| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 |  | 
 | #include "gtest/gtest.h" | 
 |  | 
 | #include "test/acm_random.h" | 
 | #include "aom/aom_integer.h" | 
 | #include "aom_dsp/bitreader.h" | 
 | #include "aom_dsp/bitwriter.h" | 
 |  | 
 | using libaom_test::ACMRandom; | 
 |  | 
 | namespace { | 
 | const int num_tests = 10; | 
 | }  // namespace | 
 |  | 
 | TEST(AV1, TestBitIO) { | 
 |   ACMRandom rnd(ACMRandom::DeterministicSeed()); | 
 |   for (int n = 0; n < num_tests; ++n) { | 
 |     for (int method = 0; method <= 7; ++method) {  // we generate various proba | 
 |       const int kBitsToTest = 1000; | 
 |       uint8_t probas[kBitsToTest]; | 
 |  | 
 |       for (int i = 0; i < kBitsToTest; ++i) { | 
 |         const int parity = i & 1; | 
 |         /* clang-format off */ | 
 |         probas[i] = | 
 |           (method == 0) ? 0 : (method == 1) ? 255 : | 
 |           (method == 2) ? 128 : | 
 |           (method == 3) ? rnd.Rand8() : | 
 |           (method == 4) ? (parity ? 0 : 255) : | 
 |             // alternate between low and high proba: | 
 |             (method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) : | 
 |             (method == 6) ? | 
 |             (parity ? rnd(64) : 255 - rnd(64)) : | 
 |             (parity ? rnd(32) : 255 - rnd(32)); | 
 |         /* clang-format on */ | 
 |       } | 
 |       for (int bit_method = 0; bit_method <= 3; ++bit_method) { | 
 |         const int random_seed = 6432; | 
 |         const int kBufferSize = 10000; | 
 |         ACMRandom bit_rnd(random_seed); | 
 |         aom_writer bw; | 
 |         uint8_t bw_buffer[kBufferSize]; | 
 |         aom_start_encode(&bw, bw_buffer); | 
 |  | 
 |         int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0; | 
 |         for (int i = 0; i < kBitsToTest; ++i) { | 
 |           if (bit_method == 2) { | 
 |             bit = (i & 1); | 
 |           } else if (bit_method == 3) { | 
 |             bit = bit_rnd(2); | 
 |           } | 
 |           aom_write(&bw, bit, static_cast<int>(probas[i])); | 
 |         } | 
 |  | 
 |         GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); | 
 |  | 
 |         aom_reader br; | 
 |         aom_reader_init(&br, bw_buffer, bw.pos); | 
 |         bit_rnd.Reset(random_seed); | 
 |         for (int i = 0; i < kBitsToTest; ++i) { | 
 |           if (bit_method == 2) { | 
 |             bit = (i & 1); | 
 |           } else if (bit_method == 3) { | 
 |             bit = bit_rnd(2); | 
 |           } | 
 |           GTEST_ASSERT_EQ(aom_read(&br, probas[i], nullptr), bit) | 
 |               << "pos: " << i << " / " << kBitsToTest | 
 |               << " bit_method: " << bit_method << " method: " << method; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define FRAC_DIFF_TOTAL_ERROR 0.18 | 
 |  | 
 | TEST(AV1, TestTell) { | 
 |   const int kBufferSize = 10000; | 
 |   aom_writer bw; | 
 |   uint8_t bw_buffer[kBufferSize]; | 
 |   const int kSymbols = 1024; | 
 |   // Coders are noisier at low probabilities, so we start at p = 4. | 
 |   for (int p = 4; p < 256; p++) { | 
 |     double probability = p / 256.; | 
 |     aom_start_encode(&bw, bw_buffer); | 
 |     for (int i = 0; i < kSymbols; i++) { | 
 |       aom_write(&bw, 0, p); | 
 |     } | 
 |     GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); | 
 |     aom_reader br; | 
 |     aom_reader_init(&br, bw_buffer, bw.pos); | 
 |     uint32_t last_tell = aom_reader_tell(&br); | 
 |     uint32_t last_tell_frac = aom_reader_tell_frac(&br); | 
 |     double frac_diff_total = 0; | 
 |     GTEST_ASSERT_GE(aom_reader_tell(&br), 0u); | 
 |     GTEST_ASSERT_LE(aom_reader_tell(&br), 1u); | 
 |     ASSERT_FALSE(aom_reader_has_overflowed(&br)); | 
 |     for (int i = 0; i < kSymbols; i++) { | 
 |       aom_read(&br, p, nullptr); | 
 |       uint32_t tell = aom_reader_tell(&br); | 
 |       uint32_t tell_frac = aom_reader_tell_frac(&br); | 
 |       GTEST_ASSERT_GE(tell, last_tell) | 
 |           << "tell: " << tell << ", last_tell: " << last_tell; | 
 |       GTEST_ASSERT_GE(tell_frac, last_tell_frac) | 
 |           << "tell_frac: " << tell_frac | 
 |           << ", last_tell_frac: " << last_tell_frac; | 
 |       // Frac tell should round up to tell. | 
 |       GTEST_ASSERT_EQ(tell, (tell_frac + 7) >> 3); | 
 |       last_tell = tell; | 
 |       frac_diff_total += | 
 |           fabs(((tell_frac - last_tell_frac) / 8.0) + log2(probability)); | 
 |       last_tell_frac = tell_frac; | 
 |     } | 
 |     const uint32_t expected = (uint32_t)(-kSymbols * log2(probability)); | 
 |     // Last tell should be close to the expected value. | 
 |     GTEST_ASSERT_LE(last_tell, expected + 20) << " last_tell: " << last_tell; | 
 |     // The average frac_diff error should be pretty small. | 
 |     GTEST_ASSERT_LE(frac_diff_total / kSymbols, FRAC_DIFF_TOTAL_ERROR) | 
 |         << " frac_diff_total: " << frac_diff_total; | 
 |     ASSERT_FALSE(aom_reader_has_overflowed(&br)); | 
 |   } | 
 | } | 
 |  | 
 | TEST(AV1, TestHasOverflowed) { | 
 |   const int kBufferSize = 10000; | 
 |   aom_writer bw; | 
 |   uint8_t bw_buffer[kBufferSize]; | 
 |   const int kSymbols = 1024; | 
 |   // Coders are noisier at low probabilities, so we start at p = 4. | 
 |   for (int p = 4; p < 256; p++) { | 
 |     aom_start_encode(&bw, bw_buffer); | 
 |     for (int i = 0; i < kSymbols; i++) { | 
 |       aom_write(&bw, 1, p); | 
 |     } | 
 |     GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); | 
 |     aom_reader br; | 
 |     aom_reader_init(&br, bw_buffer, bw.pos); | 
 |     ASSERT_FALSE(aom_reader_has_overflowed(&br)); | 
 |     for (int i = 0; i < kSymbols; i++) { | 
 |       GTEST_ASSERT_EQ(aom_read(&br, p, nullptr), 1); | 
 |       ASSERT_FALSE(aom_reader_has_overflowed(&br)); | 
 |     } | 
 |     // In the worst case, the encoder uses just a tiny fraction of the last | 
 |     // byte in the buffer. So to guarantee that aom_reader_has_overflowed() | 
 |     // returns true, we have to consume very nearly 8 additional bits of data. | 
 |     // In the worse case, one of the bits in that byte will be 1, and the rest | 
 |     // will be zero. Once we are past that 1 bit, when the probability of | 
 |     // reading zero symbol from aom_read() is high, each additional symbol read | 
 |     // will consume very little additional data (in the case that p == 255, | 
 |     // approximately -log_2(255/256) ~= 0.0056 bits). In that case it would | 
 |     // take around 178 calls to consume more than 8 bits. That is only an upper | 
 |     // bound. In practice we are not guaranteed to hit the worse case and can | 
 |     // get away with 174 calls. | 
 |     for (int i = 0; i < 174; i++) { | 
 |       aom_read(&br, p, nullptr); | 
 |     } | 
 |     ASSERT_TRUE(aom_reader_has_overflowed(&br)); | 
 |   } | 
 | } |