blob: 34bfe01663e9d40c32bb156651954192f491d300 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include <string.h>
#include "config/aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/arm/aom_convolve8_neon.h"
#include "aom_dsp/arm/aom_filter.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = {
// Shift left and insert new last column in transposed 4x4 block.
1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28,
// Shift left and insert two new columns in transposed 4x4 block.
2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29,
// Shift left and insert three new columns in transposed 4x4 block.
3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30
};
static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16x2_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
int32x4_t sum =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1);
// Further narrowing and packing is performed by the caller.
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16x3_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
uint8x16_t permuted_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]),
vqtbl1q_u8(samples, permute_tbl.val[2]) };
// First 4 output values.
int32x4_t sum0 =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filters, 1);
// Second 4 output values.
int32x4_t sum1 =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0);
sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filters, 1);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static INLINE void convolve8_horiz_8tap_neon_i8mm(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x, int w, int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_x));
if (w == 4) {
const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl);
int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl);
int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl);
int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl);
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
do {
int width = w;
const uint8_t *s = src;
uint8_t *d = dst;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl);
uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl);
uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl);
uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
static INLINE int16x4_t convolve4_4_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
int32x4_t sum =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples, filters, 0);
// Further narrowing and packing is performed by the caller.
return vmovn_s32(sum);
}
static INLINE uint8x8_t convolve4_8_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16x2_t permute_tbl) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// First 4 output values.
int32x4_t sum0 =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
// Second 4 output values.
int32x4_t sum1 =
vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
// We halved the filter values so -1 from right shift.
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
static INLINE void convolve8_horiz_4tap_neon_i8mm(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x, int width, int height) {
const int16x4_t x_filter = vld1_s16(filter_x + 2);
// All 4-tap and bilinear filter values are even, so halve them to reduce
// intermediate precision requirements.
const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1);
if (width == 4) {
const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t t0 = convolve4_4_h(s0, filter, perm_tbl);
int16x4_t t1 = convolve4_4_h(s1, filter, perm_tbl);
int16x4_t t2 = convolve4_4_h(s2, filter, perm_tbl);
int16x4_t t3 = convolve4_4_h(s3, filter, perm_tbl);
// We halved the filter values so -1 from right shift.
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 0);
} else {
const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl);
do {
int w = width;
const uint8_t *s = src;
uint8_t *d = dst;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint8x8_t d0 = convolve4_8_h(s0, filter, perm_tbl);
uint8x8_t d1 = convolve4_8_h(s1, filter, perm_tbl);
uint8x8_t d2 = convolve4_8_h(s2, filter, perm_tbl);
uint8x8_t d3 = convolve4_8_h(s3, filter, perm_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 0);
}
}
void aom_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h) {
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)x_step_q4;
(void)filter_y;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1);
int filter_taps = get_filter_taps_convolve8(filter_x);
if (filter_taps == 2) {
convolve8_horiz_2tap_neon(src + 3, src_stride, dst, dst_stride, filter_x, w,
h);
} else if (filter_taps == 4) {
convolve8_horiz_4tap_neon_i8mm(src + 2, src_stride, dst, dst_stride,
filter_x, w, h);
} else {
convolve8_horiz_8tap_neon_i8mm(src, src_stride, dst, dst_stride, filter_x,
w, h);
}
}
static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b) {
// Transpose 8-bit elements and concatenate result rows as follows:
// a0: 00, 01, 02, 03, XX, XX, XX, XX
// a1: 10, 11, 12, 13, XX, XX, XX, XX
// a2: 20, 21, 22, 23, XX, XX, XX, XX
// a3: 30, 31, 32, 33, XX, XX, XX, XX
//
// b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
uint16x8_t a0123 =
vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0];
*b = vreinterpretq_u8_u16(a0123);
}
static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b0, uint8x16_t *b1) {
// Transpose 8-bit elements and concatenate result rows as follows:
// a0: 00, 01, 02, 03, 04, 05, 06, 07
// a1: 10, 11, 12, 13, 14, 15, 16, 17
// a2: 20, 21, 22, 23, 24, 25, 26, 27
// a3: 30, 31, 32, 33, 34, 35, 36, 37
//
// b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
// b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
uint16x8x2_t a0123 =
vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23));
*b0 = vreinterpretq_u8_u16(a0123.val[0]);
*b1 = vreinterpretq_u8_u16(a0123.val[1]);
}
static INLINE int16x4_t convolve8_4_v(const uint8x16_t samples_lo,
const uint8x16_t samples_hi,
const int8x8_t filters) {
// Sample permutation is performed by the caller.
int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filters, 0);
sum = vusdotq_lane_s32(sum, samples_hi, filters, 1);
// Further narrowing and packing is performed by the caller.
return vqmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_v(const uint8x16_t samples0_lo,
const uint8x16_t samples0_hi,
const uint8x16_t samples1_lo,
const uint8x16_t samples1_hi,
const int8x8_t filters) {
// Sample permutation is performed by the caller.
// First 4 output values.
int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filters, 0);
sum0 = vusdotq_lane_s32(sum0, samples0_hi, filters, 1);
// Second 4 output values.
int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filters, 0);
sum1 = vusdotq_lane_s32(sum1, samples1_hi, filters, 1);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vqmovn_s32(sum0), vqmovn_s32(sum1));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static INLINE void convolve8_vert_8tap_neon_i8mm(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_y, int w, int h) {
const int8x8_t filter = vmovn_s16(vld1q_s16(filter_y));
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
uint8x16x2_t samples_LUT;
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456;
transpose_concat_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_4x4(s3, s4, s5, s6, &s3456);
do {
uint8x8_t s7, s8, s9, s10;
load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10);
uint8x16_t s4567, s5678, s6789, s78910;
transpose_concat_4x4(s7, s8, s9, s10, &s78910);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s3456;
samples_LUT.val[1] = s78910;
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve8_4_v(s0123, s4567, filter);
int16x4_t d1 = convolve8_4_v(s1234, s5678, filter);
int16x4_t d2 = convolve8_4_v(s2345, s6789, filter);
int16x4_t d3 = convolve8_4_v(s3456, s78910, filter);
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s78910;
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src;
uint8_t *d = dst;
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi;
transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
do {
uint8x8_t s7, s8, s9, s10;
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
s78910_lo, s78910_hi;
transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s3456_lo;
samples_LUT.val[1] = s78910_lo;
s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s3456_hi;
samples_LUT.val[1] = s78910_hi;
s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
uint8x8_t d0 =
convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter);
uint8x8_t d1 =
convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter);
uint8x8_t d2 =
convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter);
uint8x8_t d3 =
convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s78910_lo;
s3456_hi = s78910_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
}
void aom_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w,
int h) {
assert((intptr_t)dst % 4 == 0);
assert(dst_stride % 4 == 0);
(void)filter_x;
(void)x_step_q4;
(void)y_step_q4;
src -= ((SUBPEL_TAPS / 2) - 1) * src_stride;
int filter_taps = get_filter_taps_convolve8(filter_y);
if (filter_taps == 2) {
convolve8_vert_2tap_neon(src + 3 * src_stride, src_stride, dst, dst_stride,
filter_y, w, h);
} else if (filter_taps == 4) {
convolve8_vert_4tap_neon(src + 2 * src_stride, src_stride, dst, dst_stride,
filter_y, w, h);
} else {
convolve8_vert_8tap_neon_i8mm(src, src_stride, dst, dst_stride, filter_y, w,
h);
}
}