blob: 63551cc5561dafffad2b636db6e531e5c3f188f9 [file] [log] [blame] [edit]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/arm/sum_neon.h"
#include "av1/common/restoration.h"
#include "av1/encoder/arm/pickrst_neon.h"
#include "av1/encoder/pickrst.h"
int64_t av1_lowbd_pixel_proj_error_neon(
const uint8_t *src, int width, int height, int src_stride,
const uint8_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
int64_t sse = 0;
int64x2_t sse_s64 = vdupq_n_s64(0);
if (params->r[0] > 0 && params->r[1] > 0) {
int32x2_t xq_v = vld1_s32(xq);
int32x2_t xq_sum_v = vshl_n_s32(vpadd_s32(xq_v, xq_v), SGRPROJ_RST_BITS);
do {
int j = 0;
int32x4_t sse_s32 = vdupq_n_s32(0);
do {
const uint8x8_t d = vld1_u8(&dat[j]);
const uint8x8_t s = vld1_u8(&src[j]);
int32x4_t flt0_0 = vld1q_s32(&flt0[j]);
int32x4_t flt0_1 = vld1q_s32(&flt0[j + 4]);
int32x4_t flt1_0 = vld1q_s32(&flt1[j]);
int32x4_t flt1_1 = vld1q_s32(&flt1[j + 4]);
int32x4_t offset =
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1));
int32x4_t v0 = vmlaq_lane_s32(offset, flt0_0, xq_v, 0);
int32x4_t v1 = vmlaq_lane_s32(offset, flt0_1, xq_v, 0);
v0 = vmlaq_lane_s32(v0, flt1_0, xq_v, 1);
v1 = vmlaq_lane_s32(v1, flt1_1, xq_v, 1);
int16x8_t d_s16 = vreinterpretq_s16_u16(vmovl_u8(d));
v0 = vmlsl_lane_s16(v0, vget_low_s16(d_s16),
vreinterpret_s16_s32(xq_sum_v), 0);
v1 = vmlsl_lane_s16(v1, vget_high_s16(d_s16),
vreinterpret_s16_s32(xq_sum_v), 0);
int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(d, s));
int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1), diff);
int16x4_t e_lo = vget_low_s16(e);
int16x4_t e_hi = vget_high_s16(e);
sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);
j += 8;
} while (j <= width - 8);
for (int k = j; k < width; ++k) {
int32_t u = (dat[k] << SGRPROJ_RST_BITS);
int32_t v = (1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)) +
xq[0] * flt0[k] + xq[1] * flt1[k] - u * (xq[0] + xq[1]);
int32_t e =
(v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + dat[k] - src[k];
sse += e * e;
}
sse_s64 = vpadalq_s32(sse_s64, sse_s32);
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
} while (--height != 0);
} else if (params->r[0] > 0 || params->r[1] > 0) {
int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
int32x2_t xq_v = vdup_n_s32(xq_active);
do {
int32x4_t sse_s32 = vdupq_n_s32(0);
int j = 0;
do {
const uint8x8_t d = vld1_u8(&dat[j]);
const uint8x8_t s = vld1_u8(&src[j]);
int32x4_t flt_0 = vld1q_s32(&flt[j]);
int32x4_t flt_1 = vld1q_s32(&flt[j + 4]);
int16x8_t d_s16 =
vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int32x4_t sub_0 = vsubw_s16(flt_0, vget_low_s16(d_s16));
int32x4_t sub_1 = vsubw_s16(flt_1, vget_high_s16(d_s16));
int32x4_t offset =
vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1));
int32x4_t v0 = vmlaq_lane_s32(offset, sub_0, xq_v, 0);
int32x4_t v1 = vmlaq_lane_s32(offset, sub_1, xq_v, 0);
int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(d, s));
int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1), diff);
int16x4_t e_lo = vget_low_s16(e);
int16x4_t e_hi = vget_high_s16(e);
sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);
j += 8;
} while (j <= width - 8);
for (int k = j; k < width; ++k) {
int32_t u = dat[k] << SGRPROJ_RST_BITS;
int32_t v = xq_active * (flt[k] - u);
int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) +
dat[k] - src[k];
sse += e * e;
}
sse_s64 = vpadalq_s32(sse_s64, sse_s32);
dat += dat_stride;
src += src_stride;
flt += flt_stride;
} while (--height != 0);
} else {
uint32x4_t sse_s32 = vdupq_n_u32(0);
do {
int j = 0;
do {
const uint8x16_t d = vld1q_u8(&dat[j]);
const uint8x16_t s = vld1q_u8(&src[j]);
uint8x16_t diff = vabdq_u8(d, s);
uint8x8_t diff_lo = vget_low_u8(diff);
uint8x8_t diff_hi = vget_high_u8(diff);
sse_s32 = vpadalq_u16(sse_s32, vmull_u8(diff_lo, diff_lo));
sse_s32 = vpadalq_u16(sse_s32, vmull_u8(diff_hi, diff_hi));
j += 16;
} while (j <= width - 16);
for (int k = j; k < width; ++k) {
int32_t e = dat[k] - src[k];
sse += e * e;
}
dat += dat_stride;
src += src_stride;
} while (--height != 0);
sse_s64 = vreinterpretq_s64_u64(vpaddlq_u32(sse_s32));
}
sse += horizontal_add_s64x2(sse_s64);
return sse;
}
// We can accumulate up to 32768 8-bit multiplication results in a signed
// 32-bit integer. We are processing 2 pixels at a time, so the accumulator max
// can be as high as 16384 for the compute stats.
#define STAT_ACCUMULATOR_MAX 16384
static inline uint8x8_t tbl2(uint8x16_t a, uint8x16_t b, uint8x8_t idx) {
#if AOM_ARCH_AARCH64
uint8x16x2_t table = { { a, b } };
return vqtbl2_u8(table, idx);
#else
uint8x8x4_t table = { { vget_low_u8(a), vget_high_u8(a), vget_low_u8(b),
vget_high_u8(b) } };
return vtbl4_u8(table, idx);
#endif
}
static inline uint8x16_t tbl2q(uint8x16_t a, uint8x16_t b, uint8x16_t idx) {
#if AOM_ARCH_AARCH64
uint8x16x2_t table = { { a, b } };
return vqtbl2q_u8(table, idx);
#else
uint8x8x4_t table = { { vget_low_u8(a), vget_high_u8(a), vget_low_u8(b),
vget_high_u8(b) } };
return vcombine_u8(vtbl4_u8(table, vget_low_u8(idx)),
vtbl4_u8(table, vget_high_u8(idx)));
#endif
}
// The M matrix is accumulated in STAT_ACCUMULATOR_MAX steps to speed-up the
// computation. This function computes the final M from the accumulated
// (src_s64) and the residual parts (src_s32). It also transposes the result as
// the output needs to be column-major.
static inline void acc_transpose_M(int64_t *dst, const int64_t *src_s64,
const int32_t *src_s32, const int wiener_win,
int scale) {
for (int i = 0; i < wiener_win; ++i) {
for (int j = 0; j < wiener_win; ++j) {
int tr_idx = j * wiener_win + i;
*dst++ += (int64_t)(src_s64[tr_idx] + src_s32[tr_idx]) * scale;
}
}
}
// The resulting H is a column-major matrix accumulated from the transposed
// (column-major) samples of the filter kernel (5x5 or 7x7) viewed as a single
// vector. For the 7x7 filter case: H(49x49) = [49 x 1] x [1 x 49]. This
// function transforms back to the originally expected format (double
// transpose). The H matrix is accumulated in STAT_ACCUMULATOR_MAX steps to
// speed-up the computation. This function computes the final H from the
// accumulated (src_s64) and the residual parts (src_s32). The computed H is
// only an upper triangle matrix, this function also fills the lower triangle of
// the resulting matrix.
static void update_H(int64_t *dst, const int64_t *src_s64,
const int32_t *src_s32, const int wiener_win, int stride,
int scale) {
// For a simplified theoretical 3x3 case where `wiener_win` is 3 and
// `wiener_win2` is 9, the M matrix is 3x3:
// 0, 3, 6
// 1, 4, 7
// 2, 5, 8
//
// This is viewed as a vector to compute H (9x9) by vector outer product:
// 0, 3, 6, 1, 4, 7, 2, 5, 8
//
// Double transpose and upper triangle remapping for 3x3 -> 9x9 case:
// 0, 3, 6, 1, 4, 7, 2, 5, 8,
// 3, 30, 33, 12, 31, 34, 21, 32, 35,
// 6, 33, 60, 15, 42, 61, 24, 51, 62,
// 1, 12, 15, 10, 13, 16, 11, 14, 17,
// 4, 31, 42, 13, 40, 43, 22, 41, 44,
// 7, 34, 61, 16, 43, 70, 25, 52, 71,
// 2, 21, 24, 11, 22, 25, 20, 23, 26,
// 5, 32, 51, 14, 41, 52, 23, 50, 53,
// 8, 35, 62, 17, 44, 71, 26, 53, 80,
const int wiener_win2 = wiener_win * wiener_win;
// Loop through the indices according to the remapping above, along the
// columns:
// 0, wiener_win, 2 * wiener_win, ..., 1, 1 + 2 * wiener_win, ...,
// wiener_win - 1, wiener_win - 1 + wiener_win, ...
// For the 3x3 case `j` will be: 0, 3, 6, 1, 4, 7, 2, 5, 8.
for (int i = 0; i < wiener_win; ++i) {
for (int j = i; j < wiener_win2; j += wiener_win) {
// These two inner loops are the same as the two outer loops, but running
// along rows instead of columns. For the 3x3 case `l` will be:
// 0, 3, 6, 1, 4, 7, 2, 5, 8.
for (int k = 0; k < wiener_win; ++k) {
for (int l = k; l < wiener_win2; l += wiener_win) {
// The nominal double transpose indexing would be:
// int idx = stride * j + l;
// However we need the upper-triangle indices, it is easy with some
// min/max operations.
int tr_idx = stride * AOMMIN(j, l) + AOMMAX(j, l);
// Resulting matrix is filled by combining the 64-bit and the residual
// 32-bit matrices together with scaling.
*dst++ += (int64_t)(src_s64[tr_idx] + src_s32[tr_idx]) * scale;
}
}
}
}
}
// Load 7x7 matrix into 3 and a half 128-bit vectors from consecutive rows, the
// last load address is offset to prevent out-of-bounds access.
static inline void load_and_pack_u8_8x7(uint8x16_t dst[4], const uint8_t *src,
ptrdiff_t stride) {
dst[0] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
src += 2 * stride;
dst[1] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
src += 2 * stride;
dst[2] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
src += 2 * stride;
dst[3] = vcombine_u8(vld1_u8(src - 1), vdup_n_u8(0));
}
static inline void compute_stats_win7_neon(const uint8_t *dgd,
const uint8_t *src, int width,
int height, int dgd_stride,
int src_stride, int avg, int64_t *M,
int64_t *H, int downsample_factor) {
// Matrix names are capitalized to help readability.
DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, H_s32[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);
DECLARE_ALIGNED(64, int64_t, H_s64[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);
memset(M_s32, 0, sizeof(M_s32));
memset(M_s64, 0, sizeof(M_s64));
memset(H_s32, 0, sizeof(H_s32));
memset(H_s64, 0, sizeof(H_s64));
// Look-up tables to create 8x6 matrix with consecutive elements from two 7x7
// matrices.
// clang-format off
DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats7[96]) = {
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17,
2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19,
4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22,
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18,
3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20,
5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23,
};
// clang-format on
const uint8x16_t lut0 = vld1q_u8(shuffle_stats7 + 0);
const uint8x16_t lut1 = vld1q_u8(shuffle_stats7 + 16);
const uint8x16_t lut2 = vld1q_u8(shuffle_stats7 + 32);
const uint8x16_t lut3 = vld1q_u8(shuffle_stats7 + 48);
const uint8x16_t lut4 = vld1q_u8(shuffle_stats7 + 64);
const uint8x16_t lut5 = vld1q_u8(shuffle_stats7 + 80);
int acc_cnt = STAT_ACCUMULATOR_MAX;
const int src_next = downsample_factor * src_stride - width;
const int dgd_next = downsample_factor * dgd_stride - width;
const uint8x8_t avg_u8 = vdup_n_u8(avg);
do {
int j = width;
while (j >= 2) {
// Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
// middle 6x7 elements being shared.
uint8x16_t dgd_rows[4];
load_and_pack_u8_8x7(dgd_rows, dgd, dgd_stride);
const uint8_t *dgd_ptr = dgd + dgd_stride * 6;
dgd += 2;
// Re-arrange (and widen) the combined 8x7 matrix to have the 2 whole 7x7
// matrices (1 for each of the 2 pixels) separated into distinct
// int16x8_t[6] arrays. These arrays contain 48 elements of the 49 (7x7).
// Compute `dgd - avg` for both buffers. Each DGD_AVG buffer contains 49
// consecutive elements.
int16x8_t dgd_avg0[6];
int16x8_t dgd_avg1[6];
uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
uint8x16_t dgd_shuf3 = tbl2q(dgd_rows[0], dgd_rows[1], lut3);
dgd_avg0[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
dgd_avg0[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
dgd_avg1[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf3), avg_u8));
dgd_avg1[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf3), avg_u8));
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG1, dgd_avg1[0]);
vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);
uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[1], dgd_rows[2], lut1);
uint8x16_t dgd_shuf4 = tbl2q(dgd_rows[1], dgd_rows[2], lut4);
dgd_avg0[2] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
dgd_avg0[3] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
dgd_avg1[2] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf4), avg_u8));
dgd_avg1[3] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf4), avg_u8));
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);
vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);
vst1q_s16(DGD_AVG1 + 24, dgd_avg1[3]);
uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[2], dgd_rows[3], lut2);
uint8x16_t dgd_shuf5 = tbl2q(dgd_rows[2], dgd_rows[3], lut5);
dgd_avg0[4] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
dgd_avg0[5] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));
dgd_avg1[4] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf5), avg_u8));
dgd_avg1[5] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf5), avg_u8));
vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);
vst1q_s16(DGD_AVG1 + 32, dgd_avg1[4]);
vst1q_s16(DGD_AVG1 + 40, dgd_avg1[5]);
// The remaining last (49th) elements of `dgd - avg`.
DGD_AVG0[48] = dgd_ptr[6] - avg;
DGD_AVG1[48] = dgd_ptr[7] - avg;
// Accumulate into row-major variant of matrix M (cross-correlation) for 2
// output pixels at a time. M is of size 7 * 7. It needs to be filled such
// that multiplying one element from src with each element of a row of the
// wiener window will fill one column of M. However this is not very
// convenient in terms of memory access, as it means we do contiguous
// loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int src_avg1 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
dgd_avg1[0]);
update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
dgd_avg1[1]);
update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
dgd_avg1[2]);
update_M_2pixels(M_s32 + 24, src_avg0_s16, src_avg1_s16, dgd_avg0[3],
dgd_avg1[3]);
update_M_2pixels(M_s32 + 32, src_avg0_s16, src_avg1_s16, dgd_avg0[4],
dgd_avg1[4]);
update_M_2pixels(M_s32 + 40, src_avg0_s16, src_avg1_s16, dgd_avg0[5],
dgd_avg1[5]);
// Last (49th) element of M_s32 can be computed as scalar more efficiently
// for 2 output pixels.
M_s32[48] += DGD_AVG0[48] * src_avg0 + DGD_AVG1[48] * src_avg1;
// Start accumulating into row-major version of matrix H
// (auto-covariance), it expects the DGD_AVG[01] matrices to also be
// row-major. H is of size 49 * 49. It is filled by multiplying every pair
// of elements of the wiener window together (vector outer product). Since
// it is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work with column-major matrices,
// so we accumulate into a row-major matrix H_s32. At the end of the
// algorithm a double transpose transformation will convert H_s32 back to
// the expected output layout.
update_H_7x7_2pixels(H_s32, DGD_AVG0, DGD_AVG1);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[48 * WIENER_WIN2_ALIGN2 + 48] +=
DGD_AVG0[48] * DGD_AVG0[48] + DGD_AVG1[48] * DGD_AVG1[48];
// Accumulate into 64-bit after STAT_ACCUMULATOR_MAX iterations to prevent
// overflow.
if (--acc_cnt == 0) {
acc_cnt = STAT_ACCUMULATOR_MAX;
accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_ALIGN2);
// The widening accumulation is only needed for the upper triangle part
// of the matrix.
int64_t *lh = H_s64;
int32_t *lh32 = H_s32;
for (int k = 0; k < WIENER_WIN2; ++k) {
// The widening accumulation is only run for the relevant parts
// (upper-right triangle) in a row 4-element aligned.
int k4 = k / 4 * 4;
accumulate_and_clear(lh + k4, lh32 + k4, 48 - k4);
// Last element of the row is computed separately.
lh[48] += lh32[48];
lh32[48] = 0;
lh += WIENER_WIN2_ALIGN2;
lh32 += WIENER_WIN2_ALIGN2;
}
}
j -= 2;
}
// Computations for odd pixel in the row.
if (width & 1) {
// Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
// middle 6x7 elements being shared.
uint8x16_t dgd_rows[4];
load_and_pack_u8_8x7(dgd_rows, dgd, dgd_stride);
const uint8_t *dgd_ptr = dgd + dgd_stride * 6;
++dgd;
// Re-arrange (and widen) the combined 8x7 matrix to have a whole 7x7
// matrix tightly packed into a int16x8_t[6] array. This array contains
// 48 elements of the 49 (7x7). Compute `dgd - avg` for the whole buffer.
// The DGD_AVG buffer contains 49 consecutive elements.
int16x8_t dgd_avg0[6];
uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
dgd_avg0[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
dgd_avg0[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
vst1q_s16(DGD_AVG0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[1], dgd_rows[2], lut1);
dgd_avg0[2] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
dgd_avg0[3] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);
uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[2], dgd_rows[3], lut2);
dgd_avg0[4] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
dgd_avg0[5] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));
vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);
// The remaining last (49th) element of `dgd - avg`.
DGD_AVG0[48] = dgd_ptr[6] - avg;
// Accumulate into row-major order variant of matrix M (cross-correlation)
// for 1 output pixel at a time. M is of size 7 * 7. It needs to be filled
// such that multiplying one element from src with each element of a row
// of the wiener window will fill one column of M. However this is not
// very convenient in terms of memory access, as it means we do
// contiguous loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);
update_M_1pixel(M_s32 + 24, src_avg0_s16, dgd_avg0[3]);
update_M_1pixel(M_s32 + 32, src_avg0_s16, dgd_avg0[4]);
update_M_1pixel(M_s32 + 40, src_avg0_s16, dgd_avg0[5]);
// Last (49th) element of M_s32 can be computed as scalar more efficiently
// for 1 output pixel.
M_s32[48] += DGD_AVG0[48] * src_avg0;
// Start accumulating into row-major order version of matrix H
// (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
// H is of size 49 * 49. It is filled by multiplying every pair of
// elements of the wiener window together (vector outer product). Since it
// is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work column-major matrices, so we
// accumulate into a row-major matrix H_s32. At the end of the algorithm a
// double transpose transformation will convert H_s32 back to the expected
// output layout.
update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_ALIGN2, 48);
// The last element of the triangle of H_s32 matrix can be computed as
// scalar more efficiently.
H_s32[48 * WIENER_WIN2_ALIGN2 + 48] += DGD_AVG0[48] * DGD_AVG0[48];
}
src += src_next;
dgd += dgd_next;
} while (--height != 0);
acc_transpose_M(M, M_s64, M_s32, WIENER_WIN, downsample_factor);
update_H(H, H_s64, H_s32, WIENER_WIN, WIENER_WIN2_ALIGN2, downsample_factor);
}
// Load 5x5 matrix into 2 and a half 128-bit vectors from consecutive rows, the
// last load address is offset to prevent out-of-bounds access.
static inline void load_and_pack_u8_6x5(uint8x16_t dst[3], const uint8_t *src,
ptrdiff_t stride) {
dst[0] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
src += 2 * stride;
dst[1] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
src += 2 * stride;
dst[2] = vcombine_u8(vld1_u8(src - 3), vdup_n_u8(0));
}
static inline void compute_stats_win5_neon(const uint8_t *dgd,
const uint8_t *src, int width,
int height, int dgd_stride,
int src_stride, int avg, int64_t *M,
int64_t *H, int downsample_factor) {
// Matrix names are capitalized to help readability.
DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_REDUCED_ALIGN3]);
DECLARE_ALIGNED(64, int32_t,
H_s32[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);
DECLARE_ALIGNED(64, int64_t,
H_s64[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);
memset(M_s32, 0, sizeof(M_s32));
memset(M_s64, 0, sizeof(M_s64));
memset(H_s32, 0, sizeof(H_s32));
memset(H_s64, 0, sizeof(H_s64));
// Look-up tables to create 8x3 matrix with consecutive elements from two 5x5
// matrices.
// clang-format off
DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats5[48]) = {
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24,
1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 25,
9, 10, 11, 12, 19, 20, 21, 22, 10, 11, 12, 13, 20, 21, 22, 23,
};
// clang-format on
const uint8x16_t lut0 = vld1q_u8(shuffle_stats5 + 0);
const uint8x16_t lut1 = vld1q_u8(shuffle_stats5 + 16);
const uint8x16_t lut2 = vld1q_u8(shuffle_stats5 + 32);
int acc_cnt = STAT_ACCUMULATOR_MAX;
const int src_next = downsample_factor * src_stride - width;
const int dgd_next = downsample_factor * dgd_stride - width;
const uint8x8_t avg_u8 = vdup_n_u8(avg);
do {
int j = width;
while (j >= 2) {
// Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
// middle 4x5 elements being shared.
uint8x16_t dgd_rows[3];
load_and_pack_u8_6x5(dgd_rows, dgd, dgd_stride);
const uint8_t *dgd_ptr = dgd + dgd_stride * 4;
dgd += 2;
// Re-arrange (and widen) the combined 6x5 matrix to have the 2 whole 5x5
// matrices (1 for each of the 2 pixels) separated into distinct
// int16x8_t[3] arrays. These arrays contain 24 elements of the 25 (5x5).
// Compute `dgd - avg` for both buffers. Each DGD_AVG buffer contains 25
// consecutive elements.
int16x8_t dgd_avg0[3];
int16x8_t dgd_avg1[3];
uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[0], dgd_rows[1], lut1);
uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[1], dgd_rows[2], lut2);
dgd_avg0[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
dgd_avg0[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
dgd_avg0[2] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
dgd_avg1[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
dgd_avg1[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
dgd_avg1[2] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));
vst1q_s16(DGD_AVG0 + 0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
vst1q_s16(DGD_AVG1 + 0, dgd_avg1[0]);
vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);
vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);
// The remaining last (25th) elements of `dgd - avg`.
DGD_AVG0[24] = dgd_ptr[4] - avg;
DGD_AVG1[24] = dgd_ptr[5] - avg;
// Accumulate into row-major variant of matrix M (cross-correlation) for 2
// output pixels at a time. M is of size 5 * 5. It needs to be filled such
// that multiplying one element from src with each element of a row of the
// wiener window will fill one column of M. However this is not very
// convenient in terms of memory access, as it means we do contiguous
// loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int src_avg1 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
dgd_avg1[0]);
update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
dgd_avg1[1]);
update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
dgd_avg1[2]);
// Last (25th) element of M_s32 can be computed as scalar more efficiently
// for 2 output pixels.
M_s32[24] += DGD_AVG0[24] * src_avg0 + DGD_AVG1[24] * src_avg1;
// Start accumulating into row-major version of matrix H
// (auto-covariance), it expects the DGD_AVG[01] matrices to also be
// row-major. H is of size 25 * 25. It is filled by multiplying every pair
// of elements of the wiener window together (vector outer product). Since
// it is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work with column-major matrices,
// so we accumulate into a row-major matrix H_s32. At the end of the
// algorithm a double transpose transformation will convert H_s32 back to
// the expected output layout.
update_H_5x5_2pixels(H_s32, DGD_AVG0, DGD_AVG1);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
DGD_AVG0[24] * DGD_AVG0[24] + DGD_AVG1[24] * DGD_AVG1[24];
// Accumulate into 64-bit after STAT_ACCUMULATOR_MAX iterations to prevent
// overflow.
if (--acc_cnt == 0) {
acc_cnt = STAT_ACCUMULATOR_MAX;
accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_REDUCED_ALIGN2);
// The widening accumulation is only needed for the upper triangle part
// of the matrix.
int64_t *lh = H_s64;
int32_t *lh32 = H_s32;
for (int k = 0; k < WIENER_WIN2_REDUCED; ++k) {
// The widening accumulation is only run for the relevant parts
// (upper-right triangle) in a row 4-element aligned.
int k4 = k / 4 * 4;
accumulate_and_clear(lh + k4, lh32 + k4, 24 - k4);
// Last element of the row is computed separately.
lh[24] += lh32[24];
lh32[24] = 0;
lh += WIENER_WIN2_REDUCED_ALIGN2;
lh32 += WIENER_WIN2_REDUCED_ALIGN2;
}
}
j -= 2;
}
// Computations for odd pixel in the row.
if (width & 1) {
// Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
// middle 4x5 elements being shared.
uint8x16_t dgd_rows[3];
load_and_pack_u8_6x5(dgd_rows, dgd, dgd_stride);
const uint8_t *dgd_ptr = dgd + dgd_stride * 4;
++dgd;
// Re-arrange (and widen) the combined 6x5 matrix to have a whole 5x5
// matrix tightly packed into a int16x8_t[3] array. This array contains
// 24 elements of the 25 (5x5). Compute `dgd - avg` for the whole buffer.
// The DGD_AVG buffer contains 25 consecutive elements.
int16x8_t dgd_avg0[3];
uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
uint8x8_t dgd_shuf1 = tbl2(dgd_rows[1], dgd_rows[2], vget_low_u8(lut2));
dgd_avg0[0] =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
dgd_avg0[1] =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
dgd_avg0[2] = vreinterpretq_s16_u16(vsubl_u8(dgd_shuf1, avg_u8));
vst1q_s16(DGD_AVG0 + 0, dgd_avg0[0]);
vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
// The remaining last (25th) element of `dgd - avg`.
DGD_AVG0[24] = dgd_ptr[4] - avg;
// Accumulate into row-major order variant of matrix M (cross-correlation)
// for 1 output pixel at a time. M is of size 5 * 5. It needs to be filled
// such that multiplying one element from src with each element of a row
// of the wiener window will fill one column of M. However this is not
// very convenient in terms of memory access, as it means we do
// contiguous loads of dgd but strided stores to M. As a result, we use an
// intermediate matrix M_s32 which is instead filled such that one row of
// the wiener window gives one row of M_s32. Once fully computed, M_s32 is
// then transposed to return M.
int src_avg0 = *src++ - avg;
int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);
// Last (25th) element of M_s32 can be computed as scalar more efficiently
// for 1 output pixel.
M_s32[24] += DGD_AVG0[24] * src_avg0;
// Start accumulating into row-major order version of matrix H
// (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
// H is of size 25 * 25. It is filled by multiplying every pair of
// elements of the wiener window together (vector outer product). Since it
// is a symmetric matrix, we only compute the upper-right triangle, and
// then copy it down to the lower-left later. The upper triangle is
// covered by 4x4 tiles. The original algorithm assumes the M matrix is
// column-major and the resulting H matrix is also expected to be
// column-major. It is not efficient to work column-major matrices, so we
// accumulate into a row-major matrix H_s32. At the end of the algorithm a
// double transpose transformation will convert H_s32 back to the expected
// output layout.
update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_REDUCED_ALIGN2, 24);
// The last element of the triangle of H_s32 matrix can be computed as a
// scalar more efficiently.
H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
DGD_AVG0[24] * DGD_AVG0[24];
}
src += src_next;
dgd += dgd_next;
} while (--height != 0);
acc_transpose_M(M, M_s64, M_s32, WIENER_WIN_REDUCED, downsample_factor);
update_H(H, H_s64, H_s32, WIENER_WIN_REDUCED, WIENER_WIN2_REDUCED_ALIGN2,
downsample_factor);
}
static inline uint8_t find_average_neon(const uint8_t *src, int src_stride,
int width, int height) {
uint64_t sum = 0;
if (width >= 16) {
int h = 0;
// We can accumulate up to 257 8-bit values in a 16-bit value, given
// that each 16-bit vector has 8 elements, that means we can process up to
// int(257*8/width) rows before we need to widen to 32-bit vector
// elements.
int h_overflow = 257 * 8 / width;
int h_limit = height > h_overflow ? h_overflow : height;
uint32x4_t avg_u32 = vdupq_n_u32(0);
do {
uint16x8_t avg_u16 = vdupq_n_u16(0);
do {
int j = width;
const uint8_t *src_ptr = src;
do {
uint8x16_t s = vld1q_u8(src_ptr);
avg_u16 = vpadalq_u8(avg_u16, s);
j -= 16;
src_ptr += 16;
} while (j >= 16);
if (j >= 8) {
uint8x8_t s = vld1_u8(src_ptr);
avg_u16 = vaddw_u8(avg_u16, s);
j -= 8;
src_ptr += 8;
}
// Scalar tail case.
while (j > 0) {
sum += src[width - j];
j--;
}
src += src_stride;
} while (++h < h_limit);
avg_u32 = vpadalq_u16(avg_u32, avg_u16);
h_limit += h_overflow;
h_limit = height > h_overflow ? h_overflow : height;
} while (h < height);
return (uint8_t)((horizontal_long_add_u32x4(avg_u32) + sum) /
(width * height));
}
if (width >= 8) {
int h = 0;
// We can accumulate up to 257 8-bit values in a 16-bit value, given
// that each 16-bit vector has 4 elements, that means we can process up to
// int(257*4/width) rows before we need to widen to 32-bit vector
// elements.
int h_overflow = 257 * 4 / width;
int h_limit = height > h_overflow ? h_overflow : height;
uint32x2_t avg_u32 = vdup_n_u32(0);
do {
uint16x4_t avg_u16 = vdup_n_u16(0);
do {
int j = width;
const uint8_t *src_ptr = src;
uint8x8_t s = vld1_u8(src_ptr);
avg_u16 = vpadal_u8(avg_u16, s);
j -= 8;
src_ptr += 8;
// Scalar tail case.
while (j > 0) {
sum += src[width - j];
j--;
}
src += src_stride;
} while (++h < h_limit);
avg_u32 = vpadal_u16(avg_u32, avg_u16);
h_limit += h_overflow;
h_limit = height > h_overflow ? h_overflow : height;
} while (h < height);
return (uint8_t)((horizontal_long_add_u32x2(avg_u32) + sum) /
(width * height));
}
int i = height;
do {
int j = 0;
do {
sum += src[j];
} while (++j < width);
src += src_stride;
} while (--i != 0);
return (uint8_t)(sum / (width * height));
}
void av1_compute_stats_neon(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
assert(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
assert(WIENER_STATS_DOWNSAMPLE_FACTOR == 4);
(void)dgd_avg;
(void)src_avg;
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = wiener_win >> 1;
const int width = h_end - h_start;
const int height = v_end - v_start;
const uint8_t *dgd_start = dgd + h_start + v_start * dgd_stride;
const uint8_t *src_start = src + h_start + v_start * src_stride;
// The wiener window will slide along the dgd frame, centered on each pixel.
// For the top left pixel and all the pixels on the side of the frame this
// means half of the window will be outside of the frame. As such the actual
// buffer that we need to subtract the avg from will be 2 * wiener_halfwin
// wider and 2 * wiener_halfwin higher than the original dgd buffer.
const int vert_offset = v_start - wiener_halfwin;
const int horiz_offset = h_start - wiener_halfwin;
const uint8_t *dgd_win = dgd + horiz_offset + vert_offset * dgd_stride;
uint8_t avg = find_average_neon(dgd_start, dgd_stride, width, height);
// Since the height is not necessarily a multiple of the downsample factor,
// the last line of src will be scaled according to how many rows remain.
int downsample_factor =
use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
int downsampled_height = height / downsample_factor;
int downsample_remainder = height % downsample_factor;
memset(M, 0, wiener_win2 * sizeof(*M));
memset(H, 0, wiener_win2 * wiener_win2 * sizeof(*H));
// Calculate the M and H matrices for the normal and downsampled cases.
if (downsampled_height > 0) {
if (wiener_win == WIENER_WIN) {
compute_stats_win7_neon(dgd_win, src_start, width, downsampled_height,
dgd_stride, src_stride, avg, M, H,
downsample_factor);
} else {
compute_stats_win5_neon(dgd_win, src_start, width, downsampled_height,
dgd_stride, src_stride, avg, M, H,
downsample_factor);
}
}
// Accumulate the remaining last rows in the downsampled case.
if (downsample_remainder > 0) {
int remainder_offset = height - downsample_remainder;
if (wiener_win == WIENER_WIN) {
compute_stats_win7_neon(dgd_win + remainder_offset * dgd_stride,
src_start + remainder_offset * src_stride, width,
1, dgd_stride, src_stride, avg, M, H,
downsample_remainder);
} else {
compute_stats_win5_neon(dgd_win + remainder_offset * dgd_stride,
src_start + remainder_offset * src_stride, width,
1, dgd_stride, src_stride, avg, M, H,
downsample_remainder);
}
}
}
static inline void calc_proj_params_r0_r1_neon(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t h01_lo = vdupq_n_s64(0);
int64x2_t h01_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt0_ptr = flt0;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));
f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
h01_lo = vmlal_s32(h01_lo, vget_low_s32(f0_lo), vget_low_s32(f1_lo));
h01_lo = vmlal_s32(h01_lo, vget_high_s32(f0_lo), vget_high_s32(f1_lo));
h01_hi = vmlal_s32(h01_hi, vget_low_s32(f0_hi), vget_low_s32(f1_hi));
h01_hi = vmlal_s32(h01_hi, vget_high_s32(f0_hi), vget_high_s32(f1_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
H[0][1] = horizontal_add_s64x2(vaddq_s64(h01_lo, h01_hi)) / size;
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
H[1][0] = H[0][1];
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
static inline void calc_proj_params_r0_neon(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h00_lo = vdupq_n_s64(0);
int64x2_t h00_hi = vdupq_n_s64(0);
int64x2_t c0_lo = vdupq_n_s64(0);
int64x2_t c0_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt0_ptr = flt0;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f0_lo = vld1q_s32(flt0_ptr);
int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));
h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));
c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt0_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt0 += flt0_stride;
} while (--height != 0);
H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
}
static inline void calc_proj_params_r1_neon(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
assert(width % 8 == 0);
const int size = width * height;
int64x2_t h11_lo = vdupq_n_s64(0);
int64x2_t h11_hi = vdupq_n_s64(0);
int64x2_t c1_lo = vdupq_n_s64(0);
int64x2_t c1_hi = vdupq_n_s64(0);
do {
const uint8_t *src_ptr = src8;
const uint8_t *dat_ptr = dat8;
int32_t *flt1_ptr = flt1;
int w = width;
do {
uint8x8_t s = vld1_u8(src_ptr);
uint8x8_t d = vld1_u8(dat_ptr);
int32x4_t f1_lo = vld1q_s32(flt1_ptr);
int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);
int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));
int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));
h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));
c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));
src_ptr += 8;
dat_ptr += 8;
flt1_ptr += 8;
w -= 8;
} while (w != 0);
src8 += src_stride;
dat8 += dat_stride;
flt1 += flt1_stride;
} while (--height != 0);
H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}
// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
// of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
void av1_calc_proj_params_neon(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2],
int64_t C[2], const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_neon(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_neon(src8, width, height, src_stride, dat8, dat_stride,
flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_neon(src8, width, height, src_stride, dat8, dat_stride,
flt1, flt1_stride, H, C);
}
}