blob: eece007ef3718abdc746ca7020f78d2d4ea3eac3 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_
#define AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_
#include <assert.h>
#include <arm_neon.h>
#include <memory.h>
#include <math.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/sum_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
#include "config/av1_rtcd.h"
#include "av1/common/warped_motion.h"
#include "av1/common/scale.h"
static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f4(const uint8x16_t in,
int sx, int alpha);
static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f8(const uint8x16_t in,
int sx, int alpha);
static AOM_FORCE_INLINE int16x8_t horizontal_filter_4x1_f1(const uint8x16_t in,
int sx);
static AOM_FORCE_INLINE int16x8_t horizontal_filter_8x1_f1(const uint8x16_t in,
int sx);
static AOM_FORCE_INLINE void vertical_filter_4x1_f1(const int16x8_t *src,
int32x4_t *res, int sy);
static AOM_FORCE_INLINE void vertical_filter_4x1_f4(const int16x8_t *src,
int32x4_t *res, int sy,
int gamma);
static AOM_FORCE_INLINE void vertical_filter_8x1_f1(const int16x8_t *src,
int32x4_t *res_low,
int32x4_t *res_high,
int sy);
static AOM_FORCE_INLINE void vertical_filter_8x1_f8(const int16x8_t *src,
int32x4_t *res_low,
int32x4_t *res_high, int sy,
int gamma);
static AOM_FORCE_INLINE void load_filters_4(int16x8_t out[], int offset,
int stride) {
out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[2] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 2 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[3] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 3 * stride) >>
WARPEDDIFF_PREC_BITS)));
}
static AOM_FORCE_INLINE void load_filters_8(int16x8_t out[], int offset,
int stride) {
out[0] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 0 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[1] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 1 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[2] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 2 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[3] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 3 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[4] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 4 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[5] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 5 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[6] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 6 * stride) >>
WARPEDDIFF_PREC_BITS)));
out[7] = vld1q_s16((int16_t *)(av1_warped_filter + ((offset + 7 * stride) >>
WARPEDDIFF_PREC_BITS)));
}
static AOM_FORCE_INLINE int clamp_iy(int iy, int height) {
return clamp(iy, 0, height - 1);
}
static AOM_FORCE_INLINE void warp_affine_horizontal(
const uint8_t *ref, int width, int height, int stride, int p_width,
int p_height, int16_t alpha, int16_t beta, const int64_t x4,
const int64_t y4, const int i, int16x8_t tmp[]) {
const int bd = 8;
const int reduce_bits_horiz = ROUND0_BITS;
const int height_limit = AOMMIN(8, p_height - i) + 7;
int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS);
int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS);
int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
sx4 += alpha * (-4) + beta * (-4) + (1 << (WARPEDDIFF_PREC_BITS - 1)) +
(WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS);
sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
if (ix4 <= -7) {
for (int k = 0; k < height_limit; ++k) {
int iy = clamp_iy(iy4 + k - 7, height);
int16_t dup_val =
(1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)) +
ref[iy * stride] * (1 << (FILTER_BITS - reduce_bits_horiz));
tmp[k] = vdupq_n_s16(dup_val);
}
return;
} else if (ix4 >= width + 6) {
for (int k = 0; k < height_limit; ++k) {
int iy = clamp_iy(iy4 + k - 7, height);
int16_t dup_val = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)) +
ref[iy * stride + (width - 1)] *
(1 << (FILTER_BITS - reduce_bits_horiz));
tmp[k] = vdupq_n_s16(dup_val);
}
return;
}
static const uint8_t kIotaArr[] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15 };
const uint8x16_t indx = vld1q_u8(kIotaArr);
const int out_of_boundary_left = -(ix4 - 6);
const int out_of_boundary_right = (ix4 + 8) - width;
#define APPLY_HORIZONTAL_SHIFT(fn, ...) \
do { \
if (out_of_boundary_left >= 0 || out_of_boundary_right >= 0) { \
for (int k = 0; k < height_limit; ++k) { \
const int iy = clamp_iy(iy4 + k - 7, height); \
const uint8_t *src = ref + iy * stride + ix4 - 7; \
uint8x16_t src_1 = vld1q_u8(src); \
\
if (out_of_boundary_left >= 0) { \
int limit = out_of_boundary_left + 1; \
uint8x16_t cmp_vec = vdupq_n_u8(out_of_boundary_left); \
uint8x16_t vec_dup = vdupq_n_u8(*(src + limit)); \
uint8x16_t mask_val = vcleq_u8(indx, cmp_vec); \
src_1 = vbslq_u8(mask_val, vec_dup, src_1); \
} \
if (out_of_boundary_right >= 0) { \
int limit = 15 - (out_of_boundary_right + 1); \
uint8x16_t cmp_vec = vdupq_n_u8(15 - out_of_boundary_right); \
uint8x16_t vec_dup = vdupq_n_u8(*(src + limit)); \
uint8x16_t mask_val = vcgeq_u8(indx, cmp_vec); \
src_1 = vbslq_u8(mask_val, vec_dup, src_1); \
} \
tmp[k] = (fn)(src_1, __VA_ARGS__); \
} \
} else { \
for (int k = 0; k < height_limit; ++k) { \
const int iy = clamp_iy(iy4 + k - 7, height); \
const uint8_t *src = ref + iy * stride + ix4 - 7; \
uint8x16_t src_1 = vld1q_u8(src); \
tmp[k] = (fn)(src_1, __VA_ARGS__); \
} \
} \
} while (0)
if (p_width == 4) {
if (beta == 0) {
if (alpha == 0) {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1, sx4);
} else {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, sx4, alpha);
}
} else {
if (alpha == 0) {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f1,
(sx4 + beta * (k - 3)));
} else {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_4x1_f4, (sx4 + beta * (k - 3)),
alpha);
}
}
} else {
if (beta == 0) {
if (alpha == 0) {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1, sx4);
} else {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, sx4, alpha);
}
} else {
if (alpha == 0) {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f1,
(sx4 + beta * (k - 3)));
} else {
APPLY_HORIZONTAL_SHIFT(horizontal_filter_8x1_f8, (sx4 + beta * (k - 3)),
alpha);
}
}
}
}
static AOM_FORCE_INLINE void warp_affine_vertical(
uint8_t *pred, int p_width, int p_height, int p_stride, int is_compound,
uint16_t *dst, int dst_stride, int do_average, int use_dist_wtd_comp_avg,
int16_t gamma, int16_t delta, const int64_t y4, const int i, const int j,
int16x8_t tmp[], const int fwd, const int bwd) {
const int bd = 8;
const int reduce_bits_horiz = ROUND0_BITS;
const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
int add_const_vert;
if (is_compound) {
add_const_vert =
(1 << offset_bits_vert) + (1 << (COMPOUND_ROUND1_BITS - 1));
} else {
add_const_vert =
(1 << offset_bits_vert) + (1 << (2 * FILTER_BITS - ROUND0_BITS - 1));
}
const int sub_constant = (1 << (bd - 1)) + (1 << bd);
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int res_sub_const =
(1 << (2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS - 1)) -
(1 << (offset_bits - COMPOUND_ROUND1_BITS)) -
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
sy4 += gamma * (-4) + delta * (-4) + (1 << (WARPEDDIFF_PREC_BITS - 1)) +
(WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS);
sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
if (p_width > 4) {
for (int k = -4; k < AOMMIN(4, p_height - i - 4); ++k) {
int sy = sy4 + delta * (k + 4);
const int16x8_t *v_src = tmp + (k + 4);
int32x4_t res_lo, res_hi;
if (gamma == 0) {
vertical_filter_8x1_f1(v_src, &res_lo, &res_hi, sy);
} else {
vertical_filter_8x1_f8(v_src, &res_lo, &res_hi, sy, gamma);
}
res_lo = vaddq_s32(res_lo, vdupq_n_s32(add_const_vert));
res_hi = vaddq_s32(res_hi, vdupq_n_s32(add_const_vert));
if (is_compound) {
uint16_t *const p = (uint16_t *)&dst[(i + k + 4) * dst_stride + j];
int16x8_t res_s16 =
vcombine_s16(vshrn_n_s32(res_lo, COMPOUND_ROUND1_BITS),
vshrn_n_s32(res_hi, COMPOUND_ROUND1_BITS));
if (do_average) {
int16x8_t tmp16 = vreinterpretq_s16_u16(vld1q_u16(p));
if (use_dist_wtd_comp_avg) {
int32x4_t tmp32_lo = vmull_n_s16(vget_low_s16(tmp16), fwd);
int32x4_t tmp32_hi = vmull_n_s16(vget_high_s16(tmp16), fwd);
tmp32_lo = vmlal_n_s16(tmp32_lo, vget_low_s16(res_s16), bwd);
tmp32_hi = vmlal_n_s16(tmp32_hi, vget_high_s16(res_s16), bwd);
tmp16 = vcombine_s16(vshrn_n_s32(tmp32_lo, DIST_PRECISION_BITS),
vshrn_n_s32(tmp32_hi, DIST_PRECISION_BITS));
} else {
tmp16 = vhaddq_s16(tmp16, res_s16);
}
int16x8_t res = vaddq_s16(tmp16, vdupq_n_s16(res_sub_const));
uint8x8_t res8 = vqshrun_n_s16(
res, 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS);
vst1_u8(&pred[(i + k + 4) * p_stride + j], res8);
} else {
vst1q_u16(p, vreinterpretq_u16_s16(res_s16));
}
} else {
int16x8_t res16 =
vcombine_s16(vshrn_n_s32(res_lo, 2 * FILTER_BITS - ROUND0_BITS),
vshrn_n_s32(res_hi, 2 * FILTER_BITS - ROUND0_BITS));
res16 = vsubq_s16(res16, vdupq_n_s16(sub_constant));
uint8_t *const p = (uint8_t *)&pred[(i + k + 4) * p_stride + j];
vst1_u8(p, vqmovun_s16(res16));
}
}
} else {
// p_width == 4
for (int k = -4; k < AOMMIN(4, p_height - i - 4); ++k) {
int sy = sy4 + delta * (k + 4);
const int16x8_t *v_src = tmp + (k + 4);
int32x4_t res_lo;
if (gamma == 0) {
vertical_filter_4x1_f1(v_src, &res_lo, sy);
} else {
vertical_filter_4x1_f4(v_src, &res_lo, sy, gamma);
}
res_lo = vaddq_s32(res_lo, vdupq_n_s32(add_const_vert));
if (is_compound) {
uint16_t *const p = (uint16_t *)&dst[(i + k + 4) * dst_stride + j];
int16x4_t res_lo_s16 = vshrn_n_s32(res_lo, COMPOUND_ROUND1_BITS);
if (do_average) {
uint8_t *const dst8 = &pred[(i + k + 4) * p_stride + j];
int16x4_t tmp16_lo = vreinterpret_s16_u16(vld1_u16(p));
if (use_dist_wtd_comp_avg) {
int32x4_t tmp32_lo = vmull_n_s16(tmp16_lo, fwd);
tmp32_lo = vmlal_n_s16(tmp32_lo, res_lo_s16, bwd);
tmp16_lo = vshrn_n_s32(tmp32_lo, DIST_PRECISION_BITS);
} else {
tmp16_lo = vhadd_s16(tmp16_lo, res_lo_s16);
}
int16x4_t res = vadd_s16(tmp16_lo, vdup_n_s16(res_sub_const));
uint8x8_t res8 = vqshrun_n_s16(
vcombine_s16(res, vdup_n_s16(0)),
2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS);
vst1_lane_u32((uint32_t *)dst8, vreinterpret_u32_u8(res8), 0);
} else {
uint16x4_t res_u16_low = vreinterpret_u16_s16(res_lo_s16);
vst1_u16(p, res_u16_low);
}
} else {
int16x4_t res16 = vshrn_n_s32(res_lo, 2 * FILTER_BITS - ROUND0_BITS);
res16 = vsub_s16(res16, vdup_n_s16(sub_constant));
uint8_t *const p = (uint8_t *)&pred[(i + k + 4) * p_stride + j];
uint8x8_t val = vqmovun_s16(vcombine_s16(res16, vdup_n_s16(0)));
vst1_lane_u32((uint32_t *)p, vreinterpret_u32_u8(val), 0);
}
}
}
}
static AOM_FORCE_INLINE void av1_warp_affine_common(
const int32_t *mat, const uint8_t *ref, int width, int height, int stride,
uint8_t *pred, int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
ConvolveParams *conv_params, int16_t alpha, int16_t beta, int16_t gamma,
int16_t delta) {
const int w0 = conv_params->fwd_offset;
const int w1 = conv_params->bck_offset;
const int is_compound = conv_params->is_compound;
uint16_t *const dst = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
const int do_average = conv_params->do_average;
const int use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg;
assert(IMPLIES(is_compound, dst != NULL));
assert(IMPLIES(do_average, is_compound));
for (int i = 0; i < p_height; i += 8) {
for (int j = 0; j < p_width; j += 8) {
const int32_t src_x = (p_col + j + 4) << subsampling_x;
const int32_t src_y = (p_row + i + 4) << subsampling_y;
const int64_t dst_x =
(int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
const int64_t dst_y =
(int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
const int64_t x4 = dst_x >> subsampling_x;
const int64_t y4 = dst_y >> subsampling_y;
int16x8_t tmp[15];
warp_affine_horizontal(ref, width, height, stride, p_width, p_height,
alpha, beta, x4, y4, i, tmp);
warp_affine_vertical(pred, p_width, p_height, p_stride, is_compound, dst,
dst_stride, do_average, use_dist_wtd_comp_avg, gamma,
delta, y4, i, j, tmp, w0, w1);
}
}
}
#endif // AOM_AV1_COMMON_ARM_WARP_PLANE_NEON_H_