|  | /* | 
|  | * Copyright (c) 2023, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <arm_neon.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "aom_dsp/arm/transpose_neon.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "av1/common/arm/convolve_neon.h" | 
|  | #include "av1/common/arm/convolve_neon_i8mm.h" | 
|  | #include "av1/common/convolve.h" | 
|  | #include "av1/common/filter.h" | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { | 
|  | // Shift left and insert new last column in transposed 4x4 block. | 
|  | 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, | 
|  | // Shift left and insert two new columns in transposed 4x4 block. | 
|  | 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, | 
|  | // Shift left and insert three new columns in transposed 4x4 block. | 
|  | 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kMatMul8PermuteTbl[32]) = { | 
|  | // clang-format off | 
|  | 1,  2,  3,  4,  5,  6,  7,  8,  3,  4,  5,  6,  7,  8,  9, 10, | 
|  | 5,  6,  7,  8,  9, 10, 11, 12,  7,  8,  9, 10, 11, 12, 13, 14 | 
|  | // clang-format on | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kFilterPermuteTbl[16]) = { | 
|  | // clang-format off | 
|  | 1,  2,  3,  4,  5,  6,  7, 16, 16,  1,  2,  3,  4,  5,  6,  7 | 
|  | // clang-format on | 
|  | }; | 
|  |  | 
|  | static inline int16x4_t convolve12_4_x(uint8x16_t samples[2], | 
|  | const int8x16_t filter[2], | 
|  | const uint8x16_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // {  0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | // {  4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl), | 
|  | vqtbl1q_u8(samples[1], permute_tbl) }; | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); | 
|  | sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]); | 
|  |  | 
|  | return vshrn_n_s32(sum, 1); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve12_8_x(uint8x16_t samples[2], | 
|  | const int8x16_t filter[2], | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // {  0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | // {  4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 } | 
|  | // {  6,  7,  8,  9, 10, 11, 12, 13,  8,  9, 10, 11, 12, 13, 14, 15 } | 
|  | // { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 } | 
|  | uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples[0], permute_tbl.val[1]), | 
|  | vqtbl1q_u8(samples[1], permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples[1], permute_tbl.val[1]) }; | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); | 
|  | int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]); | 
|  | sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]); | 
|  | sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum_s16 = | 
|  | vcombine_s16(vshrn_n_s32(sum0123, 1), vshrn_n_s32(sum4567, 1)); | 
|  | return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src, | 
|  | int src_stride, uint8_t *dst, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *x_filter_ptr) { | 
|  | // The no-op filter should never be used here. | 
|  | assert(x_filter_ptr[5] != 128); | 
|  |  | 
|  | // Split 12-tap filter into two 6-tap filters, masking the top two elements. | 
|  | // { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 } | 
|  | const int8x8_t mask = vcreate_s8(0x0000ffffffffffff); | 
|  | const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask); | 
|  | const int8x8_t filter_1 = | 
|  | vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2); | 
|  |  | 
|  | // Stagger each 6-tap filter to enable use of matrix multiply instructions. | 
|  | // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 } | 
|  | const int8x16_t filter[2] = { | 
|  | vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)), | 
|  | vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7)) | 
|  | }; | 
|  |  | 
|  | // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the | 
|  | // convolution kernels: Adding this shim enables us to use a single rounding | 
|  | // right shift by FILTER_BITS instead of two rounding right shifts: first by | 
|  | // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. | 
|  | const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1)); | 
|  |  | 
|  | if (w <= 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0[2], s1[2], s2[2], s3[2]; | 
|  | load_u8_16x4(src, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); | 
|  | load_u8_16x4(src + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); | 
|  |  | 
|  | int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const); | 
|  | int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const); | 
|  | int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const); | 
|  | int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const); | 
|  |  | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | dst += 4 * dst_stride; | 
|  | src += 4 * src_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0[2], s1[2], s2[2], s3[2]; | 
|  | load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); | 
|  | load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); | 
|  |  | 
|  | uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve8_8_x(uint8x16_t samples, | 
|  | const int8x16_t filter, | 
|  | const uint8x8_t f0, | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int16x8_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 1,  2,  3,  4,  5,  6,  7,  8,  3,  4,  5,  6,  7,  8,  9, 10 } | 
|  | // { 5,  6,  7,  8,  9, 10, 11, 12,  7,  8,  9, 10, 11, 12, 13, 14 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | // Calculate partial 7-tap convolution. | 
|  | int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], filter); | 
|  | int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], filter); | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); | 
|  |  | 
|  | // Apply tap 0 and accumulate. | 
|  | sum = vreinterpretq_s16_u16( | 
|  | vmlsl_u8(vreinterpretq_u16_s16(sum), vget_low_u8(samples), f0)); | 
|  |  | 
|  | sum = vaddq_s16(sum, horiz_const); | 
|  |  | 
|  | // We halved the convolution filter values so - 1 from the right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_x_sr_8tap_neon_i8mm( | 
|  | const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, | 
|  | const int16x8_t horiz_const) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1); | 
|  |  | 
|  | // Stagger the filter for use with the matrix multiply instructions. | 
|  | // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } | 
|  | const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl); | 
|  | const int8x16_t x_filter = | 
|  | vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx); | 
|  |  | 
|  | // Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 * | 
|  | // -f0 to avoid signed overflow. | 
|  | const uint8x8_t f0 = vdup_n_u8(-filter_x[0] >> 1); | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | int w = width; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint8x8_t d0 = convolve8_8_x(s0, x_filter, f0, permute_tbl, horiz_const); | 
|  | uint8x8_t d1 = convolve8_8_x(s1, x_filter, f0, permute_tbl, horiz_const); | 
|  | uint8x8_t d2 = convolve8_8_x(s2, x_filter, f0, permute_tbl, horiz_const); | 
|  | uint8x8_t d3 = convolve8_8_x(s3, x_filter, f0, permute_tbl, horiz_const); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve6_4_x(uint8x16_t samples, | 
|  | const int8x16_t filter, | 
|  | const uint8x16_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve6_8_x(uint8x16_t samples, | 
|  | const int8x16_t filter, | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | // { 4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); | 
|  | int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); | 
|  |  | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); | 
|  | // We halved the convolution filter values so - 1 from the right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_x_sr_6tap_neon_i8mm( | 
|  | const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, | 
|  | const int32x4_t horiz_const) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1); | 
|  | // Stagger the filter for use with the matrix multiply instructions. | 
|  | // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 } | 
|  | const int8x16_t x_filter = | 
|  | vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); | 
|  |  | 
|  | if (width == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t t0 = convolve6_4_x(s0, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t t1 = convolve6_4_x(s1, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t t2 = convolve6_4_x(s2, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t t3 = convolve6_4_x(s3, x_filter, permute_tbl, horiz_const); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } else { | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | int w = width; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint8x8_t d0 = convolve6_8_x(s0, x_filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d1 = convolve6_8_x(s1, x_filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d2 = convolve6_8_x(s2, x_filter, permute_tbl, horiz_const); | 
|  | uint8x8_t d3 = convolve6_8_x(s3, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride, | 
|  | uint8_t *dst, int dst_stride, int w, int h, | 
|  | const InterpFilterParams *filter_params_x, | 
|  | const int subpel_x_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | if (w == 2 || h == 2) { | 
|  | av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, | 
|  | subpel_x_qn, conv_params); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const uint8_t horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | src -= horiz_offset; | 
|  |  | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  |  | 
|  | int filter_taps = get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  |  | 
|  | // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the | 
|  | // convolution kernels: Adding this shim enables us to use a single rounding | 
|  | // right shift by FILTER_BITS instead of two rounding right shifts: first by | 
|  | // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. | 
|  | // Halve the total because we will halve the filter values. | 
|  | const int32x4_t horiz_const_s32 = vdupq_n_s32(1 << (ROUND0_BITS - 1) / 2); | 
|  | const int16x8_t horiz_const_s16 = vdupq_n_s16(1 << (ROUND0_BITS - 1) / 2); | 
|  |  | 
|  | if (filter_taps <= 6) { | 
|  | convolve_x_sr_6tap_neon_i8mm(src + 1, src_stride, dst, dst_stride, w, h, | 
|  | x_filter_ptr, horiz_const_s32); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (filter_taps > 8) { | 
|  | convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, | 
|  | x_filter_ptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | convolve_x_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, | 
|  | x_filter_ptr, horiz_const_s16); | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve12_4_y(const uint8x16_t s0, const uint8x16_t s1, | 
|  | const uint8x16_t s2, | 
|  | const int8x8_t filters_0_7, | 
|  | const int8x8_t filters_4_11) { | 
|  | int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters_0_7, 0); | 
|  | sum = vusdotq_lane_s32(sum, s1, filters_0_7, 1); | 
|  | sum = vusdotq_lane_s32(sum, s2, filters_4_11, 1); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vshrn_n_s32(sum, 1); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve12_8_y( | 
|  | const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo, | 
|  | const uint8x16_t s1_hi, const uint8x16_t s2_lo, const uint8x16_t s2_hi, | 
|  | const int8x8_t filters_0_7, const int8x8_t filters_4_11) { | 
|  | int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters_0_7, 0); | 
|  | sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters_0_7, 1); | 
|  | sum0123 = vusdotq_lane_s32(sum0123, s2_lo, filters_4_11, 1); | 
|  |  | 
|  | int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters_0_7, 0); | 
|  | sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters_0_7, 1); | 
|  | sum4567 = vusdotq_lane_s32(sum4567, s2_hi, filters_4_11, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = | 
|  | vcombine_s16(vshrn_n_s32(sum0123, 1), vshrn_n_s32(sum4567, 1)); | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_y_sr_12tap_neon_i8mm(const uint8_t *src_ptr, | 
|  | int src_stride, | 
|  | uint8_t *dst_ptr, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *y_filter_ptr) { | 
|  | // The no-op filter should never be used here. | 
|  | assert(y_filter_ptr[5] != 128); | 
|  |  | 
|  | const int8x8_t filter_0_7 = vmovn_s16(vld1q_s16(y_filter_ptr)); | 
|  | const int8x8_t filter_4_11 = vmovn_s16(vld1q_s16(y_filter_ptr + 4)); | 
|  |  | 
|  | const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); | 
|  |  | 
|  | if (w == 4) { | 
|  | uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; | 
|  | load_u8_8x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, | 
|  | &s8, &s9, &sA); | 
|  | src_ptr += 11 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // (see horizontal case) required before computing the dot product. | 
|  | uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s789A; | 
|  | transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); | 
|  | transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); | 
|  | transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); | 
|  | transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); | 
|  | transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); | 
|  | transpose_concat_elems_u8_4x4(s5, s6, s7, s8, &s5678); | 
|  | transpose_concat_elems_u8_4x4(s6, s7, s8, s9, &s6789); | 
|  | transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); | 
|  |  | 
|  | do { | 
|  | uint8x8_t sB, sC, sD, sE; | 
|  | load_u8_8x4(src_ptr, src_stride, &sB, &sC, &sD, &sE); | 
|  |  | 
|  | uint8x16_t s89AB, s9ABC, sABCD, sBCDE; | 
|  | transpose_concat_elems_u8_4x4(sB, sC, sD, sE, &sBCDE); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | uint8x16x2_t samples_LUT = { { s789A, sBCDE } }; | 
|  | s89AB = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); | 
|  | s9ABC = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); | 
|  | sABCD = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | int16x4_t d0 = | 
|  | convolve12_4_y(s0123, s4567, s89AB, filter_0_7, filter_4_11); | 
|  | int16x4_t d1 = | 
|  | convolve12_4_y(s1234, s5678, s9ABC, filter_0_7, filter_4_11); | 
|  | int16x4_t d2 = | 
|  | convolve12_4_y(s2345, s6789, sABCD, filter_0_7, filter_4_11); | 
|  | int16x4_t d3 = | 
|  | convolve12_4_y(s3456, s789A, sBCDE, filter_0_7, filter_4_11); | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123 = s4567; | 
|  | s1234 = s5678; | 
|  | s2345 = s6789; | 
|  | s3456 = s789A; | 
|  | s4567 = s89AB; | 
|  | s5678 = s9ABC; | 
|  | s6789 = sABCD; | 
|  | s789A = sBCDE; | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | do { | 
|  | int height = h; | 
|  | const uint8_t *s = src_ptr; | 
|  | uint8_t *d = dst_ptr; | 
|  |  | 
|  | uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; | 
|  | load_u8_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, | 
|  | &s9, &sA); | 
|  | s += 11 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample | 
|  | // permute (see horizontal case) required before computing the dot | 
|  | // product. | 
|  | uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, | 
|  | s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, | 
|  | s6789_hi, s789A_lo, s789A_hi; | 
|  | transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); | 
|  | transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); | 
|  | transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); | 
|  | transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); | 
|  | transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); | 
|  | transpose_concat_elems_u8_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi); | 
|  | transpose_concat_elems_u8_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi); | 
|  | transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); | 
|  |  | 
|  | do { | 
|  | uint8x8_t sB, sC, sD, sE; | 
|  | load_u8_8x4(s, src_stride, &sB, &sC, &sD, &sE); | 
|  |  | 
|  | uint8x16_t s89AB_lo, s89AB_hi, s9ABC_lo, s9ABC_hi, sABCD_lo, sABCD_hi, | 
|  | sBCDE_lo, sBCDE_hi; | 
|  | transpose_concat_elems_u8_8x4(sB, sC, sD, sE, &sBCDE_lo, &sBCDE_hi); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | uint8x16x2_t samples_LUT_lo = { { s789A_lo, sBCDE_lo } }; | 
|  | s89AB_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); | 
|  | s9ABC_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); | 
|  | sABCD_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x16x2_t samples_LUT_hi = { { s789A_hi, sBCDE_hi } }; | 
|  | s89AB_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); | 
|  | s9ABC_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); | 
|  | sABCD_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x8_t d0 = | 
|  | convolve12_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, s89AB_lo, | 
|  | s89AB_hi, filter_0_7, filter_4_11); | 
|  | uint8x8_t d1 = | 
|  | convolve12_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, s9ABC_lo, | 
|  | s9ABC_hi, filter_0_7, filter_4_11); | 
|  | uint8x8_t d2 = | 
|  | convolve12_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, sABCD_lo, | 
|  | sABCD_hi, filter_0_7, filter_4_11); | 
|  | uint8x8_t d3 = | 
|  | convolve12_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, sBCDE_lo, | 
|  | sBCDE_hi, filter_0_7, filter_4_11); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123_lo = s4567_lo; | 
|  | s0123_hi = s4567_hi; | 
|  | s1234_lo = s5678_lo; | 
|  | s1234_hi = s5678_hi; | 
|  | s2345_lo = s6789_lo; | 
|  | s2345_hi = s6789_hi; | 
|  | s3456_lo = s789A_lo; | 
|  | s3456_hi = s789A_hi; | 
|  | s4567_lo = s89AB_lo; | 
|  | s4567_hi = s89AB_hi; | 
|  | s5678_lo = s9ABC_lo; | 
|  | s5678_hi = s9ABC_hi; | 
|  | s6789_lo = sABCD_lo; | 
|  | s6789_hi = sABCD_hi; | 
|  | s789A_lo = sBCDE_lo; | 
|  | s789A_hi = sBCDE_hi; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src_ptr += 8; | 
|  | dst_ptr += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1, | 
|  | const int8x8_t filters) { | 
|  | int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); | 
|  | sum = vusdotq_lane_s32(sum, s1, filters, 1); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve8_8_y(const uint8x16_t s0_lo, | 
|  | const uint8x16_t s0_hi, | 
|  | const uint8x16_t s1_lo, | 
|  | const uint8x16_t s1_hi, | 
|  | const int8x8_t filters) { | 
|  | int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0); | 
|  | sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1); | 
|  |  | 
|  | int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0); | 
|  | sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_y_sr_8tap_neon_i8mm(const uint8_t *src_ptr, | 
|  | int src_stride, | 
|  | uint8_t *dst_ptr, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *y_filter_ptr) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1); | 
|  |  | 
|  | const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); | 
|  |  | 
|  | if (w == 4) { | 
|  | uint8x8_t s0, s1, s2, s3, s4, s5, s6; | 
|  | load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); | 
|  | src_ptr += 7 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // (see horizontal case) required before computing the dot product. | 
|  | uint8x16_t s0123, s1234, s2345, s3456; | 
|  | transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); | 
|  | transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); | 
|  | transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); | 
|  | transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); | 
|  |  | 
|  | do { | 
|  | uint8x8_t s7, s8, s9, sA; | 
|  | load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA); | 
|  |  | 
|  | uint8x16_t s4567, s5678, s6789, s789A; | 
|  | transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | uint8x16x2_t samples_LUT = { { s3456, s789A } }; | 
|  | s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); | 
|  | s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); | 
|  | s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); | 
|  | int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); | 
|  | int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); | 
|  | int16x4_t d3 = convolve8_4_y(s3456, s789A, filter); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123 = s4567; | 
|  | s1234 = s5678; | 
|  | s2345 = s6789; | 
|  | s3456 = s789A; | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | do { | 
|  | int height = h; | 
|  | const uint8_t *s = src_ptr; | 
|  | uint8_t *d = dst_ptr; | 
|  |  | 
|  | uint8x8_t s0, s1, s2, s3, s4, s5, s6; | 
|  | load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); | 
|  | s += 7 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample | 
|  | // permute (see horizontal case) required before computing the dot | 
|  | // product. | 
|  | uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, | 
|  | s3456_lo, s3456_hi; | 
|  | transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); | 
|  | transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); | 
|  | transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); | 
|  | transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); | 
|  |  | 
|  | do { | 
|  | uint8x8_t s7, s8, s9, sA; | 
|  | load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA); | 
|  |  | 
|  | uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, | 
|  | s789A_lo, s789A_hi; | 
|  | transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } }; | 
|  | s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); | 
|  | s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); | 
|  | s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } }; | 
|  | s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); | 
|  | s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); | 
|  | s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x8_t d0 = | 
|  | convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, filter); | 
|  | uint8x8_t d1 = | 
|  | convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, filter); | 
|  | uint8x8_t d2 = | 
|  | convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, filter); | 
|  | uint8x8_t d3 = | 
|  | convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, filter); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123_lo = s4567_lo; | 
|  | s0123_hi = s4567_hi; | 
|  | s1234_lo = s5678_lo; | 
|  | s1234_hi = s5678_hi; | 
|  | s2345_lo = s6789_lo; | 
|  | s2345_hi = s6789_hi; | 
|  | s3456_lo = s789A_lo; | 
|  | s3456_hi = s789A_hi; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src_ptr += 8; | 
|  | dst_ptr += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve4_4_y(const uint8x16_t s0, | 
|  | const int8x8_t filters) { | 
|  | int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve4_8_y(const uint8x16_t s0, const uint8x16_t s1, | 
|  | const int8x8_t filters) { | 
|  | int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); | 
|  | int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s1, filters, 0); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_y_sr_4tap_neon_i8mm(const uint8_t *src_ptr, | 
|  | int src_stride, | 
|  | uint8_t *dst_ptr, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *y_filter_ptr) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int16x8_t filter_s16 = | 
|  | vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0)); | 
|  | const int8x8_t filter = vshrn_n_s16(filter_s16, 1); | 
|  | const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); | 
|  | uint8x16x2_t samples_LUT; | 
|  |  | 
|  | if (w == 4) { | 
|  | uint8x8_t s0, s1, s2, s3; | 
|  | load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); | 
|  | src_ptr += 4 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // required before computing the dot product. | 
|  | uint8x16_t s0123; | 
|  | transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); | 
|  |  | 
|  | do { | 
|  | uint8x8_t s4, s5, s6, s7; | 
|  | load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7); | 
|  |  | 
|  | uint8x16_t s4567; | 
|  | transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | samples_LUT.val[0] = s0123; | 
|  | samples_LUT.val[1] = s4567; | 
|  | uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); | 
|  | uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); | 
|  | uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | int16x4_t d0 = convolve4_4_y(s0123, filter); | 
|  | int16x4_t d1 = convolve4_4_y(s1234, filter); | 
|  | int16x4_t d2 = convolve4_4_y(s2345, filter); | 
|  | int16x4_t d3 = convolve4_4_y(s3456, filter); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123 = s4567; | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | do { | 
|  | int height = h; | 
|  | const uint8_t *s = src_ptr; | 
|  | uint8_t *d = dst_ptr; | 
|  |  | 
|  | uint8x8_t s0, s1, s2, s3; | 
|  | load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  | s += 4 * src_stride; | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // required before computing the dot product. | 
|  | uint8x16_t s0123_lo, s0123_hi; | 
|  | transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); | 
|  |  | 
|  | do { | 
|  | uint8x8_t s4, s5, s6, s7; | 
|  | load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7); | 
|  |  | 
|  | uint8x16_t s4567_lo, s4567_hi; | 
|  | transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | samples_LUT.val[0] = s0123_lo; | 
|  | samples_LUT.val[1] = s4567_lo; | 
|  | uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); | 
|  | uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); | 
|  | uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | samples_LUT.val[0] = s0123_hi; | 
|  | samples_LUT.val[1] = s4567_hi; | 
|  | uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); | 
|  | uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); | 
|  | uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x8_t d0 = convolve4_8_y(s0123_lo, s0123_hi, filter); | 
|  | uint8x8_t d1 = convolve4_8_y(s1234_lo, s1234_hi, filter); | 
|  | uint8x8_t d2 = convolve4_8_y(s2345_lo, s2345_hi, filter); | 
|  | uint8x8_t d3 = convolve4_8_y(s3456_lo, s3456_hi, filter); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123_lo = s4567_lo; | 
|  | s0123_hi = s4567_hi; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src_ptr += 8; | 
|  | dst_ptr += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_convolve_y_sr_neon_i8mm(const uint8_t *src, int src_stride, | 
|  | uint8_t *dst, int dst_stride, int w, int h, | 
|  | const InterpFilterParams *filter_params_y, | 
|  | const int subpel_y_qn) { | 
|  | if (w == 2 || h == 2) { | 
|  | av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, | 
|  | subpel_y_qn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); | 
|  | const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_y, subpel_y_qn & SUBPEL_MASK); | 
|  |  | 
|  | if (y_filter_taps <= 4) { | 
|  | convolve_y_sr_4tap_neon_i8mm(src - src_stride, src_stride, dst, dst_stride, | 
|  | w, h, y_filter_ptr); | 
|  | } else if (y_filter_taps == 12) { | 
|  | convolve_y_sr_12tap_neon_i8mm(src - 5 * src_stride, src_stride, dst, | 
|  | dst_stride, w, h, y_filter_ptr); | 
|  | } else { | 
|  | // 6-tap or 8-tap. | 
|  | convolve_y_sr_8tap_neon_i8mm(src - 3 * src_stride, src_stride, dst, | 
|  | dst_stride, w, h, y_filter_ptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples, | 
|  | const int8x16_t x_filter, | 
|  | const uint8x8_t f0, | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int16x8_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 1,  2,  3,  4,  5,  6,  7,  8,  3,  4,  5,  6,  7,  8,  9, 10 } | 
|  | // { 5,  6,  7,  8,  9, 10, 11, 12,  7,  8,  9, 10, 11, 12, 13, 14 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | // Calculate partial 7-tap convolution. | 
|  | int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], x_filter); | 
|  | int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], x_filter); | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); | 
|  |  | 
|  | // Apply tap 0 and accumulate. | 
|  | sum = vreinterpretq_s16_u16( | 
|  | vmlsl_u8(vreinterpretq_u16_s16(sum), vget_low_u8(samples), f0)); | 
|  |  | 
|  | sum = vaddq_s16(sum, horiz_const); | 
|  |  | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vshrq_n_s16(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve_2d_sr_horiz_8tap_neon_i8mm( | 
|  | const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w, | 
|  | int im_h, const int16_t *x_filter_ptr) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); | 
|  |  | 
|  | // Stagger the filter for use with the matrix multiply instructions. | 
|  | // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } | 
|  | const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl); | 
|  | const int8x16_t x_filter = | 
|  | vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx); | 
|  |  | 
|  | // Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 * | 
|  | // -f0 to avoid signed overflow. | 
|  | const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1); | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); | 
|  |  | 
|  | const int bd = 8; | 
|  | // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // The outermost -1 is needed because we halved the filter values. | 
|  | const int16x8_t horiz_const = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + | 
|  | (1 << ((ROUND0_BITS - 1) - 1))); | 
|  |  | 
|  | const uint8_t *src_ptr = src; | 
|  | int16_t *dst_ptr = im_block; | 
|  | int dst_stride = im_stride; | 
|  | int height = im_h; | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | int16_t *d = dst_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x8_t d0 = | 
|  | convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const); | 
|  | int16x8_t d1 = | 
|  | convolve8_8_2d_h(s1, x_filter, f0, permute_tbl, horiz_const); | 
|  | int16x8_t d2 = | 
|  | convolve8_8_2d_h(s2, x_filter, f0, permute_tbl, horiz_const); | 
|  | int16x8_t d3 = | 
|  | convolve8_8_2d_h(s3, x_filter, f0, permute_tbl, horiz_const); | 
|  |  | 
|  | store_s16_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 4); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | int16_t *d = dst_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(s); | 
|  | int16x8_t d0 = | 
|  | convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const); | 
|  | vst1q_s16(d, d0); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src_ptr += src_stride; | 
|  | dst_ptr += dst_stride; | 
|  | } while (--height != 0); | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve4_4_2d_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); | 
|  |  | 
|  | int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0); | 
|  |  | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve4_8_2d_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | int32x4_t sum0123 = | 
|  | vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); | 
|  | int32x4_t sum4567 = | 
|  | vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline void convolve_2d_sr_horiz_4tap_neon_i8mm( | 
|  | const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int width, | 
|  | int height, const int16_t *filter_x) { | 
|  | const int bd = 8; | 
|  | const int16x4_t x_filter = vld1_s16(filter_x + 2); | 
|  | // All 4-tap and bilinear filter values are even, so halve them to reduce | 
|  | // intermediate precision requirements. | 
|  | const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); | 
|  |  | 
|  | // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Halve the total because we halved the filter values. | 
|  | const int32x4_t horiz_const = vdupq_n_s32( | 
|  | (((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2)); | 
|  |  | 
|  | if (width == 4) { | 
|  | const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl); | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); | 
|  | int16x4_t d1 = convolve4_4_2d_h(s1, filter, perm_tbl, horiz_const); | 
|  | int16x4_t d2 = convolve4_4_2d_h(s2, filter, perm_tbl, horiz_const); | 
|  | int16x4_t d3 = convolve4_4_2d_h(s3, filter, perm_tbl, horiz_const); | 
|  |  | 
|  | store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 4); | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(src); | 
|  | int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); | 
|  | vst1_s16(dst, d0); | 
|  |  | 
|  | src += src_stride; | 
|  | dst += dst_stride; | 
|  | } while (--height != 0); | 
|  | } else { | 
|  | const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); | 
|  | do { | 
|  | int w = width; | 
|  | const uint8_t *s = src; | 
|  | int16_t *d = dst; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); | 
|  | int16x8_t d1 = convolve4_8_2d_h(s1, filter, perm_tbl, horiz_const); | 
|  | int16x8_t d2 = convolve4_8_2d_h(s2, filter, perm_tbl, horiz_const); | 
|  | int16x8_t d3 = convolve4_8_2d_h(s3, filter, perm_tbl, horiz_const); | 
|  |  | 
|  | store_s16_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 4); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | int16_t *d = dst; | 
|  | int w = width; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(s); | 
|  | int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); | 
|  | vst1q_s16(d, d0); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | src += src_stride; | 
|  | dst += dst_stride; | 
|  | } while (--height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples, | 
|  | const int8x16_t filter, | 
|  | const uint8x16_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); | 
|  |  | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples, | 
|  | const int8x16_t filter, | 
|  | const uint8x16x2_t permute_tbl, | 
|  | const int32x4_t horiz_const) { | 
|  | // Permute samples ready for matrix multiply. | 
|  | // { 0,  1,  2,  3,  4,  5,  6,  7,  2,  3,  4,  5,  6,  7,  8,  9 } | 
|  | // { 4,  5,  6,  7,  8,  9, 10, 11,  6,  7,  8,  9, 10, 11, 12, 13 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix | 
|  | // (filter), destructively accumulating into the destination register. | 
|  | int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); | 
|  | int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline void convolve_2d_sr_6tap_neon_i8mm(const uint8_t *src, | 
|  | int src_stride, uint8_t *dst, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *x_filter_ptr, | 
|  | const int16_t *y_filter_ptr) { | 
|  | const int16x8_t y_filter = vld1q_s16(y_filter_ptr); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); | 
|  | // Stagger the filter for use with the matrix multiply instructions. | 
|  | // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 } | 
|  | const int8x16_t x_filter = | 
|  | vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); | 
|  |  | 
|  | const int bd = 8; | 
|  | // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding | 
|  | // shifts in convolution kernels - which are generally faster than rounding | 
|  | // shifts on modern CPUs. The outermost -1 is needed because we halved the | 
|  | // filter values. | 
|  | const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + | 
|  | (1 << ((ROUND0_BITS - 1) - 1))); | 
|  | const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | int height = h; | 
|  |  | 
|  | uint8x16_t h_s0, h_s1, h_s2, h_s3, h_s4; | 
|  | load_u8_16x5(s, src_stride, &h_s0, &h_s1, &h_s2, &h_s3, &h_s4); | 
|  | s += 5 * src_stride; | 
|  |  | 
|  | int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | do { | 
|  | uint8x16_t h_s5, h_s6, h_s7, h_s8; | 
|  | load_u8_16x4(s, src_stride, &h_s5, &h_s6, &h_s7, &h_s8); | 
|  |  | 
|  | int16x8_t v_s5 = | 
|  | convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s6 = | 
|  | convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s7 = | 
|  | convolve6_8_2d_h(h_s7, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s8 = | 
|  | convolve6_8_2d_h(h_s8, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | uint8x8_t d0 = convolve6_8_2d_v(v_s0, v_s1, v_s2, v_s3, v_s4, v_s5, | 
|  | y_filter, vert_const); | 
|  | uint8x8_t d1 = convolve6_8_2d_v(v_s1, v_s2, v_s3, v_s4, v_s5, v_s6, | 
|  | y_filter, vert_const); | 
|  | uint8x8_t d2 = convolve6_8_2d_v(v_s2, v_s3, v_s4, v_s5, v_s6, v_s7, | 
|  | y_filter, vert_const); | 
|  | uint8x8_t d3 = convolve6_8_2d_v(v_s3, v_s4, v_s5, v_s6, v_s7, v_s8, | 
|  | y_filter, vert_const); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | v_s0 = v_s4; | 
|  | v_s1 = v_s5; | 
|  | v_s2 = v_s6; | 
|  | v_s3 = v_s7; | 
|  | v_s4 = v_s8; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src += 8; | 
|  | dst += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  |  | 
|  | static inline void convolve_2d_sr_6tap_4tap_neon_i8mm( | 
|  | const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, | 
|  | int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) { | 
|  | const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); | 
|  | // Stagger the filter for use with the matrix multiply instructions. | 
|  | // { f0, f1, f2, f3, f4, f5,  0,  0,  0, f0, f1, f2, f3, f4, f5,  0 } | 
|  | const int8x16_t x_filter = | 
|  | vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); | 
|  |  | 
|  | const int bd = 8; | 
|  | // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Halve the total because we halved the filter values. | 
|  | const int32x4_t horiz_const = vdupq_n_s32( | 
|  | ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2); | 
|  | const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); | 
|  | uint8x16_t h_s0, h_s1, h_s2; | 
|  | load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); | 
|  |  | 
|  | int16x4_t v_s0 = convolve6_4_2d_h(h_s0, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t v_s1 = convolve6_4_2d_h(h_s1, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t v_s2 = convolve6_4_2d_h(h_s2, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | src += 3 * src_stride; | 
|  |  | 
|  | do { | 
|  | uint8x16_t h_s3, h_s4, h_s5, h_s6; | 
|  | load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); | 
|  |  | 
|  | int16x4_t v_s3 = | 
|  | convolve6_4_2d_h(h_s3, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t v_s4 = | 
|  | convolve6_4_2d_h(h_s4, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t v_s5 = | 
|  | convolve6_4_2d_h(h_s5, x_filter, permute_tbl, horiz_const); | 
|  | int16x4_t v_s6 = | 
|  | convolve6_4_2d_h(h_s6, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | int16x4_t d0 = convolve4_4_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter); | 
|  | int16x4_t d1 = convolve4_4_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter); | 
|  | int16x4_t d2 = convolve4_4_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter); | 
|  | int16x4_t d3 = convolve4_4_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter); | 
|  |  | 
|  | uint8x8_t d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), vert_const)); | 
|  | uint8x8_t d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), vert_const)); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | v_s0 = v_s4; | 
|  | v_s1 = v_s5; | 
|  | v_s2 = v_s6; | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); | 
|  |  | 
|  | do { | 
|  | int height = h; | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  |  | 
|  | uint8x16_t h_s0, h_s1, h_s2; | 
|  | load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); | 
|  |  | 
|  | int16x8_t v_s0 = | 
|  | convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s1 = | 
|  | convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s2 = | 
|  | convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | s += 3 * src_stride; | 
|  |  | 
|  | do { | 
|  | uint8x16_t h_s3, h_s4, h_s5, h_s6; | 
|  | load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); | 
|  |  | 
|  | int16x8_t v_s3 = | 
|  | convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s4 = | 
|  | convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s5 = | 
|  | convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); | 
|  | int16x8_t v_s6 = | 
|  | convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); | 
|  |  | 
|  | uint8x8_t d0 = | 
|  | convolve4_8_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter, vert_const); | 
|  | uint8x8_t d1 = | 
|  | convolve4_8_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter, vert_const); | 
|  | uint8x8_t d2 = | 
|  | convolve4_8_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter, vert_const); | 
|  | uint8x8_t d3 = | 
|  | convolve4_8_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter, vert_const); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | v_s0 = v_s4; | 
|  | v_s1 = v_s5; | 
|  | v_s2 = v_s6; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src += 8; | 
|  | dst += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride, | 
|  | uint8_t *dst, int dst_stride, int w, int h, | 
|  | const InterpFilterParams *filter_params_x, | 
|  | const InterpFilterParams *filter_params_y, | 
|  | const int subpel_x_qn, const int subpel_y_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | if (w == 2 || h == 2) { | 
|  | av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, | 
|  | filter_params_x, filter_params_y, subpel_x_qn, | 
|  | subpel_y_qn, conv_params); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); | 
|  | const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); | 
|  | const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps; | 
|  | const int im_h = h + clamped_y_taps - 1; | 
|  | const int im_stride = MAX_SB_SIZE; | 
|  | const int vert_offset = clamped_y_taps / 2 - 1; | 
|  | const int horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; | 
|  |  | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  | const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_y, subpel_y_qn & SUBPEL_MASK); | 
|  |  | 
|  | if (filter_params_x->taps > 8) { | 
|  | DECLARE_ALIGNED(16, int16_t, | 
|  | im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); | 
|  |  | 
|  | const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); | 
|  | const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8); | 
|  |  | 
|  | convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block, | 
|  | im_stride, w, im_h, x_filter_ptr); | 
|  |  | 
|  | convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
|  | y_filter_0_7, y_filter_8_11); | 
|  | } else { | 
|  | DECLARE_ALIGNED(16, int16_t, | 
|  | im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); | 
|  |  | 
|  | if (x_filter_taps == 6 && y_filter_taps == 6) { | 
|  | convolve_2d_sr_6tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w, | 
|  | h, x_filter_ptr, y_filter_ptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Used for both 6, 4 and 4, 4 horiz, vert filter tap combinations. | 
|  | if (x_filter_taps <= 6 && y_filter_taps <= 4) { | 
|  | convolve_2d_sr_6tap_4tap_neon_i8mm(src_ptr + 1, src_stride, dst, | 
|  | dst_stride, w, h, x_filter_ptr, | 
|  | y_filter_ptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (x_filter_taps <= 4) { | 
|  | convolve_2d_sr_horiz_4tap_neon_i8mm(src_ptr + 2, src_stride, im_block, | 
|  | im_stride, w, im_h, x_filter_ptr); | 
|  | } else { | 
|  | convolve_2d_sr_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block, | 
|  | im_stride, w, im_h, x_filter_ptr); | 
|  | } | 
|  |  | 
|  | const int16x8_t y_filter = vld1q_s16(y_filter_ptr); | 
|  |  | 
|  | if (clamped_y_taps <= 4) { | 
|  | convolve_2d_sr_vert_4tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
|  | y_filter_ptr); | 
|  | } else if (clamped_y_taps == 6) { | 
|  | convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
|  | y_filter); | 
|  | } else { | 
|  | convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
|  | y_filter); | 
|  | } | 
|  | } | 
|  | } |