; | 
|  | seg->update_map = 0; | 
|  | seg->update_data = 0; | 
|  | av1_clearall_segfeatures(seg); | 
|  | } |