|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include "test/av1_txfm_test.h" | 
|  | #include "test/util.h" | 
|  | #include "av1/common/av1_inv_txfm1d.h" | 
|  | #include "av1/encoder/av1_fwd_txfm1d.h" | 
|  |  | 
|  | using libaom_test::ACMRandom; | 
|  | using libaom_test::input_base; | 
|  |  | 
|  | namespace { | 
|  | const int txfm_type_num = 2; | 
|  | const int txfm_size_ls[] = { 4, 8, 16, 32, 64 }; | 
|  |  | 
|  | const TxfmFunc fwd_txfm_func_ls[][txfm_type_num] = { | 
|  | { av1_fdct4, av1_fadst4 },   { av1_fdct8, av1_fadst8 }, | 
|  | { av1_fdct16, av1_fadst16 }, { av1_fdct32, nullptr }, | 
|  | { av1_fdct64, nullptr }, | 
|  | }; | 
|  |  | 
|  | const TxfmFunc inv_txfm_func_ls[][txfm_type_num] = { | 
|  | { av1_idct4, av1_iadst4 },   { av1_idct8, av1_iadst8 }, | 
|  | { av1_idct16, av1_iadst16 }, { av1_idct32, nullptr }, | 
|  | { av1_idct64, nullptr }, | 
|  | }; | 
|  |  | 
|  | // the maximum stage number of fwd/inv 1d dct/adst txfm is 12 | 
|  | const int8_t cos_bit = 13; | 
|  | const int8_t range_bit[12] = { 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 }; | 
|  |  | 
|  | void reference_idct_1d_int(const int32_t *in, int32_t *out, int size) { | 
|  | double input[64]; | 
|  | for (int i = 0; i < size; ++i) input[i] = in[i]; | 
|  |  | 
|  | double output[64]; | 
|  | libaom_test::reference_idct_1d(input, output, size); | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | ASSERT_GE(output[i], INT32_MIN); | 
|  | ASSERT_LE(output[i], INT32_MAX); | 
|  | out[i] = static_cast<int32_t>(round(output[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | void random_matrix(int32_t *dst, int len, ACMRandom *rnd) { | 
|  | const int bits = 16; | 
|  | const int maxVal = (1 << (bits - 1)) - 1; | 
|  | const int minVal = -(1 << (bits - 1)); | 
|  | for (int i = 0; i < len; ++i) { | 
|  | if (rnd->Rand8() % 10) | 
|  | dst[i] = minVal + rnd->Rand16() % (1 << bits); | 
|  | else | 
|  | dst[i] = rnd->Rand8() % 2 ? minVal : maxVal; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(av1_inv_txfm1d, InvAccuracyCheck) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | const int count_test_block = 20000; | 
|  | const int max_error[] = { 6, 10, 19, 31, 40 }; | 
|  | ASSERT_EQ(NELEMENTS(max_error), TX_SIZES); | 
|  | ASSERT_EQ(NELEMENTS(inv_txfm_func_ls), TX_SIZES); | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | // choose a random transform to test | 
|  | const TX_SIZE tx_size = static_cast<TX_SIZE>(rnd.Rand8() % TX_SIZES); | 
|  | const int txfm_size = txfm_size_ls[tx_size]; | 
|  | const TxfmFunc inv_txfm_func = inv_txfm_func_ls[tx_size][0]; | 
|  |  | 
|  | int32_t input[64]; | 
|  | random_matrix(input, txfm_size, &rnd); | 
|  |  | 
|  | // 64x64 transform assumes last 32 values are zero. | 
|  | memset(input + 32, 0, 32 * sizeof(input[0])); | 
|  |  | 
|  | int32_t ref_output[64]; | 
|  | memset(ref_output, 0, sizeof(ref_output)); | 
|  | reference_idct_1d_int(input, ref_output, txfm_size); | 
|  |  | 
|  | int32_t output[64]; | 
|  | memset(output, 0, sizeof(output)); | 
|  | inv_txfm_func(input, output, cos_bit, range_bit); | 
|  |  | 
|  | for (int ni = 0; ni < txfm_size; ++ni) { | 
|  | EXPECT_LE(abs(output[ni] - ref_output[ni]), max_error[tx_size]) | 
|  | << "tx_size = " << tx_size << ", ni = " << ni | 
|  | << ", output[ni] = " << output[ni] | 
|  | << ", ref_output[ni] = " << ref_output[ni]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int get_max_bit(int x) { | 
|  | int max_bit = -1; | 
|  | while (x) { | 
|  | x = x >> 1; | 
|  | max_bit++; | 
|  | } | 
|  | return max_bit; | 
|  | } | 
|  |  | 
|  | TEST(av1_inv_txfm1d, get_max_bit) { | 
|  | int max_bit = get_max_bit(8); | 
|  | EXPECT_EQ(max_bit, 3); | 
|  | } | 
|  |  | 
|  | TEST(av1_inv_txfm1d, round_trip) { | 
|  | ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
|  | for (int si = 0; si < NELEMENTS(fwd_txfm_func_ls); ++si) { | 
|  | int txfm_size = txfm_size_ls[si]; | 
|  |  | 
|  | for (int ti = 0; ti < txfm_type_num; ++ti) { | 
|  | TxfmFunc fwd_txfm_func = fwd_txfm_func_ls[si][ti]; | 
|  | TxfmFunc inv_txfm_func = inv_txfm_func_ls[si][ti]; | 
|  | int max_error = 2; | 
|  |  | 
|  | if (!fwd_txfm_func) continue; | 
|  |  | 
|  | const int count_test_block = 5000; | 
|  | for (int i = 0; i < count_test_block; ++i) { | 
|  | int32_t input[64]; | 
|  | int32_t output[64]; | 
|  | int32_t round_trip_output[64]; | 
|  |  | 
|  | ASSERT_LE(txfm_size, NELEMENTS(input)); | 
|  |  | 
|  | for (int ni = 0; ni < txfm_size; ++ni) { | 
|  | input[ni] = rnd.Rand16() % input_base - rnd.Rand16() % input_base; | 
|  | } | 
|  |  | 
|  | fwd_txfm_func(input, output, cos_bit, range_bit); | 
|  | inv_txfm_func(output, round_trip_output, cos_bit, range_bit); | 
|  |  | 
|  | for (int ni = 0; ni < txfm_size; ++ni) { | 
|  | int node_err = | 
|  | abs(input[ni] - round_shift(round_trip_output[ni], | 
|  | get_max_bit(txfm_size) - 1)); | 
|  | EXPECT_LE(node_err, max_error); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace |