|  | /* | 
|  | * Copyright (c) 2018, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <stdbool.h> | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "av1/encoder/block.h" | 
|  | #include "av1/encoder/hash.h" | 
|  | #include "av1/encoder/hash_motion.h" | 
|  |  | 
|  | #define kSrcBits 16 | 
|  | // kMaxAddr is the number of hash table buckets in p_hash_table->p_lookup_table. | 
|  | // p_hash_table->p_lookup_table consists of 6 hash tables of 1 << kSrcBits | 
|  | // buckets each. Each of the 6 supported block sizes (4, 8, 16, 32, 64, 128) has | 
|  | // its own hash table, indexed by the return value of | 
|  | // hash_block_size_to_index(). | 
|  | #define kMaxAddr (6 << kSrcBits) | 
|  | #define kMaxCandidatesPerHashBucket 256 | 
|  |  | 
|  | static void get_pixels_in_1D_char_array_by_block_2x2(const uint8_t *y_src, | 
|  | int stride, | 
|  | uint8_t *p_pixels_in1D) { | 
|  | const uint8_t *p_pel = y_src; | 
|  | int index = 0; | 
|  | for (int i = 0; i < 2; i++) { | 
|  | for (int j = 0; j < 2; j++) { | 
|  | p_pixels_in1D[index++] = p_pel[j]; | 
|  | } | 
|  | p_pel += stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void get_pixels_in_1D_short_array_by_block_2x2(const uint16_t *y_src, | 
|  | int stride, | 
|  | uint16_t *p_pixels_in1D) { | 
|  | const uint16_t *p_pel = y_src; | 
|  | int index = 0; | 
|  | for (int i = 0; i < 2; i++) { | 
|  | for (int j = 0; j < 2; j++) { | 
|  | p_pixels_in1D[index++] = p_pel[j]; | 
|  | } | 
|  | p_pel += stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | // the hash value (hash_value1) consists of two parts, the first 3 bits relate | 
|  | // to the block size and the remaining 16 bits are the crc values. This | 
|  | // function is used to get the first 3 bits. | 
|  | static int hash_block_size_to_index(int block_size) { | 
|  | switch (block_size) { | 
|  | case 4: return 0; | 
|  | case 8: return 1; | 
|  | case 16: return 2; | 
|  | case 32: return 3; | 
|  | case 64: return 4; | 
|  | case 128: return 5; | 
|  | default: return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t get_identity_hash_value(const uint8_t a, const uint8_t b, | 
|  | const uint8_t c, const uint8_t d) { | 
|  | // The four input values add up to 32 bits, which is the size of the output. | 
|  | // Just pack those values as is. | 
|  | return ((uint32_t)a << 24) + ((uint32_t)b << 16) + ((uint32_t)c << 8) + | 
|  | ((uint32_t)d); | 
|  | } | 
|  |  | 
|  | static uint32_t get_xor_hash_value_hbd(const uint16_t a, const uint16_t b, | 
|  | const uint16_t c, const uint16_t d) { | 
|  | uint32_t result; | 
|  | // Pack the lower 8 bits of each input value to the 32 bit output, then xor | 
|  | // with the upper 8 bits of each input value. | 
|  | result = ((uint32_t)(a & 0x00ff) << 24) + ((uint32_t)(b & 0x00ff) << 16) + | 
|  | ((uint32_t)(c & 0x00ff) << 8) + ((uint32_t)(d & 0x00ff)); | 
|  | result ^= ((uint32_t)(a & 0xff00) << 16) + ((uint32_t)(b & 0xff00) << 8) + | 
|  | ((uint32_t)(c & 0xff00)) + ((uint32_t)(d & 0xff00) >> 8); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void av1_hash_table_init(IntraBCHashInfo *intrabc_hash_info) { | 
|  | if (!intrabc_hash_info->crc_initialized) { | 
|  | av1_crc32c_calculator_init(&intrabc_hash_info->crc_calculator); | 
|  | intrabc_hash_info->crc_initialized = 1; | 
|  | } | 
|  | intrabc_hash_info->intrabc_hash_table.p_lookup_table = NULL; | 
|  | } | 
|  |  | 
|  | static void clear_all(hash_table *p_hash_table) { | 
|  | if (p_hash_table->p_lookup_table == NULL) { | 
|  | return; | 
|  | } | 
|  | for (int i = 0; i < kMaxAddr; i++) { | 
|  | if (p_hash_table->p_lookup_table[i] != NULL) { | 
|  | aom_vector_destroy(p_hash_table->p_lookup_table[i]); | 
|  | aom_free(p_hash_table->p_lookup_table[i]); | 
|  | p_hash_table->p_lookup_table[i] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_hash_table_destroy(hash_table *p_hash_table) { | 
|  | clear_all(p_hash_table); | 
|  | aom_free(p_hash_table->p_lookup_table); | 
|  | p_hash_table->p_lookup_table = NULL; | 
|  | } | 
|  |  | 
|  | bool av1_hash_table_create(hash_table *p_hash_table) { | 
|  | if (p_hash_table->p_lookup_table != NULL) { | 
|  | clear_all(p_hash_table); | 
|  | return true; | 
|  | } | 
|  | p_hash_table->p_lookup_table = | 
|  | (Vector **)aom_calloc(kMaxAddr, sizeof(p_hash_table->p_lookup_table[0])); | 
|  | if (!p_hash_table->p_lookup_table) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hash_table_add_to_table(hash_table *p_hash_table, | 
|  | uint32_t hash_value, | 
|  | const block_hash *curr_block_hash) { | 
|  | if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
|  | p_hash_table->p_lookup_table[hash_value] = | 
|  | aom_malloc(sizeof(*p_hash_table->p_lookup_table[hash_value])); | 
|  | if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
|  | return false; | 
|  | } | 
|  | if (aom_vector_setup(p_hash_table->p_lookup_table[hash_value], 10, | 
|  | sizeof(*curr_block_hash)) == VECTOR_ERROR) | 
|  | return false; | 
|  | } | 
|  | // Place an upper bound each hash table bucket to up to 256 intrabc | 
|  | // block candidates, and ignore subsequent ones. Considering more can | 
|  | // unnecessarily slow down encoding for virtually no efficiency gain. | 
|  | if (aom_vector_byte_size(p_hash_table->p_lookup_table[hash_value]) < | 
|  | kMaxCandidatesPerHashBucket * sizeof(*curr_block_hash)) { | 
|  | if (aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], | 
|  | (void *)curr_block_hash) == VECTOR_ERROR) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int32_t av1_hash_table_count(const hash_table *p_hash_table, | 
|  | uint32_t hash_value) { | 
|  | if (p_hash_table->p_lookup_table[hash_value] == NULL) { | 
|  | return 0; | 
|  | } else { | 
|  | return (int32_t)(p_hash_table->p_lookup_table[hash_value]->size); | 
|  | } | 
|  | } | 
|  |  | 
|  | Iterator av1_hash_get_first_iterator(hash_table *p_hash_table, | 
|  | uint32_t hash_value) { | 
|  | assert(av1_hash_table_count(p_hash_table, hash_value) > 0); | 
|  | return aom_vector_begin(p_hash_table->p_lookup_table[hash_value]); | 
|  | } | 
|  |  | 
|  | void av1_generate_block_2x2_hash_value(const YV12_BUFFER_CONFIG *picture, | 
|  | uint32_t *pic_block_hash) { | 
|  | const int width = 2; | 
|  | const int height = 2; | 
|  | const int x_end = picture->y_crop_width - width + 1; | 
|  | const int y_end = picture->y_crop_height - height + 1; | 
|  |  | 
|  | if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | uint16_t p[4]; | 
|  | int pos = 0; | 
|  | for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
|  | for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
|  | get_pixels_in_1D_short_array_by_block_2x2( | 
|  | CONVERT_TO_SHORTPTR(picture->y_buffer) + y_pos * picture->y_stride + | 
|  | x_pos, | 
|  | picture->y_stride, p); | 
|  | // For HBD, we either have 40 or 48 bits of input data that the xor hash | 
|  | // reduce to 32 bits. We intentionally don't want to "discard" bits to | 
|  | // avoid any kind of biasing. | 
|  | pic_block_hash[pos] = get_xor_hash_value_hbd(p[0], p[1], p[2], p[3]); | 
|  | pos++; | 
|  | } | 
|  | pos += width - 1; | 
|  | } | 
|  | } else { | 
|  | uint8_t p[4]; | 
|  | int pos = 0; | 
|  | for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
|  | for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
|  | get_pixels_in_1D_char_array_by_block_2x2( | 
|  | picture->y_buffer + y_pos * picture->y_stride + x_pos, | 
|  | picture->y_stride, p); | 
|  | // This 2x2 hash isn't used directly as a "key" for the hash table, so | 
|  | // we can afford to just copy the 4 8-bit pixel values as a single | 
|  | // 32-bit value directly. (i.e. there are no concerns of a lack of | 
|  | // uniform distribution) | 
|  | pic_block_hash[pos] = get_identity_hash_value(p[0], p[1], p[2], p[3]); | 
|  | pos++; | 
|  | } | 
|  | pos += width - 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_generate_block_hash_value(IntraBCHashInfo *intrabc_hash_info, | 
|  | const YV12_BUFFER_CONFIG *picture, | 
|  | int block_size, | 
|  | const uint32_t *src_pic_block_hash, | 
|  | uint32_t *dst_pic_block_hash) { | 
|  | CRC32C *calc = &intrabc_hash_info->crc_calculator; | 
|  |  | 
|  | const int pic_width = picture->y_crop_width; | 
|  | const int x_end = picture->y_crop_width - block_size + 1; | 
|  | const int y_end = picture->y_crop_height - block_size + 1; | 
|  | const int src_size = block_size >> 1; | 
|  |  | 
|  | uint32_t p[4]; | 
|  | const int length = sizeof(p); | 
|  |  | 
|  | int pos = 0; | 
|  | for (int y_pos = 0; y_pos < y_end; y_pos++) { | 
|  | for (int x_pos = 0; x_pos < x_end; x_pos++) { | 
|  | // Build up a bigger block from 4 smaller, non-overlapping source block | 
|  | // hashes, and compute its hash. Note: source blocks at the right and | 
|  | // bottom borders cannot be part of larger blocks, therefore they won't be | 
|  | // considered into the block hash value generation process. | 
|  | p[0] = src_pic_block_hash[pos]; | 
|  | p[1] = src_pic_block_hash[pos + src_size]; | 
|  | p[2] = src_pic_block_hash[pos + src_size * pic_width]; | 
|  | p[3] = src_pic_block_hash[pos + src_size * pic_width + src_size]; | 
|  | // TODO: bug aomedia:433531610 - serialize input values in a way that's | 
|  | // independent of the computer architecture's endianness | 
|  | dst_pic_block_hash[pos] = | 
|  | av1_get_crc32c_value(calc, (uint8_t *)p, length); | 
|  | pos++; | 
|  | } | 
|  | pos += block_size - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table, | 
|  | const uint32_t *pic_hash, | 
|  | int pic_width, int pic_height, | 
|  | int block_size) { | 
|  | const int x_end = pic_width - block_size + 1; | 
|  | const int y_end = pic_height - block_size + 1; | 
|  |  | 
|  | int add_value = hash_block_size_to_index(block_size); | 
|  | assert(add_value >= 0); | 
|  | add_value <<= kSrcBits; | 
|  | const int crc_mask = (1 << kSrcBits) - 1; | 
|  | int step = block_size; | 
|  | int x_offset = 0; | 
|  | int y_offset = 0; | 
|  |  | 
|  | // Explore the entire frame hierarchically to add intrabc candidate blocks to | 
|  | // the hash table, by starting with coarser steps (the block size), towards | 
|  | // finer-grained steps until every candidate block has been considered. | 
|  | // The nested for loop goes through the pic_hash array column by column. | 
|  |  | 
|  | // Doing a hierarchical block exploration helps maximize spatial dispersion | 
|  | // of the first and foremost candidate blocks while minimizing overlap between | 
|  | // them. This is helpful because we only keep up to 256 entries of the | 
|  | // same candidate block (located in different places), so we want those | 
|  | // entries to cover the biggest area of the image to encode to maximize coding | 
|  | // efficiency. | 
|  |  | 
|  | // This is the coordinate exploration order example for an 8x8 region, with | 
|  | // block_size = 4. The top-left corner (x, y) coordinates of each candidate | 
|  | // block are shown below. There are 5 * 5 (25) candidate blocks. | 
|  | //    x  0  1  2  3  4  5  6  7 | 
|  | //  y +------------------------ | 
|  | //  0 |  1 10  5 13  3 | 
|  | //  1 | 16 22 18 24 20 | 
|  | //  2 |  7 11  9 14  8 | 
|  | //  3 | 17 23 19 25 21 | 
|  | //  4 |  2 12  6 15  4--------+ | 
|  | //  5 |              | 4 x 4  | | 
|  | //  6 |              | block  | | 
|  | //  7 |              +--------+ | 
|  |  | 
|  | // Please note that due to the way block exploration works, the smallest step | 
|  | // used is 2 (i.e. no two adjacent blocks will be explored consecutively). | 
|  | // Also, the exploration is designed to visit each block candidate only once. | 
|  | while (step > 1) { | 
|  | for (int x_pos = x_offset; x_pos < x_end; x_pos += step) { | 
|  | for (int y_pos = y_offset; y_pos < y_end; y_pos += step) { | 
|  | const int pos = y_pos * pic_width + x_pos; | 
|  | block_hash curr_block_hash; | 
|  |  | 
|  | curr_block_hash.x = x_pos; | 
|  | curr_block_hash.y = y_pos; | 
|  |  | 
|  | const uint32_t hash_value1 = (pic_hash[pos] & crc_mask) + add_value; | 
|  | curr_block_hash.hash_value2 = pic_hash[pos]; | 
|  |  | 
|  | if (!hash_table_add_to_table(p_hash_table, hash_value1, | 
|  | &curr_block_hash)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjust offsets and step sizes with this state machine. | 
|  | // State 0 is needed because no blocks in pic_hash have been explored, | 
|  | // so exploration requires a way to account for blocks with both zero | 
|  | // x_offset and zero y_offset. | 
|  | // State 0 is always meant to be executed first, but the relative order of | 
|  | // states 1, 2 and 3 can be arbitrary, as long as no two adjacent blocks | 
|  | // are explored consecutively. | 
|  | if (x_offset == 0 && y_offset == 0) { | 
|  | // State 0 -> State 1: special case | 
|  | // This state transition will only execute when step == block_size | 
|  | x_offset = step / 2; | 
|  | } else if (x_offset == step / 2 && y_offset == 0) { | 
|  | // State 1 -> State 2 | 
|  | x_offset = 0; | 
|  | y_offset = step / 2; | 
|  | } else if (x_offset == 0 && y_offset == step / 2) { | 
|  | // State 2 -> State 3 | 
|  | x_offset = step / 2; | 
|  | } else { | 
|  | assert(x_offset == step / 2 && y_offset == step / 2); | 
|  | // State 3 -> State 1: We've fully explored all the coordinates for the | 
|  | // current step size, continue by halving the step size | 
|  | step /= 2; | 
|  | x_offset = step / 2; | 
|  | y_offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture, | 
|  | int block_size, int x_start, int y_start) { | 
|  | const int stride = picture->y_stride; | 
|  | const uint8_t *p = picture->y_buffer + y_start * stride + x_start; | 
|  |  | 
|  | if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); | 
|  | for (int i = 0; i < block_size; i++) { | 
|  | for (int j = 1; j < block_size; j++) { | 
|  | if (p16[j] != p16[0]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | p16 += stride; | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < block_size; i++) { | 
|  | for (int j = 1; j < block_size; j++) { | 
|  | if (p[j] != p[0]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | p += stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture, | 
|  | int block_size, int x_start, int y_start) { | 
|  | const int stride = picture->y_stride; | 
|  | const uint8_t *p = picture->y_buffer + y_start * stride + x_start; | 
|  |  | 
|  | if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { | 
|  | const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); | 
|  | for (int i = 0; i < block_size; i++) { | 
|  | for (int j = 1; j < block_size; j++) { | 
|  | if (p16[j * stride + i] != p16[i]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < block_size; i++) { | 
|  | for (int j = 1; j < block_size; j++) { | 
|  | if (p[j * stride + i] != p[i]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void av1_get_block_hash_value(IntraBCHashInfo *intra_bc_hash_info, | 
|  | const uint8_t *y_src, int stride, int block_size, | 
|  | uint32_t *hash_value1, uint32_t *hash_value2, | 
|  | int use_highbitdepth) { | 
|  | int add_value = hash_block_size_to_index(block_size); | 
|  | assert(add_value >= 0); | 
|  | add_value <<= kSrcBits; | 
|  | const int crc_mask = (1 << kSrcBits) - 1; | 
|  |  | 
|  | CRC32C *calc = &intra_bc_hash_info->crc_calculator; | 
|  | uint32_t **buf = intra_bc_hash_info->hash_value_buffer; | 
|  |  | 
|  | // 2x2 subblock hash values in current CU | 
|  | int sub_block_in_width = (block_size >> 1); | 
|  | if (use_highbitdepth) { | 
|  | uint16_t pixel_to_hash[4]; | 
|  | uint16_t *y16_src = CONVERT_TO_SHORTPTR(y_src); | 
|  | for (int y_pos = 0; y_pos < block_size; y_pos += 2) { | 
|  | for (int x_pos = 0; x_pos < block_size; x_pos += 2) { | 
|  | int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); | 
|  | get_pixels_in_1D_short_array_by_block_2x2( | 
|  | y16_src + y_pos * stride + x_pos, stride, pixel_to_hash); | 
|  | assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
|  | // For HBD, we either have 40 or 48 bits of input data that the xor hash | 
|  | // reduce to 32 bits. We intentionally don't want to "discard" bits to | 
|  | // avoid any kind of biasing. | 
|  | buf[0][pos] = | 
|  | get_xor_hash_value_hbd(pixel_to_hash[0], pixel_to_hash[1], | 
|  | pixel_to_hash[2], pixel_to_hash[3]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint8_t pixel_to_hash[4]; | 
|  | for (int y_pos = 0; y_pos < block_size; y_pos += 2) { | 
|  | for (int x_pos = 0; x_pos < block_size; x_pos += 2) { | 
|  | int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); | 
|  | get_pixels_in_1D_char_array_by_block_2x2(y_src + y_pos * stride + x_pos, | 
|  | stride, pixel_to_hash); | 
|  | assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
|  | // This 2x2 hash isn't used directly as a "key" for the hash table, so | 
|  | // we can afford to just copy the 4 8-bit pixel values as a single | 
|  | // 32-bit value directly. (i.e. there are no concerns of a lack of | 
|  | // uniform distribution) | 
|  | buf[0][pos] = | 
|  | get_identity_hash_value(pixel_to_hash[0], pixel_to_hash[1], | 
|  | pixel_to_hash[2], pixel_to_hash[3]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int src_sub_block_in_width = sub_block_in_width; | 
|  | sub_block_in_width >>= 1; | 
|  |  | 
|  | int src_idx = 0; | 
|  | int dst_idx = !src_idx; | 
|  |  | 
|  | // 4x4 subblock hash values to current block hash values | 
|  | uint32_t to_hash[4]; | 
|  | for (int sub_width = 4; sub_width <= block_size; | 
|  | sub_width *= 2, src_idx = !src_idx) { | 
|  | dst_idx = !src_idx; | 
|  |  | 
|  | int dst_pos = 0; | 
|  | for (int y_pos = 0; y_pos < sub_block_in_width; y_pos++) { | 
|  | for (int x_pos = 0; x_pos < sub_block_in_width; x_pos++) { | 
|  | int srcPos = (y_pos << 1) * src_sub_block_in_width + (x_pos << 1); | 
|  |  | 
|  | assert(srcPos + 1 < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
|  | assert(srcPos + src_sub_block_in_width + 1 < | 
|  | AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
|  | assert(dst_pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); | 
|  |  | 
|  | to_hash[0] = buf[src_idx][srcPos]; | 
|  | to_hash[1] = buf[src_idx][srcPos + 1]; | 
|  | to_hash[2] = buf[src_idx][srcPos + src_sub_block_in_width]; | 
|  | to_hash[3] = buf[src_idx][srcPos + src_sub_block_in_width + 1]; | 
|  |  | 
|  | // TODO: bug aomedia:433531610 - serialize input values in a way that's | 
|  | // independent of the computer architecture's endianness | 
|  | buf[dst_idx][dst_pos] = | 
|  | av1_get_crc32c_value(calc, (uint8_t *)to_hash, sizeof(to_hash)); | 
|  | dst_pos++; | 
|  | } | 
|  | } | 
|  |  | 
|  | src_sub_block_in_width = sub_block_in_width; | 
|  | sub_block_in_width >>= 1; | 
|  | } | 
|  |  | 
|  | *hash_value1 = (buf[dst_idx][0] & crc_mask) + add_value; | 
|  | *hash_value2 = buf[dst_idx][0]; | 
|  | } |