blob: 5cba8a86011edc58e37568e496feb912f7db16b3 [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_ports/mem.h"
void aom_minmax_8x8_c(const uint8_t *s, int p, const uint8_t *d, int dp,
int *min, int *max) {
int i, j;
*min = 255;
*max = 0;
for (i = 0; i < 8; ++i, s += p, d += dp) {
for (j = 0; j < 8; ++j) {
int diff = abs(s[j] - d[j]);
*min = diff < *min ? diff : *min;
*max = diff > *max ? diff : *max;
}
}
}
unsigned int aom_avg_4x4_c(const uint8_t *s, int p) {
int i, j;
int sum = 0;
for (i = 0; i < 4; ++i, s += p)
for (j = 0; j < 4; sum += s[j], ++j) {
}
return (sum + 8) >> 4;
}
unsigned int aom_avg_8x8_c(const uint8_t *s, int p) {
int i, j;
int sum = 0;
for (i = 0; i < 8; ++i, s += p)
for (j = 0; j < 8; sum += s[j], ++j) {
}
return (sum + 32) >> 6;
}
void aom_avg_8x8_quad_c(const uint8_t *s, int p, int x16_idx, int y16_idx,
int *avg) {
for (int k = 0; k < 4; k++) {
const int x8_idx = x16_idx + ((k & 1) << 3);
const int y8_idx = y16_idx + ((k >> 1) << 3);
const uint8_t *s_tmp = s + y8_idx * p + x8_idx;
avg[k] = aom_avg_8x8_c(s_tmp, p);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
unsigned int aom_highbd_avg_8x8_c(const uint8_t *s8, int p) {
int i, j;
int sum = 0;
const uint16_t *s = CONVERT_TO_SHORTPTR(s8);
for (i = 0; i < 8; ++i, s += p)
for (j = 0; j < 8; sum += s[j], ++j) {
}
return (sum + 32) >> 6;
}
unsigned int aom_highbd_avg_4x4_c(const uint8_t *s8, int p) {
int i, j;
int sum = 0;
const uint16_t *s = CONVERT_TO_SHORTPTR(s8);
for (i = 0; i < 4; ++i, s += p)
for (j = 0; j < 4; sum += s[j], ++j) {
}
return (sum + 8) >> 4;
}
void aom_highbd_minmax_8x8_c(const uint8_t *s8, int p, const uint8_t *d8,
int dp, int *min, int *max) {
int i, j;
const uint16_t *s = CONVERT_TO_SHORTPTR(s8);
const uint16_t *d = CONVERT_TO_SHORTPTR(d8);
*min = 65535;
*max = 0;
for (i = 0; i < 8; ++i, s += p, d += dp) {
for (j = 0; j < 8; ++j) {
int diff = abs(s[j] - d[j]);
*min = diff < *min ? diff : *min;
*max = diff > *max ? diff : *max;
}
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static void hadamard_col4(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
int16_t b0 = (src_diff[0 * src_stride] + src_diff[1 * src_stride]) >> 1;
int16_t b1 = (src_diff[0 * src_stride] - src_diff[1 * src_stride]) >> 1;
int16_t b2 = (src_diff[2 * src_stride] + src_diff[3 * src_stride]) >> 1;
int16_t b3 = (src_diff[2 * src_stride] - src_diff[3 * src_stride]) >> 1;
coeff[0] = b0 + b2;
coeff[1] = b1 + b3;
coeff[2] = b0 - b2;
coeff[3] = b1 - b3;
}
void aom_hadamard_4x4_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
int16_t buffer[16];
int16_t buffer2[16];
int16_t *tmp_buf = &buffer[0];
for (idx = 0; idx < 4; ++idx) {
hadamard_col4(src_diff, src_stride, tmp_buf); // src_diff: 9 bit
// dynamic range [-255, 255]
tmp_buf += 4;
++src_diff;
}
tmp_buf = &buffer[0];
for (idx = 0; idx < 4; ++idx) {
hadamard_col4(tmp_buf, 4, buffer2 + 4 * idx); // tmp_buf: 12 bit
// dynamic range [-2040, 2040]
// buffer2: 15 bit
// dynamic range [-16320, 16320]
++tmp_buf;
}
// Extra transpose to match SSE2 behavior(i.e., aom_hadamard_4x4_sse2).
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
coeff[i * 4 + j] = (tran_low_t)buffer2[j * 4 + i];
}
}
}
// src_diff: first pass, 9 bit, dynamic range [-255, 255]
// second pass, 12 bit, dynamic range [-2040, 2040]
static void hadamard_col8(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
int16_t b0 = src_diff[0 * src_stride] + src_diff[1 * src_stride];
int16_t b1 = src_diff[0 * src_stride] - src_diff[1 * src_stride];
int16_t b2 = src_diff[2 * src_stride] + src_diff[3 * src_stride];
int16_t b3 = src_diff[2 * src_stride] - src_diff[3 * src_stride];
int16_t b4 = src_diff[4 * src_stride] + src_diff[5 * src_stride];
int16_t b5 = src_diff[4 * src_stride] - src_diff[5 * src_stride];
int16_t b6 = src_diff[6 * src_stride] + src_diff[7 * src_stride];
int16_t b7 = src_diff[6 * src_stride] - src_diff[7 * src_stride];
int16_t c0 = b0 + b2;
int16_t c1 = b1 + b3;
int16_t c2 = b0 - b2;
int16_t c3 = b1 - b3;
int16_t c4 = b4 + b6;
int16_t c5 = b5 + b7;
int16_t c6 = b4 - b6;
int16_t c7 = b5 - b7;
coeff[0] = c0 + c4;
coeff[7] = c1 + c5;
coeff[3] = c2 + c6;
coeff[4] = c3 + c7;
coeff[2] = c0 - c4;
coeff[6] = c1 - c5;
coeff[1] = c2 - c6;
coeff[5] = c3 - c7;
}
void aom_hadamard_8x8_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
int16_t buffer[64];
int16_t buffer2[64];
int16_t *tmp_buf = &buffer[0];
for (idx = 0; idx < 8; ++idx) {
hadamard_col8(src_diff, src_stride, tmp_buf); // src_diff: 9 bit
// dynamic range [-255, 255]
tmp_buf += 8;
++src_diff;
}
tmp_buf = &buffer[0];
for (idx = 0; idx < 8; ++idx) {
hadamard_col8(tmp_buf, 8, buffer2 + 8 * idx); // tmp_buf: 12 bit
// dynamic range [-2040, 2040]
// buffer2: 15 bit
// dynamic range [-16320, 16320]
++tmp_buf;
}
// Extra transpose to match SSE2 behavior(i.e., aom_hadamard_8x8_sse2).
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
coeff[i * 8 + j] = (tran_low_t)buffer2[j * 8 + i];
}
}
}
void aom_hadamard_lp_8x8_c(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
int16_t buffer[64];
int16_t buffer2[64];
int16_t *tmp_buf = &buffer[0];
for (int idx = 0; idx < 8; ++idx) {
hadamard_col8(src_diff, src_stride, tmp_buf); // src_diff: 9 bit
// dynamic range [-255, 255]
tmp_buf += 8;
++src_diff;
}
tmp_buf = &buffer[0];
for (int idx = 0; idx < 8; ++idx) {
hadamard_col8(tmp_buf, 8, buffer2 + 8 * idx); // tmp_buf: 12 bit
// dynamic range [-2040, 2040]
// buffer2: 15 bit
// dynamic range [-16320, 16320]
++tmp_buf;
}
for (int idx = 0; idx < 64; ++idx) coeff[idx] = buffer2[idx];
// Extra transpose to match SSE2 behavior(i.e., aom_hadamard_lp_8x8_sse2).
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
coeff[i * 8 + j] = buffer2[j * 8 + i];
}
}
}
void aom_hadamard_lp_8x8_dual_c(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
for (int i = 0; i < 2; i++) {
aom_hadamard_lp_8x8_c(src_diff + (i * 8), src_stride,
(int16_t *)coeff + (i * 64));
}
}
// In place 16x16 2D Hadamard transform
void aom_hadamard_16x16_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
for (idx = 0; idx < 4; ++idx) {
// src_diff: 9 bit, dynamic range [-255, 255]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
aom_hadamard_8x8_c(src_ptr, src_stride, coeff + idx * 64);
}
// coeff: 15 bit, dynamic range [-16320, 16320]
for (idx = 0; idx < 64; ++idx) {
tran_low_t a0 = coeff[0];
tran_low_t a1 = coeff[64];
tran_low_t a2 = coeff[128];
tran_low_t a3 = coeff[192];
tran_low_t b0 = (a0 + a1) >> 1; // (a0 + a1): 16 bit, [-32640, 32640]
tran_low_t b1 = (a0 - a1) >> 1; // b0-b3: 15 bit, dynamic range
tran_low_t b2 = (a2 + a3) >> 1; // [-16320, 16320]
tran_low_t b3 = (a2 - a3) >> 1;
coeff[0] = b0 + b2; // 16 bit, [-32640, 32640]
coeff[64] = b1 + b3;
coeff[128] = b0 - b2;
coeff[192] = b1 - b3;
++coeff;
}
coeff -= 64;
// Extra shift to match AVX2 output (i.e., aom_hadamard_16x16_avx2).
// Note that to match SSE2 output, it does not need this step.
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 4; j++) {
tran_low_t temp = coeff[i * 16 + 4 + j];
coeff[i * 16 + 4 + j] = coeff[i * 16 + 8 + j];
coeff[i * 16 + 8 + j] = temp;
}
}
}
void aom_hadamard_lp_16x16_c(const int16_t *src_diff, ptrdiff_t src_stride,
int16_t *coeff) {
for (int idx = 0; idx < 4; ++idx) {
// src_diff: 9 bit, dynamic range [-255, 255]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
aom_hadamard_lp_8x8_c(src_ptr, src_stride, coeff + idx * 64);
}
for (int idx = 0; idx < 64; ++idx) {
int16_t a0 = coeff[0];
int16_t a1 = coeff[64];
int16_t a2 = coeff[128];
int16_t a3 = coeff[192];
int16_t b0 = (a0 + a1) >> 1; // (a0 + a1): 16 bit, [-32640, 32640]
int16_t b1 = (a0 - a1) >> 1; // b0-b3: 15 bit, dynamic range
int16_t b2 = (a2 + a3) >> 1; // [-16320, 16320]
int16_t b3 = (a2 - a3) >> 1;
coeff[0] = b0 + b2; // 16 bit, [-32640, 32640]
coeff[64] = b1 + b3;
coeff[128] = b0 - b2;
coeff[192] = b1 - b3;
++coeff;
}
}
void aom_hadamard_32x32_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
for (idx = 0; idx < 4; ++idx) {
// src_diff: 9 bit, dynamic range [-255, 255]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
aom_hadamard_16x16_c(src_ptr, src_stride, coeff + idx * 256);
}
// coeff: 16 bit, dynamic range [-32768, 32767]
for (idx = 0; idx < 256; ++idx) {
tran_low_t a0 = coeff[0];
tran_low_t a1 = coeff[256];
tran_low_t a2 = coeff[512];
tran_low_t a3 = coeff[768];
tran_low_t b0 = (a0 + a1) >> 2; // (a0 + a1): 17 bit, [-65536, 65535]
tran_low_t b1 = (a0 - a1) >> 2; // b0-b3: 15 bit, dynamic range
tran_low_t b2 = (a2 + a3) >> 2; // [-16384, 16383]
tran_low_t b3 = (a2 - a3) >> 2;
coeff[0] = b0 + b2; // 16 bit, [-32768, 32767]
coeff[256] = b1 + b3;
coeff[512] = b0 - b2;
coeff[768] = b1 - b3;
++coeff;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void hadamard_highbd_col8_first_pass(const int16_t *src_diff,
ptrdiff_t src_stride,
int16_t *coeff) {
int16_t b0 = src_diff[0 * src_stride] + src_diff[1 * src_stride];
int16_t b1 = src_diff[0 * src_stride] - src_diff[1 * src_stride];
int16_t b2 = src_diff[2 * src_stride] + src_diff[3 * src_stride];
int16_t b3 = src_diff[2 * src_stride] - src_diff[3 * src_stride];
int16_t b4 = src_diff[4 * src_stride] + src_diff[5 * src_stride];
int16_t b5 = src_diff[4 * src_stride] - src_diff[5 * src_stride];
int16_t b6 = src_diff[6 * src_stride] + src_diff[7 * src_stride];
int16_t b7 = src_diff[6 * src_stride] - src_diff[7 * src_stride];
int16_t c0 = b0 + b2;
int16_t c1 = b1 + b3;
int16_t c2 = b0 - b2;
int16_t c3 = b1 - b3;
int16_t c4 = b4 + b6;
int16_t c5 = b5 + b7;
int16_t c6 = b4 - b6;
int16_t c7 = b5 - b7;
coeff[0] = c0 + c4;
coeff[7] = c1 + c5;
coeff[3] = c2 + c6;
coeff[4] = c3 + c7;
coeff[2] = c0 - c4;
coeff[6] = c1 - c5;
coeff[1] = c2 - c6;
coeff[5] = c3 - c7;
}
// src_diff: 16 bit, dynamic range [-32760, 32760]
// coeff: 19 bit
static void hadamard_highbd_col8_second_pass(const int16_t *src_diff,
ptrdiff_t src_stride,
int32_t *coeff) {
int32_t b0 = src_diff[0 * src_stride] + src_diff[1 * src_stride];
int32_t b1 = src_diff[0 * src_stride] - src_diff[1 * src_stride];
int32_t b2 = src_diff[2 * src_stride] + src_diff[3 * src_stride];
int32_t b3 = src_diff[2 * src_stride] - src_diff[3 * src_stride];
int32_t b4 = src_diff[4 * src_stride] + src_diff[5 * src_stride];
int32_t b5 = src_diff[4 * src_stride] - src_diff[5 * src_stride];
int32_t b6 = src_diff[6 * src_stride] + src_diff[7 * src_stride];
int32_t b7 = src_diff[6 * src_stride] - src_diff[7 * src_stride];
int32_t c0 = b0 + b2;
int32_t c1 = b1 + b3;
int32_t c2 = b0 - b2;
int32_t c3 = b1 - b3;
int32_t c4 = b4 + b6;
int32_t c5 = b5 + b7;
int32_t c6 = b4 - b6;
int32_t c7 = b5 - b7;
coeff[0] = c0 + c4;
coeff[7] = c1 + c5;
coeff[3] = c2 + c6;
coeff[4] = c3 + c7;
coeff[2] = c0 - c4;
coeff[6] = c1 - c5;
coeff[1] = c2 - c6;
coeff[5] = c3 - c7;
}
// The order of the output coeff of the hadamard is not important. For
// optimization purposes the final transpose may be skipped.
void aom_highbd_hadamard_8x8_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
int16_t buffer[64];
int32_t buffer2[64];
int16_t *tmp_buf = &buffer[0];
for (idx = 0; idx < 8; ++idx) {
// src_diff: 13 bit
// buffer: 16 bit, dynamic range [-32760, 32760]
hadamard_highbd_col8_first_pass(src_diff, src_stride, tmp_buf);
tmp_buf += 8;
++src_diff;
}
tmp_buf = &buffer[0];
for (idx = 0; idx < 8; ++idx) {
// buffer: 16 bit
// buffer2: 19 bit, dynamic range [-262080, 262080]
hadamard_highbd_col8_second_pass(tmp_buf, 8, buffer2 + 8 * idx);
++tmp_buf;
}
for (idx = 0; idx < 64; ++idx) coeff[idx] = (tran_low_t)buffer2[idx];
}
// In place 16x16 2D Hadamard transform
void aom_highbd_hadamard_16x16_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
for (idx = 0; idx < 4; ++idx) {
// src_diff: 13 bit, dynamic range [-4095, 4095]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 8 * src_stride + (idx & 0x01) * 8;
aom_highbd_hadamard_8x8_c(src_ptr, src_stride, coeff + idx * 64);
}
// coeff: 19 bit, dynamic range [-262080, 262080]
for (idx = 0; idx < 64; ++idx) {
tran_low_t a0 = coeff[0];
tran_low_t a1 = coeff[64];
tran_low_t a2 = coeff[128];
tran_low_t a3 = coeff[192];
tran_low_t b0 = (a0 + a1) >> 1;
tran_low_t b1 = (a0 - a1) >> 1;
tran_low_t b2 = (a2 + a3) >> 1;
tran_low_t b3 = (a2 - a3) >> 1;
// new coeff dynamic range: 20 bit
coeff[0] = b0 + b2;
coeff[64] = b1 + b3;
coeff[128] = b0 - b2;
coeff[192] = b1 - b3;
++coeff;
}
}
void aom_highbd_hadamard_32x32_c(const int16_t *src_diff, ptrdiff_t src_stride,
tran_low_t *coeff) {
int idx;
for (idx = 0; idx < 4; ++idx) {
// src_diff: 13 bit, dynamic range [-4095, 4095]
const int16_t *src_ptr =
src_diff + (idx >> 1) * 16 * src_stride + (idx & 0x01) * 16;
aom_highbd_hadamard_16x16_c(src_ptr, src_stride, coeff + idx * 256);
}
// coeff: 20 bit
for (idx = 0; idx < 256; ++idx) {
tran_low_t a0 = coeff[0];
tran_low_t a1 = coeff[256];
tran_low_t a2 = coeff[512];
tran_low_t a3 = coeff[768];
tran_low_t b0 = (a0 + a1) >> 2;
tran_low_t b1 = (a0 - a1) >> 2;
tran_low_t b2 = (a2 + a3) >> 2;
tran_low_t b3 = (a2 - a3) >> 2;
// new coeff dynamic range: 20 bit
coeff[0] = b0 + b2;
coeff[256] = b1 + b3;
coeff[512] = b0 - b2;
coeff[768] = b1 - b3;
++coeff;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// coeff: 20 bits, dynamic range [-524287, 524287].
// length: value range {16, 32, 64, 128, 256, 512, 1024}.
int aom_satd_c(const tran_low_t *coeff, int length) {
int i;
int satd = 0;
for (i = 0; i < length; ++i) satd += abs(coeff[i]);
// satd: 30 bits, dynamic range [-524287 * 1024, 524287 * 1024]
return satd;
}
int aom_satd_lp_c(const int16_t *coeff, int length) {
int satd = 0;
for (int i = 0; i < length; ++i) satd += abs(coeff[i]);
// satd: 26 bits, dynamic range [-32640 * 1024, 32640 * 1024]
return satd;
}
// Integer projection onto row vectors.
// height: value range {16, 32, 64, 128}.
void aom_int_pro_row_c(int16_t *hbuf, const uint8_t *ref, const int ref_stride,
const int width, const int height, int norm_factor) {
assert(height >= 2);
for (int idx = 0; idx < width; ++idx) {
hbuf[idx] = 0;
// hbuf[idx]: 14 bit, dynamic range [0, 32640].
for (int i = 0; i < height; ++i) hbuf[idx] += ref[i * ref_stride];
// hbuf[idx]: 9 bit, dynamic range [0, 1020].
hbuf[idx] >>= norm_factor;
++ref;
}
}
// width: value range {16, 32, 64, 128}.
void aom_int_pro_col_c(int16_t *vbuf, const uint8_t *ref, const int ref_stride,
const int width, const int height, int norm_factor) {
for (int ht = 0; ht < height; ++ht) {
int16_t sum = 0;
// sum: 14 bit, dynamic range [0, 32640]
for (int idx = 0; idx < width; ++idx) sum += ref[idx];
vbuf[ht] = sum >> norm_factor;
ref += ref_stride;
}
}
// ref: [0 - 510]
// src: [0 - 510]
// bwl: {2, 3, 4, 5}
int aom_vector_var_c(const int16_t *ref, const int16_t *src, int bwl) {
int i;
int width = 4 << bwl;
int sse = 0, mean = 0, var;
for (i = 0; i < width; ++i) {
int diff = ref[i] - src[i]; // diff: dynamic range [-510, 510], 10 bits.
mean += diff; // mean: dynamic range 16 bits.
sse += diff * diff; // sse: dynamic range 26 bits.
}
// (mean * mean): dynamic range 31 bits.
// If width == 128, the mean can be 510 * 128 = 65280, and log2(65280 ** 2) ~=
// 31.99, so it needs to be casted to unsigned int to compute its square.
const unsigned int mean_abs = abs(mean);
var = sse - ((mean_abs * mean_abs) >> (bwl + 2));
return var;
}