blob: f46cc8faa8d168d058ab1f4afddde2526e7eeea1 [file] [log] [blame] [edit]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "tools/txfm_analyzer/txfm_graph.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef struct Node Node;
void get_fun_name(char *str_fun_name, int str_buf_size, const TYPE_TXFM type,
const int txfm_size) {
if (type == TYPE_DCT)
snprintf(str_fun_name, str_buf_size, "fdct%d_new", txfm_size);
else if (type == TYPE_ADST)
snprintf(str_fun_name, str_buf_size, "fadst%d_new", txfm_size);
else if (type == TYPE_IDCT)
snprintf(str_fun_name, str_buf_size, "idct%d_new", txfm_size);
else if (type == TYPE_IADST)
snprintf(str_fun_name, str_buf_size, "iadst%d_new", txfm_size);
}
void get_txfm_type_name(char *str_fun_name, int str_buf_size,
const TYPE_TXFM type, const int txfm_size) {
if (type == TYPE_DCT)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size);
else if (type == TYPE_ADST)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size);
else if (type == TYPE_IDCT)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size);
else if (type == TYPE_IADST)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size);
}
void get_hybrid_2d_type_name(char *buf, int buf_size, const TYPE_TXFM type0,
const TYPE_TXFM type1, const int txfm_size0,
const int txfm_size1) {
if (type0 == TYPE_DCT && type1 == TYPE_DCT)
snprintf(buf, buf_size, "_dct_dct_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_DCT && type1 == TYPE_ADST)
snprintf(buf, buf_size, "_dct_adst_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_ADST && type1 == TYPE_ADST)
snprintf(buf, buf_size, "_adst_adst_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_ADST && type1 == TYPE_DCT)
snprintf(buf, buf_size, "_adst_dct_%dx%d", txfm_size1, txfm_size0);
}
TYPE_TXFM get_inv_type(TYPE_TXFM type) {
if (type == TYPE_DCT)
return TYPE_IDCT;
else if (type == TYPE_ADST)
return TYPE_IADST;
else if (type == TYPE_IDCT)
return TYPE_DCT;
else if (type == TYPE_IADST)
return TYPE_ADST;
else
return TYPE_LAST;
}
void reference_dct_1d(double *in, double *out, int size) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < size; k++) {
out[k] = 0; // initialize out[k]
for (int n = 0; n < size; n++) {
out[k] += in[n] * cos(PI * (2 * n + 1) * k / (2 * size));
}
if (k == 0) out[k] = out[k] * kInvSqrt2;
}
}
void reference_dct_2d(double *in, double *out, int size) {
double *tempOut = new double[size * size];
// dct each row: in -> out
for (int r = 0; r < size; r++) {
reference_dct_1d(in + r * size, out + r * size, size);
}
for (int r = 0; r < size; r++) {
// out ->tempOut
for (int c = 0; c < size; c++) {
tempOut[r * size + c] = out[c * size + r];
}
}
for (int r = 0; r < size; r++) {
reference_dct_1d(tempOut + r * size, out + r * size, size);
}
delete[] tempOut;
}
void reference_adst_1d(double *in, double *out, int size) {
for (int k = 0; k < size; k++) {
out[k] = 0; // initialize out[k]
for (int n = 0; n < size; n++) {
out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
}
}
}
void reference_hybrid_2d(double *in, double *out, int size, int type0,
int type1) {
double *tempOut = new double[size * size];
// dct each row: in -> out
for (int r = 0; r < size; r++) {
if (type0 == TYPE_DCT)
reference_dct_1d(in + r * size, out + r * size, size);
else
reference_adst_1d(in + r * size, out + r * size, size);
}
for (int r = 0; r < size; r++) {
// out ->tempOut
for (int c = 0; c < size; c++) {
tempOut[r * size + c] = out[c * size + r];
}
}
for (int r = 0; r < size; r++) {
if (type1 == TYPE_DCT)
reference_dct_1d(tempOut + r * size, out + r * size, size);
else
reference_adst_1d(tempOut + r * size, out + r * size, size);
}
delete[] tempOut;
}
void reference_hybrid_2d_new(double *in, double *out, int size0, int size1,
int type0, int type1) {
double *tempOut = new double[size0 * size1];
// dct each row: in -> out
for (int r = 0; r < size1; r++) {
if (type0 == TYPE_DCT)
reference_dct_1d(in + r * size0, out + r * size0, size0);
else
reference_adst_1d(in + r * size0, out + r * size0, size0);
}
for (int r = 0; r < size1; r++) {
// out ->tempOut
for (int c = 0; c < size0; c++) {
tempOut[c * size1 + r] = out[r * size0 + c];
}
}
for (int r = 0; r < size0; r++) {
if (type1 == TYPE_DCT)
reference_dct_1d(tempOut + r * size1, out + r * size1, size1);
else
reference_adst_1d(tempOut + r * size1, out + r * size1, size1);
}
delete[] tempOut;
}
unsigned int get_max_bit(unsigned int x) {
int max_bit = -1;
while (x) {
x = x >> 1;
max_bit++;
}
return max_bit;
}
unsigned int bitwise_reverse(unsigned int x, int max_bit) {
x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16);
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
x = x >> (31 - max_bit);
return x;
}
int get_idx(int ri, int ci, int cSize) { return ri * cSize + ci; }
void add_node(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int in, double w) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int inIdx = get_idx(stage_idx - 1, in, node_num);
int idx = node[outIdx].inNodeNum;
if (idx < 2) {
node[outIdx].inNode[idx] = &node[inIdx];
node[outIdx].inNodeIdx[idx] = in;
node[outIdx].inWeight[idx] = w;
idx++;
node[outIdx].inNodeNum = idx;
} else {
printf("Error: inNode is full");
}
}
void connect_node(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int in0, double w0, int in1, double w1) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int inIdx0 = get_idx(stage_idx - 1, in0, node_num);
int inIdx1 = get_idx(stage_idx - 1, in1, node_num);
int idx = 0;
// if(w0 != 0) {
node[outIdx].inNode[idx] = &node[inIdx0];
node[outIdx].inNodeIdx[idx] = in0;
node[outIdx].inWeight[idx] = w0;
idx++;
//}
// if(w1 != 0) {
node[outIdx].inNode[idx] = &node[inIdx1];
node[outIdx].inNodeIdx[idx] = in1;
node[outIdx].inWeight[idx] = w1;
idx++;
//}
node[outIdx].inNodeNum = idx;
}
void propagate(Node *node, int stage_num, int node_num, int stage_idx) {
for (int ni = 0; ni < node_num; ni++) {
int outIdx = get_idx(stage_idx, ni, node_num);
node[outIdx].value = 0;
for (int k = 0; k < node[outIdx].inNodeNum; k++) {
node[outIdx].value +=
node[outIdx].inNode[k]->value * node[outIdx].inWeight[k];
}
}
}
int64_t round_shift(int64_t value, int bit) {
if (bit > 0) {
if (value < 0) {
return -round_shift(-value, bit);
} else {
return (value + (1 << (bit - 1))) >> bit;
}
} else {
return value << (-bit);
}
}
void round_shift_array(int32_t *arr, int size, int bit) {
if (bit == 0) {
return;
} else {
for (int i = 0; i < size; i++) {
arr[i] = round_shift(arr[i], bit);
}
}
}
void graph_reset_visited(Node *node, int stage_num, int node_num) {
for (int si = 0; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int idx = get_idx(si, ni, node_num);
node[idx].visited = 0;
}
}
}
void estimate_value(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int estimate_bit) {
if (stage_idx > 0) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int64_t out = 0;
node[outIdx].value = 0;
for (int k = 0; k < node[outIdx].inNodeNum; k++) {
int64_t w = round(node[outIdx].inWeight[k] * (1 << estimate_bit));
int64_t v = round(node[outIdx].inNode[k]->value);
out += v * w;
}
node[outIdx].value = round_shift(out, estimate_bit);
}
}
void amplify_value(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int amplify_bit) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
node[outIdx].value = round_shift(round(node[outIdx].value), -amplify_bit);
}
void propagate_estimate_amlify(Node *node, int stage_num, int node_num,
int stage_idx, int amplify_bit,
int estimate_bit) {
for (int ni = 0; ni < node_num; ni++) {
estimate_value(node, stage_num, node_num, stage_idx, ni, estimate_bit);
amplify_value(node, stage_num, node_num, stage_idx, ni, amplify_bit);
}
}
void init_graph(Node *node, int stage_num, int node_num) {
for (int si = 0; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int outIdx = get_idx(si, ni, node_num);
node[outIdx].stageIdx = si;
node[outIdx].nodeIdx = ni;
node[outIdx].value = 0;
node[outIdx].inNodeNum = 0;
if (si >= 1) {
connect_node(node, stage_num, node_num, si, ni, ni, 1, ni, 0);
}
}
}
}
void gen_B_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N, int star) {
for (int i = 0; i < N / 2; i++) {
int out = node_idx + i;
int in1 = node_idx + N - 1 - i;
if (star == 1) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1,
1);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1,
1);
}
}
for (int i = N / 2; i < N; i++) {
int out = node_idx + i;
int in1 = node_idx + N - 1 - i;
if (star == 1) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1,
1);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1,
1);
}
}
}
void gen_P_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_bit = get_max_bit(N - 1);
for (int i = 0; i < N; i++) {
int out = node_idx + bitwise_reverse(i, max_bit);
int in = node_idx + i;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_type1_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_bit = get_max_bit(N);
for (int ni = 0; ni < N / 2; ni++) {
int ai = bitwise_reverse(N + ni, max_bit);
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
sin(PI * ai / (2 * 2 * N)), in1, cos(PI * ai / (2 * 2 * N)));
}
for (int ni = N / 2; ni < N; ni++) {
int ai = bitwise_reverse(N + ni, max_bit);
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
cos(PI * ai / (2 * 2 * N)), in1, -sin(PI * ai / (2 * 2 * N)));
}
}
void gen_type2_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
for (int ni = 0; ni < N / 4; ni++) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0);
}
for (int ni = N / 4; ni < N / 2; ni++) {
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
-cos(PI / 4), in1, cos(-PI / 4));
}
for (int ni = N / 2; ni < N * 3 / 4; ni++) {
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
cos(-PI / 4), in1, cos(PI / 4));
}
for (int ni = N * 3 / 4; ni < N; ni++) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0);
}
}
void gen_type3_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int idx, int N) {
// TODO(angiebird): Simplify and clarify this function
int i = 2 * N / (1 << (idx / 2));
int max_bit =
get_max_bit(i / 2) - 1; // the max_bit counts on i/2 instead of N here
int N_over_i = 2 << (idx / 2);
for (int nj = 0; nj < N / 2; nj += N_over_i) {
int j = nj / (N_over_i);
int kj = bitwise_reverse(i / 4 + j, max_bit);
// printf("kj = %d\n", kj);
// I_N/2i --- 0
int offset = nj;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
// -C_Kj/i --- S_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = -cos(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = sin(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// S_kj/i --- -C_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = -sin(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = -cos(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// I_N/2i --- 0
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
for (int nj = N / 2; nj < N; nj += N_over_i) {
int j = nj / N_over_i;
int kj = bitwise_reverse(i / 4 + j, max_bit);
// I_N/2i --- 0
int offset = nj;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
// C_kj/i --- -S_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = cos(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = -sin(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// S_kj/i --- C_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = sin(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = cos(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// I_N/2i --- 0
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
}
void gen_type4_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int idx, int N) {
int B_size = 1 << ((idx + 1) / 2);
for (int ni = 0; ni < N; ni += B_size) {
gen_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, B_size,
(ni / B_size) % 2);
}
}
void gen_R_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_idx = 2 * (get_max_bit(N) + 1) - 3;
for (int idx = 0; idx < max_idx; idx++) {
int s = stage_idx + max_idx - idx - 1;
if (idx == 0) {
// type 1
gen_type1_graph(node, stage_num, node_num, s, node_idx, N);
} else if (idx == max_idx - 1) {
// type 2
gen_type2_graph(node, stage_num, node_num, s, node_idx, N);
} else if ((idx + 1) % 2 == 0) {
// type 4
gen_type4_graph(node, stage_num, node_num, s, node_idx, idx, N);
} else if ((idx + 1) % 2 == 1) {
// type 3
gen_type3_graph(node, stage_num, node_num, s, node_idx, idx, N);
} else {
printf("check gen_R_graph()\n");
}
}
}
void gen_DCT_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
if (N > 2) {
gen_B_graph(node, stage_num, node_num, stage_idx, node_idx, N, 0);
gen_DCT_graph(node, stage_num, node_num, stage_idx + 1, node_idx, N / 2);
gen_R_graph(node, stage_num, node_num, stage_idx + 1, node_idx + N / 2,
N / 2);
} else {
// generate dct_2
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx,
cos(PI / 4), node_idx + 1, cos(PI / 4));
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1,
node_idx + 1, -cos(PI / 4), node_idx, cos(PI / 4));
}
}
int get_dct_stage_num(int size) { return 2 * get_max_bit(size); }
void gen_DCT_graph_1d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
gen_DCT_graph(node, stage_num, node_num, stage_idx, node_idx, dct_node_num);
int dct_stage_num = get_dct_stage_num(dct_node_num);
gen_P_graph(node, stage_num, node_num, stage_idx + dct_stage_num - 2,
node_idx, dct_node_num);
}
void gen_adst_B_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx) {
int size = 1 << (adst_idx + 1);
for (int ni = 0; ni < size / 2; ni++) {
int nOut = node_idx + ni;
int nIn = nOut + size / 2;
connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, 1, nIn,
1);
// printf("nOut: %d nIn: %d\n", nOut, nIn);
}
for (int ni = size / 2; ni < size; ni++) {
int nOut = node_idx + ni;
int nIn = nOut - size / 2;
connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, -1, nIn,
1);
// printf("ndctOut: %d nIn: %d\n", nOut, nIn);
}
}
void gen_adst_U_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx, int adst_node_num) {
int size = 1 << (adst_idx + 1);
for (int ni = 0; ni < adst_node_num; ni += size) {
gen_adst_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni,
adst_idx);
}
}
void gen_adst_T_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, double freq) {
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx,
cos(freq * PI), node_idx + 1, sin(freq * PI));
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1,
node_idx + 1, -cos(freq * PI), node_idx, sin(freq * PI));
}
void gen_adst_E_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx) {
int size = 1 << (adst_idx);
for (int i = 0; i < size / 2; i++) {
int ni = i * 2;
double fi = (1 + 4 * i) * 1.0 / (1 << (adst_idx + 1));
gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi);
}
}
void gen_adst_V_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx, int adst_node_num) {
int size = 1 << (adst_idx);
for (int i = 0; i < adst_node_num / size; i++) {
if (i % 2 == 1) {
int ni = i * size;
gen_adst_E_graph(node, stage_num, node_num, stage_idx, node_idx + ni,
adst_idx);
}
}
}
void gen_adst_VJ_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int i = 0; i < adst_node_num / 2; i++) {
int ni = i * 2;
double fi = (1 + 4 * i) * 1.0 / (4 * adst_node_num);
gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi);
}
}
void gen_adst_Q_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order when idx is 1, 3, 5, 7 ...
// example of adst_node_num = 8:
// 0 1 2 3 4 5 6 7
// --> 0 7 2 5 4 3 6 1
for (int ni = 0; ni < adst_node_num; ni++) {
if (ni % 2 == 0) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out,
0);
} else {
int out = node_idx + ni;
int in = node_idx + adst_node_num - ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
}
void gen_adst_Ibar_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order
// 0 1 2 3 --> 3 2 1 0
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + adst_node_num - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
int get_Q_out2in(int adst_node_num, int out) {
int in;
if (out % 2 == 0) {
in = out;
} else {
in = adst_node_num - out;
}
return in;
}
int get_Ibar_out2in(int adst_node_num, int out) {
return adst_node_num - out - 1;
}
void gen_adst_IbarQ_graph(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int adst_node_num) {
// in -> Ibar -> Q -> out
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx +
get_Ibar_out2in(adst_node_num, get_Q_out2in(adst_node_num, ni));
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_adst_D_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = out;
if (ni % 2 == 0) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, -1, in,
0);
}
}
}
int get_hadamard_idx(int x, int adst_node_num) {
int max_bit = get_max_bit(adst_node_num - 1);
x = bitwise_reverse(x, max_bit);
// gray code
int c = x & 1;
int p = x & 1;
int y = c;
for (int i = 1; i <= max_bit; i++) {
p = c;
c = (x >> i) & 1;
y += (c ^ p) << i;
}
return y;
}
void gen_adst_Ht_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + get_hadamard_idx(ni, adst_node_num);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_adst_HtD_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + get_hadamard_idx(ni, adst_node_num);
double inW;
if (ni % 2 == 0)
inW = 1;
else
inW = -1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, inW, in, 0);
}
}
int get_adst_stage_num(int adst_node_num) {
return 2 * get_max_bit(adst_node_num) + 2;
}
int gen_iadst_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
int max_bit = get_max_bit(adst_node_num);
int si = 0;
gen_adst_IbarQ_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
gen_adst_VJ_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
for (int adst_idx = max_bit - 1; adst_idx >= 1; adst_idx--) {
gen_adst_U_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_idx, adst_node_num);
si++;
gen_adst_V_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_idx, adst_node_num);
si++;
}
gen_adst_HtD_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
return si + 1;
}
int gen_adst_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
int hybrid_stage_num = get_hybrid_stage_num(TYPE_ADST, adst_node_num);
// generate a adst tempNode
Node *tempNode = new Node[hybrid_stage_num * adst_node_num];
init_graph(tempNode, hybrid_stage_num, adst_node_num);
int si = gen_iadst_graph(tempNode, hybrid_stage_num, adst_node_num, 0, 0,
adst_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, adst_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
return si;
}
void connect_layer_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
for (int first = 0; first < dct_node_num; first++) {
for (int second = 0; second < dct_node_num; second++) {
// int sIn = stage_idx;
int sOut = stage_idx + 1;
int nIn = node_idx + first * dct_node_num + second;
int nOut = node_idx + second * dct_node_num + first;
// printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut);
connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0);
}
}
}
void connect_layer_2d_new(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int dct_node_num0,
int dct_node_num1) {
for (int i = 0; i < dct_node_num1; i++) {
for (int j = 0; j < dct_node_num0; j++) {
// int sIn = stage_idx;
int sOut = stage_idx + 1;
int nIn = node_idx + i * dct_node_num0 + j;
int nOut = node_idx + j * dct_node_num1 + i;
// printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut);
connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0);
}
}
}
void gen_DCT_graph_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
int dct_stage_num = get_dct_stage_num(dct_node_num);
// put 2 layers of dct_node_num DCTs on the graph
for (int ni = 0; ni < dct_node_num; ni++) {
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * dct_node_num, dct_node_num);
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx + dct_stage_num,
node_idx + ni * dct_node_num, dct_node_num);
}
// connect first layer and second layer
connect_layer_2d(node, stage_num, node_num, stage_idx + dct_stage_num - 1,
node_idx, dct_node_num);
}
int get_hybrid_stage_num(int type, int hybrid_node_num) {
if (type == TYPE_DCT || type == TYPE_IDCT) {
return get_dct_stage_num(hybrid_node_num);
} else if (type == TYPE_ADST || type == TYPE_IADST) {
return get_adst_stage_num(hybrid_node_num);
}
return 0;
}
int get_hybrid_2d_stage_num(int type0, int type1, int hybrid_node_num) {
int stage_num = 0;
stage_num += get_hybrid_stage_num(type0, hybrid_node_num);
stage_num += get_hybrid_stage_num(type1, hybrid_node_num);
return stage_num;
}
int get_hybrid_2d_stage_num_new(int type0, int type1, int hybrid_node_num0,
int hybrid_node_num1) {
int stage_num = 0;
stage_num += get_hybrid_stage_num(type0, hybrid_node_num0);
stage_num += get_hybrid_stage_num(type1, hybrid_node_num1);
return stage_num;
}
int get_hybrid_amplify_factor(int type, int hybrid_node_num) {
return get_max_bit(hybrid_node_num) - 1;
}
void gen_hybrid_graph_1d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int hybrid_node_num, int type) {
if (type == TYPE_DCT) {
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, node_idx,
hybrid_node_num);
} else if (type == TYPE_ADST) {
gen_adst_graph(node, stage_num, node_num, stage_idx, node_idx,
hybrid_node_num);
} else if (type == TYPE_IDCT) {
int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num);
// generate a dct tempNode
Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num];
init_graph(tempNode, hybrid_stage_num, hybrid_node_num);
gen_DCT_graph_1d(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0,
hybrid_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
} else if (type == TYPE_IADST) {
int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num);
// generate a adst tempNode
Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num];
init_graph(tempNode, hybrid_stage_num, hybrid_node_num);
gen_adst_graph(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0,
hybrid_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
}
}
void gen_hybrid_graph_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int hybrid_node_num, int type0,
int type1) {
int hybrid_stage_num = get_hybrid_stage_num(type0, hybrid_node_num);
for (int ni = 0; ni < hybrid_node_num; ni++) {
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * hybrid_node_num, hybrid_node_num,
type0);
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx + hybrid_stage_num,
node_idx + ni * hybrid_node_num, hybrid_node_num,
type1);
}
// connect first layer and second layer
connect_layer_2d(node, stage_num, node_num, stage_idx + hybrid_stage_num - 1,
node_idx, hybrid_node_num);
}
void gen_hybrid_graph_2d_new(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int hybrid_node_num0,
int hybrid_node_num1, int type0, int type1) {
int hybrid_stage_num0 = get_hybrid_stage_num(type0, hybrid_node_num0);
for (int ni = 0; ni < hybrid_node_num1; ni++) {
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * hybrid_node_num0, hybrid_node_num0,
type0);
}
for (int ni = 0; ni < hybrid_node_num0; ni++) {
gen_hybrid_graph_1d(
node, stage_num, node_num, stage_idx + hybrid_stage_num0,
node_idx + ni * hybrid_node_num1, hybrid_node_num1, type1);
}
// connect first layer and second layer
connect_layer_2d_new(node, stage_num, node_num,
stage_idx + hybrid_stage_num0 - 1, node_idx,
hybrid_node_num0, hybrid_node_num1);
}
void gen_inv_graph(Node *node, int stage_num, int node_num, Node *invNode,
int inv_stage_num, int inv_node_num, int inv_stage_idx,
int inv_node_idx) {
// clean up inNodeNum in invNode because of add_node
for (int si = 1 + inv_stage_idx; si < inv_stage_idx + stage_num; si++) {
for (int ni = inv_node_idx; ni < inv_node_idx + node_num; ni++) {
int idx = get_idx(si, ni, inv_node_num);
invNode[idx].inNodeNum = 0;
}
}
// generate inverse graph of node on invNode
for (int si = 1; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int invSi = stage_num - si;
int idx = get_idx(si, ni, node_num);
for (int k = 0; k < node[idx].inNodeNum; k++) {
int invNi = node[idx].inNodeIdx[k];
add_node(invNode, inv_stage_num, inv_node_num, invSi + inv_stage_idx,
invNi + inv_node_idx, ni + inv_node_idx,
node[idx].inWeight[k]);
}
}
}
}