| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/temporal_filter.h" |
| #include "aom_dsp/mathutils.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/sum_neon.h" |
| |
| // For the squared error buffer, add padding for 4 samples. |
| #define SSE_STRIDE (BW + 4) |
| |
| // clang-format off |
| // Table used to pad the first and last columns and apply the sliding window. |
| DECLARE_ALIGNED(16, static const uint8_t, kLoadPad[4][16]) = { |
| { 2, 2, 2, 3, 4, 255, 255, 255, 255, 2, 2, 3, 4, 5, 255, 255 }, |
| { 255, 255, 2, 3, 4, 5, 6, 255, 255, 255, 255, 3, 4, 5, 6, 7 }, |
| { 0, 1, 2, 3, 4, 255, 255, 255, 255, 1, 2, 3, 4, 5, 255, 255 }, |
| { 255, 255, 2, 3, 4, 5, 5, 255, 255, 255, 255, 3, 4, 5, 5, 5 } |
| }; |
| |
| // For columns that don't need to be padded it's just a simple mask. |
| DECLARE_ALIGNED(16, static const uint8_t, kSlidingWindowMask[]) = { |
| 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, |
| 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, |
| 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, |
| 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF |
| }; |
| |
| // clang-format on |
| |
| static inline void get_abs_diff(const uint8_t *frame1, const uint32_t stride1, |
| const uint8_t *frame2, const uint32_t stride2, |
| const uint32_t block_width, |
| const uint32_t block_height, |
| uint8_t *frame_abs_diff, |
| const unsigned int dst_stride) { |
| uint8_t *dst = frame_abs_diff; |
| |
| uint32_t i = 0; |
| do { |
| uint32_t j = 0; |
| do { |
| uint8x16_t s = vld1q_u8(frame1 + i * stride1 + j); |
| uint8x16_t r = vld1q_u8(frame2 + i * stride2 + j); |
| uint8x16_t abs_diff = vabdq_u8(s, r); |
| vst1q_u8(dst + j + 2, abs_diff); |
| j += 16; |
| } while (j < block_width); |
| |
| dst += dst_stride; |
| } while (++i < block_height); |
| } |
| |
| static void apply_temporal_filter( |
| const uint8_t *frame, const unsigned int stride, const uint32_t block_width, |
| const uint32_t block_height, const int *subblock_mses, |
| unsigned int *accumulator, uint16_t *count, const uint8_t *frame_abs_diff, |
| const uint32_t *luma_sse_sum, const double inv_num_ref_pixels, |
| const double decay_factor, const double inv_factor, |
| const double weight_factor, const double *d_factor, int tf_wgt_calc_lvl) { |
| assert(((block_width == 16) || (block_width == 32)) && |
| ((block_height == 16) || (block_height == 32))); |
| |
| uint32_t acc_5x5_neon[BH][BW]; |
| const uint8x16x2_t vmask = vld1q_u8_x2(kSlidingWindowMask); |
| const uint8x16_t pad_tbl0 = vld1q_u8(kLoadPad[0]); |
| const uint8x16_t pad_tbl1 = vld1q_u8(kLoadPad[1]); |
| const uint8x16_t pad_tbl2 = vld1q_u8(kLoadPad[2]); |
| const uint8x16_t pad_tbl3 = vld1q_u8(kLoadPad[3]); |
| |
| // Traverse 4 columns at a time - first and last two columns need padding. |
| for (uint32_t col = 0; col < block_width; col += 4) { |
| uint8x16_t vsrc[5][2]; |
| const uint8_t *src = frame_abs_diff + col; |
| |
| // Load, pad (for first and last two columns) and mask 3 rows from the top. |
| for (int i = 2; i < 5; i++) { |
| uint8x8_t s = vld1_u8(src); |
| uint8x16_t s_dup = vcombine_u8(s, s); |
| if (col == 0) { |
| vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl0); |
| vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl1); |
| } else if (col >= block_width - 4) { |
| vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl2); |
| vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl3); |
| } else { |
| vsrc[i][0] = vandq_u8(s_dup, vmask.val[0]); |
| vsrc[i][1] = vandq_u8(s_dup, vmask.val[1]); |
| } |
| src += SSE_STRIDE; |
| } |
| |
| // Pad the top 2 rows. |
| vsrc[0][0] = vsrc[2][0]; |
| vsrc[0][1] = vsrc[2][1]; |
| vsrc[1][0] = vsrc[2][0]; |
| vsrc[1][1] = vsrc[2][1]; |
| |
| for (unsigned int row = 0; row < block_height; row++) { |
| uint32x4_t sum_01 = vdupq_n_u32(0); |
| uint32x4_t sum_23 = vdupq_n_u32(0); |
| |
| sum_01 = vdotq_u32(sum_01, vsrc[0][0], vsrc[0][0]); |
| sum_01 = vdotq_u32(sum_01, vsrc[1][0], vsrc[1][0]); |
| sum_01 = vdotq_u32(sum_01, vsrc[2][0], vsrc[2][0]); |
| sum_01 = vdotq_u32(sum_01, vsrc[3][0], vsrc[3][0]); |
| sum_01 = vdotq_u32(sum_01, vsrc[4][0], vsrc[4][0]); |
| |
| sum_23 = vdotq_u32(sum_23, vsrc[0][1], vsrc[0][1]); |
| sum_23 = vdotq_u32(sum_23, vsrc[1][1], vsrc[1][1]); |
| sum_23 = vdotq_u32(sum_23, vsrc[2][1], vsrc[2][1]); |
| sum_23 = vdotq_u32(sum_23, vsrc[3][1], vsrc[3][1]); |
| sum_23 = vdotq_u32(sum_23, vsrc[4][1], vsrc[4][1]); |
| |
| vst1q_u32(&acc_5x5_neon[row][col], vpaddq_u32(sum_01, sum_23)); |
| |
| // Push all rows in the sliding window up one. |
| for (int i = 0; i < 4; i++) { |
| vsrc[i][0] = vsrc[i + 1][0]; |
| vsrc[i][1] = vsrc[i + 1][1]; |
| } |
| |
| if (row <= block_height - 4) { |
| // Load next row into the bottom of the sliding window. |
| uint8x8_t s = vld1_u8(src); |
| uint8x16_t s_dup = vcombine_u8(s, s); |
| if (col == 0) { |
| vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl0); |
| vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl1); |
| } else if (col >= block_width - 4) { |
| vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl2); |
| vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl3); |
| } else { |
| vsrc[4][0] = vandq_u8(s_dup, vmask.val[0]); |
| vsrc[4][1] = vandq_u8(s_dup, vmask.val[1]); |
| } |
| src += SSE_STRIDE; |
| } else { |
| // Pad the bottom 2 rows. |
| vsrc[4][0] = vsrc[3][0]; |
| vsrc[4][1] = vsrc[3][1]; |
| } |
| } |
| } |
| |
| // Perform filtering. |
| if (tf_wgt_calc_lvl == 0) { |
| for (unsigned int i = 0, k = 0; i < block_height; i++) { |
| for (unsigned int j = 0; j < block_width; j++, k++) { |
| const int pixel_value = frame[i * stride + j]; |
| const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j]; |
| |
| const double window_error = diff_sse * inv_num_ref_pixels; |
| const int subblock_idx = |
| (i >= block_height / 2) * 2 + (j >= block_width / 2); |
| const double block_error = (double)subblock_mses[subblock_idx]; |
| const double combined_error = |
| weight_factor * window_error + block_error * inv_factor; |
| // Compute filter weight. |
| double scaled_error = |
| combined_error * d_factor[subblock_idx] * decay_factor; |
| scaled_error = AOMMIN(scaled_error, 7); |
| const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE); |
| accumulator[k] += weight * pixel_value; |
| count[k] += weight; |
| } |
| } |
| } else { |
| for (unsigned int i = 0, k = 0; i < block_height; i++) { |
| for (unsigned int j = 0; j < block_width; j++, k++) { |
| const int pixel_value = frame[i * stride + j]; |
| const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j]; |
| |
| const double window_error = diff_sse * inv_num_ref_pixels; |
| const int subblock_idx = |
| (i >= block_height / 2) * 2 + (j >= block_width / 2); |
| const double block_error = (double)subblock_mses[subblock_idx]; |
| const double combined_error = |
| weight_factor * window_error + block_error * inv_factor; |
| // Compute filter weight. |
| double scaled_error = |
| combined_error * d_factor[subblock_idx] * decay_factor; |
| scaled_error = AOMMIN(scaled_error, 7); |
| const float fweight = |
| approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE; |
| const int weight = iroundpf(fweight); |
| accumulator[k] += weight * pixel_value; |
| count[k] += weight; |
| } |
| } |
| } |
| } |
| |
| void av1_apply_temporal_filter_neon_dotprod( |
| const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd, |
| const BLOCK_SIZE block_size, const int mb_row, const int mb_col, |
| const int num_planes, const double *noise_levels, const MV *subblock_mvs, |
| const int *subblock_mses, const int q_factor, const int filter_strength, |
| int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum, |
| uint16_t *count) { |
| const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH; |
| assert(block_size == BLOCK_32X32 && "Only support 32x32 block with Neon!"); |
| assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with Neon!"); |
| assert(!is_high_bitdepth && "Only support low bit-depth with Neon!"); |
| assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); |
| (void)is_high_bitdepth; |
| |
| // Block information. |
| const int mb_height = block_size_high[block_size]; |
| const int mb_width = block_size_wide[block_size]; |
| // Frame information. |
| const int frame_height = frame_to_filter->y_crop_height; |
| const int frame_width = frame_to_filter->y_crop_width; |
| const int min_frame_size = AOMMIN(frame_height, frame_width); |
| // Variables to simplify combined error calculation. |
| const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) * |
| TF_SEARCH_ERROR_NORM_WEIGHT); |
| const double weight_factor = |
| (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor; |
| // Adjust filtering based on q. |
| // Larger q -> stronger filtering -> larger weight. |
| // Smaller q -> weaker filtering -> smaller weight. |
| double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2); |
| q_decay = CLIP(q_decay, 1e-5, 1); |
| if (q_factor >= TF_QINDEX_CUTOFF) { |
| // Max q_factor is 255, therefore the upper bound of q_decay is 8. |
| // We do not need a clip here. |
| q_decay = 0.5 * pow((double)q_factor / 64, 2); |
| } |
| // Smaller strength -> smaller filtering weight. |
| double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2); |
| s_decay = CLIP(s_decay, 1e-5, 1); |
| double d_factor[4] = { 0 }; |
| uint8_t frame_abs_diff[SSE_STRIDE * BH] = { 0 }; |
| uint32_t luma_sse_sum[BW * BH] = { 0 }; |
| |
| for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) { |
| // Larger motion vector -> smaller filtering weight. |
| const MV mv = subblock_mvs[subblock_idx]; |
| const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2)); |
| double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD; |
| distance_threshold = AOMMAX(distance_threshold, 1); |
| d_factor[subblock_idx] = distance / distance_threshold; |
| d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1); |
| } |
| |
| // Handle planes in sequence. |
| int plane_offset = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y; |
| const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x; |
| const uint32_t frame_stride = |
| frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1]; |
| const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w; |
| |
| const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset; |
| const int ss_x_shift = |
| mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x; |
| const int ss_y_shift = |
| mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y; |
| const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH + |
| ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0); |
| const double inv_num_ref_pixels = 1.0 / num_ref_pixels; |
| // Larger noise -> larger filtering weight. |
| const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0); |
| // Decay factors for non-local mean approach. |
| const double decay_factor = 1 / (n_decay * q_decay * s_decay); |
| |
| // Filter U-plane and V-plane using Y-plane. This is because motion |
| // search is only done on Y-plane, so the information from Y-plane |
| // will be more accurate. The luma sse sum is reused in both chroma |
| // planes. |
| if (plane == AOM_PLANE_U) { |
| for (unsigned int i = 0; i < plane_h; i++) { |
| for (unsigned int j = 0; j < plane_w; j++) { |
| for (int ii = 0; ii < (1 << ss_y_shift); ++ii) { |
| for (int jj = 0; jj < (1 << ss_x_shift); ++jj) { |
| const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane. |
| const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane. |
| luma_sse_sum[i * BW + j] += |
| (frame_abs_diff[yy * SSE_STRIDE + xx + 2] * |
| frame_abs_diff[yy * SSE_STRIDE + xx + 2]); |
| } |
| } |
| } |
| } |
| } |
| |
| get_abs_diff(ref, frame_stride, pred + plane_offset, plane_w, plane_w, |
| plane_h, frame_abs_diff, SSE_STRIDE); |
| |
| apply_temporal_filter(pred + plane_offset, plane_w, plane_w, plane_h, |
| subblock_mses, accum + plane_offset, |
| count + plane_offset, frame_abs_diff, luma_sse_sum, |
| inv_num_ref_pixels, decay_factor, inv_factor, |
| weight_factor, d_factor, tf_wgt_calc_lvl); |
| |
| plane_offset += plane_h * plane_w; |
| } |
| } |