blob: 2cab9e0df0b7892dcb9ec79a198e82c94f5e5c56 [file] [log] [blame] [edit]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/aom_dsp_common.h"
#include "config/aom_dsp_rtcd.h"
// Blending with alpha mask. Mask values come from the range [0, 64],
// as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can
// be the same as dst, or dst can be different from both sources.
// NOTE(rachelbarker): The input and output of aom_blend_a64_d16_mask_c() are
// in a higher intermediate precision, and will later be rounded down to pixel
// precision.
// Thus, in order to avoid double-rounding, we want to use normal right shifts
// within this function, not ROUND_POWER_OF_TWO.
// This works because of the identity:
// ROUND_POWER_OF_TWO(x >> y, z) == ROUND_POWER_OF_TWO(x, y+z)
//
// In contrast, the output of the non-d16 functions will not be further rounded,
// so we *should* use ROUND_POWER_OF_TWO there.
void aom_lowbd_blend_a64_d16_mask_c(
uint8_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0,
uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride,
const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh,
ConvolveParams *conv_params) {
int i, j;
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(IMPLIES((void *)src0 == dst, src0_stride == dst_stride));
assert(IMPLIES((void *)src1 == dst, src1_stride == dst_stride));
assert(h >= 4);
assert(w >= 4);
assert(IS_POWER_OF_TWO(h));
assert(IS_POWER_OF_TWO(w));
if (subw == 0 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
int32_t res;
const int m = mask[i * mask_stride + j];
res = ((m * (int32_t)src0[i * src0_stride + j] +
(AOM_BLEND_A64_MAX_ALPHA - m) *
(int32_t)src1[i * src1_stride + j]) >>
AOM_BLEND_A64_ROUND_BITS);
res -= round_offset;
dst[i * dst_stride + j] =
clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
}
}
} else if (subw == 1 && subh == 1) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
int32_t res;
const int m = ROUND_POWER_OF_TWO(
mask[(2 * i) * mask_stride + (2 * j)] +
mask[(2 * i + 1) * mask_stride + (2 * j)] +
mask[(2 * i) * mask_stride + (2 * j + 1)] +
mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
2);
res = ((m * (int32_t)src0[i * src0_stride + j] +
(AOM_BLEND_A64_MAX_ALPHA - m) *
(int32_t)src1[i * src1_stride + j]) >>
AOM_BLEND_A64_ROUND_BITS);
res -= round_offset;
dst[i * dst_stride + j] =
clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
}
}
} else if (subw == 1 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
int32_t res;
const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
mask[i * mask_stride + (2 * j + 1)]);
res = ((m * (int32_t)src0[i * src0_stride + j] +
(AOM_BLEND_A64_MAX_ALPHA - m) *
(int32_t)src1[i * src1_stride + j]) >>
AOM_BLEND_A64_ROUND_BITS);
res -= round_offset;
dst[i * dst_stride + j] =
clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
}
}
} else {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
int32_t res;
const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
mask[(2 * i + 1) * mask_stride + j]);
res = ((int32_t)(m * (int32_t)src0[i * src0_stride + j] +
(AOM_BLEND_A64_MAX_ALPHA - m) *
(int32_t)src1[i * src1_stride + j]) >>
AOM_BLEND_A64_ROUND_BITS);
res -= round_offset;
dst[i * dst_stride + j] =
clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
}
}
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_blend_a64_d16_mask_c(
uint8_t *dst_8, uint32_t dst_stride, const CONV_BUF_TYPE *src0,
uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride,
const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh,
ConvolveParams *conv_params, const int bd) {
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);
assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
assert(IMPLIES(src1 == dst, src1_stride == dst_stride));
assert(h >= 1);
assert(w >= 1);
assert(IS_POWER_OF_TWO(h));
assert(IS_POWER_OF_TWO(w));
// excerpt from clip_pixel_highbd()
// set saturation_value to (1 << bd) - 1
unsigned int saturation_value;
switch (bd) {
case 8:
default: saturation_value = 255; break;
case 10: saturation_value = 1023; break;
case 12: saturation_value = 4095; break;
}
if (subw == 0 && subh == 0) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int32_t res;
const int m = mask[j];
res = ((m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
AOM_BLEND_A64_ROUND_BITS);
res -= round_offset;
unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
dst[j] = AOMMIN(v, saturation_value);
}
mask += mask_stride;
src0 += src0_stride;
src1 += src1_stride;
dst += dst_stride;
}
} else if (subw == 1 && subh == 1) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int32_t res;
const int m = ROUND_POWER_OF_TWO(
mask[2 * j] + mask[mask_stride + 2 * j] + mask[2 * j + 1] +
mask[mask_stride + 2 * j + 1],
2);
res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
AOM_BLEND_A64_ROUND_BITS;
res -= round_offset;
unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
dst[j] = AOMMIN(v, saturation_value);
}
mask += 2 * mask_stride;
src0 += src0_stride;
src1 += src1_stride;
dst += dst_stride;
}
} else if (subw == 1 && subh == 0) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int32_t res;
const int m = AOM_BLEND_AVG(mask[2 * j], mask[2 * j + 1]);
res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
AOM_BLEND_A64_ROUND_BITS;
res -= round_offset;
unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
dst[j] = AOMMIN(v, saturation_value);
}
mask += mask_stride;
src0 += src0_stride;
src1 += src1_stride;
dst += dst_stride;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int32_t res;
const int m = AOM_BLEND_AVG(mask[j], mask[mask_stride + j]);
res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
AOM_BLEND_A64_ROUND_BITS;
res -= round_offset;
unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
dst[j] = AOMMIN(v, saturation_value);
}
mask += 2 * mask_stride;
src0 += src0_stride;
src1 += src1_stride;
dst += dst_stride;
}
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// Blending with alpha mask. Mask values come from the range [0, 64],
// as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can
// be the same as dst, or dst can be different from both sources.
void aom_blend_a64_mask_c(uint8_t *dst, uint32_t dst_stride,
const uint8_t *src0, uint32_t src0_stride,
const uint8_t *src1, uint32_t src1_stride,
const uint8_t *mask, uint32_t mask_stride, int w,
int h, int subw, int subh) {
int i, j;
assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
assert(IMPLIES(src1 == dst, src1_stride == dst_stride));
assert(h >= 1);
assert(w >= 1);
assert(IS_POWER_OF_TWO(h));
assert(IS_POWER_OF_TWO(w));
if (subw == 0 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = mask[i * mask_stride + j];
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else if (subw == 1 && subh == 1) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = ROUND_POWER_OF_TWO(
mask[(2 * i) * mask_stride + (2 * j)] +
mask[(2 * i + 1) * mask_stride + (2 * j)] +
mask[(2 * i) * mask_stride + (2 * j + 1)] +
mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
2);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else if (subw == 1 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
mask[i * mask_stride + (2 * j + 1)]);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
mask[(2 * i + 1) * mask_stride + j]);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_blend_a64_mask_c(uint8_t *dst_8, uint32_t dst_stride,
const uint8_t *src0_8, uint32_t src0_stride,
const uint8_t *src1_8, uint32_t src1_stride,
const uint8_t *mask, uint32_t mask_stride,
int w, int h, int subw, int subh, int bd) {
int i, j;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);
const uint16_t *src0 = CONVERT_TO_SHORTPTR(src0_8);
const uint16_t *src1 = CONVERT_TO_SHORTPTR(src1_8);
(void)bd;
assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
assert(IMPLIES(src1 == dst, src1_stride == dst_stride));
assert(h >= 1);
assert(w >= 1);
assert(IS_POWER_OF_TWO(h));
assert(IS_POWER_OF_TWO(w));
assert(bd == 8 || bd == 10 || bd == 12);
if (subw == 0 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = mask[i * mask_stride + j];
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else if (subw == 1 && subh == 1) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = ROUND_POWER_OF_TWO(
mask[(2 * i) * mask_stride + (2 * j)] +
mask[(2 * i + 1) * mask_stride + (2 * j)] +
mask[(2 * i) * mask_stride + (2 * j + 1)] +
mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
2);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else if (subw == 1 && subh == 0) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
mask[i * mask_stride + (2 * j + 1)]);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
} else {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
mask[(2 * i + 1) * mask_stride + j]);
dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
src1[i * src1_stride + j]);
}
}
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH