| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/encoder/block.h" |
| #include "av1/encoder/hash.h" |
| #include "av1/encoder/hash_motion.h" |
| |
| #define kSrcBits 16 |
| // kMaxAddr is the number of hash table buckets in p_hash_table->p_lookup_table. |
| // p_hash_table->p_lookup_table consists of 6 hash tables of 1 << kSrcBits |
| // buckets each. Each of the 6 supported block sizes (4, 8, 16, 32, 64, 128) has |
| // its own hash table, indexed by the return value of |
| // hash_block_size_to_index(). |
| #define kMaxAddr (6 << kSrcBits) |
| #define kMaxCandidatesPerHashBucket 256 |
| |
| static void get_pixels_in_1D_char_array_by_block_2x2(const uint8_t *y_src, |
| int stride, |
| uint8_t *p_pixels_in1D) { |
| const uint8_t *p_pel = y_src; |
| int index = 0; |
| for (int i = 0; i < 2; i++) { |
| for (int j = 0; j < 2; j++) { |
| p_pixels_in1D[index++] = p_pel[j]; |
| } |
| p_pel += stride; |
| } |
| } |
| |
| static void get_pixels_in_1D_short_array_by_block_2x2(const uint16_t *y_src, |
| int stride, |
| uint16_t *p_pixels_in1D) { |
| const uint16_t *p_pel = y_src; |
| int index = 0; |
| for (int i = 0; i < 2; i++) { |
| for (int j = 0; j < 2; j++) { |
| p_pixels_in1D[index++] = p_pel[j]; |
| } |
| p_pel += stride; |
| } |
| } |
| |
| // the hash value (hash_value1) consists of two parts, the first 3 bits relate |
| // to the block size and the remaining 16 bits are the crc values. This |
| // function is used to get the first 3 bits. |
| static int hash_block_size_to_index(int block_size) { |
| switch (block_size) { |
| case 4: return 0; |
| case 8: return 1; |
| case 16: return 2; |
| case 32: return 3; |
| case 64: return 4; |
| case 128: return 5; |
| default: return -1; |
| } |
| } |
| |
| static uint32_t get_identity_hash_value(const uint8_t a, const uint8_t b, |
| const uint8_t c, const uint8_t d) { |
| // The four input values add up to 32 bits, which is the size of the output. |
| // Just pack those values as is. |
| return ((uint32_t)a << 24) + ((uint32_t)b << 16) + ((uint32_t)c << 8) + |
| ((uint32_t)d); |
| } |
| |
| static uint32_t get_xor_hash_value_hbd(const uint16_t a, const uint16_t b, |
| const uint16_t c, const uint16_t d) { |
| uint32_t result; |
| // Pack the lower 8 bits of each input value to the 32 bit output, then xor |
| // with the upper 8 bits of each input value. |
| result = ((uint32_t)(a & 0x00ff) << 24) + ((uint32_t)(b & 0x00ff) << 16) + |
| ((uint32_t)(c & 0x00ff) << 8) + ((uint32_t)(d & 0x00ff)); |
| result ^= ((uint32_t)(a & 0xff00) << 16) + ((uint32_t)(b & 0xff00) << 8) + |
| ((uint32_t)(c & 0xff00)) + ((uint32_t)(d & 0xff00) >> 8); |
| return result; |
| } |
| |
| void av1_hash_table_init(IntraBCHashInfo *intrabc_hash_info) { |
| if (!intrabc_hash_info->crc_initialized) { |
| av1_crc32c_calculator_init(&intrabc_hash_info->crc_calculator); |
| intrabc_hash_info->crc_initialized = 1; |
| } |
| intrabc_hash_info->intrabc_hash_table.p_lookup_table = NULL; |
| } |
| |
| static void clear_all(hash_table *p_hash_table) { |
| if (p_hash_table->p_lookup_table == NULL) { |
| return; |
| } |
| for (int i = 0; i < kMaxAddr; i++) { |
| if (p_hash_table->p_lookup_table[i] != NULL) { |
| aom_vector_destroy(p_hash_table->p_lookup_table[i]); |
| aom_free(p_hash_table->p_lookup_table[i]); |
| p_hash_table->p_lookup_table[i] = NULL; |
| } |
| } |
| } |
| |
| void av1_hash_table_destroy(hash_table *p_hash_table) { |
| clear_all(p_hash_table); |
| aom_free(p_hash_table->p_lookup_table); |
| p_hash_table->p_lookup_table = NULL; |
| } |
| |
| bool av1_hash_table_create(hash_table *p_hash_table) { |
| if (p_hash_table->p_lookup_table != NULL) { |
| clear_all(p_hash_table); |
| return true; |
| } |
| p_hash_table->p_lookup_table = |
| (Vector **)aom_calloc(kMaxAddr, sizeof(p_hash_table->p_lookup_table[0])); |
| if (!p_hash_table->p_lookup_table) return false; |
| return true; |
| } |
| |
| static bool hash_table_add_to_table(hash_table *p_hash_table, |
| uint32_t hash_value, |
| const block_hash *curr_block_hash) { |
| if (p_hash_table->p_lookup_table[hash_value] == NULL) { |
| p_hash_table->p_lookup_table[hash_value] = |
| aom_malloc(sizeof(*p_hash_table->p_lookup_table[hash_value])); |
| if (p_hash_table->p_lookup_table[hash_value] == NULL) { |
| return false; |
| } |
| if (aom_vector_setup(p_hash_table->p_lookup_table[hash_value], 10, |
| sizeof(*curr_block_hash)) == VECTOR_ERROR) |
| return false; |
| } |
| // Place an upper bound each hash table bucket to up to 256 intrabc |
| // block candidates, and ignore subsequent ones. Considering more can |
| // unnecessarily slow down encoding for virtually no efficiency gain. |
| if (aom_vector_byte_size(p_hash_table->p_lookup_table[hash_value]) < |
| kMaxCandidatesPerHashBucket * sizeof(*curr_block_hash)) { |
| if (aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], |
| (void *)curr_block_hash) == VECTOR_ERROR) |
| return false; |
| } |
| return true; |
| } |
| |
| int32_t av1_hash_table_count(const hash_table *p_hash_table, |
| uint32_t hash_value) { |
| if (p_hash_table->p_lookup_table[hash_value] == NULL) { |
| return 0; |
| } else { |
| return (int32_t)(p_hash_table->p_lookup_table[hash_value]->size); |
| } |
| } |
| |
| Iterator av1_hash_get_first_iterator(hash_table *p_hash_table, |
| uint32_t hash_value) { |
| assert(av1_hash_table_count(p_hash_table, hash_value) > 0); |
| return aom_vector_begin(p_hash_table->p_lookup_table[hash_value]); |
| } |
| |
| void av1_generate_block_2x2_hash_value(const YV12_BUFFER_CONFIG *picture, |
| uint32_t *pic_block_hash) { |
| const int width = 2; |
| const int height = 2; |
| const int x_end = picture->y_crop_width - width + 1; |
| const int y_end = picture->y_crop_height - height + 1; |
| |
| if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t p[4]; |
| int pos = 0; |
| for (int y_pos = 0; y_pos < y_end; y_pos++) { |
| for (int x_pos = 0; x_pos < x_end; x_pos++) { |
| get_pixels_in_1D_short_array_by_block_2x2( |
| CONVERT_TO_SHORTPTR(picture->y_buffer) + y_pos * picture->y_stride + |
| x_pos, |
| picture->y_stride, p); |
| // For HBD, we either have 40 or 48 bits of input data that the xor hash |
| // reduce to 32 bits. We intentionally don't want to "discard" bits to |
| // avoid any kind of biasing. |
| pic_block_hash[pos] = get_xor_hash_value_hbd(p[0], p[1], p[2], p[3]); |
| pos++; |
| } |
| pos += width - 1; |
| } |
| } else { |
| uint8_t p[4]; |
| int pos = 0; |
| for (int y_pos = 0; y_pos < y_end; y_pos++) { |
| for (int x_pos = 0; x_pos < x_end; x_pos++) { |
| get_pixels_in_1D_char_array_by_block_2x2( |
| picture->y_buffer + y_pos * picture->y_stride + x_pos, |
| picture->y_stride, p); |
| // This 2x2 hash isn't used directly as a "key" for the hash table, so |
| // we can afford to just copy the 4 8-bit pixel values as a single |
| // 32-bit value directly. (i.e. there are no concerns of a lack of |
| // uniform distribution) |
| pic_block_hash[pos] = get_identity_hash_value(p[0], p[1], p[2], p[3]); |
| pos++; |
| } |
| pos += width - 1; |
| } |
| } |
| } |
| |
| void av1_generate_block_hash_value(IntraBCHashInfo *intrabc_hash_info, |
| const YV12_BUFFER_CONFIG *picture, |
| int block_size, |
| const uint32_t *src_pic_block_hash, |
| uint32_t *dst_pic_block_hash) { |
| CRC32C *calc = &intrabc_hash_info->crc_calculator; |
| |
| const int pic_width = picture->y_crop_width; |
| const int x_end = picture->y_crop_width - block_size + 1; |
| const int y_end = picture->y_crop_height - block_size + 1; |
| const int src_size = block_size >> 1; |
| |
| uint32_t p[4]; |
| const int length = sizeof(p); |
| |
| int pos = 0; |
| for (int y_pos = 0; y_pos < y_end; y_pos++) { |
| for (int x_pos = 0; x_pos < x_end; x_pos++) { |
| // Build up a bigger block from 4 smaller, non-overlapping source block |
| // hashes, and compute its hash. Note: source blocks at the right and |
| // bottom borders cannot be part of larger blocks, therefore they won't be |
| // considered into the block hash value generation process. |
| p[0] = src_pic_block_hash[pos]; |
| p[1] = src_pic_block_hash[pos + src_size]; |
| p[2] = src_pic_block_hash[pos + src_size * pic_width]; |
| p[3] = src_pic_block_hash[pos + src_size * pic_width + src_size]; |
| // TODO: bug aomedia:433531610 - serialize input values in a way that's |
| // independent of the computer architecture's endianness |
| dst_pic_block_hash[pos] = |
| av1_get_crc32c_value(calc, (uint8_t *)p, length); |
| pos++; |
| } |
| pos += block_size - 1; |
| } |
| } |
| |
| bool av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table, |
| const uint32_t *pic_hash, |
| int pic_width, int pic_height, |
| int block_size) { |
| const int x_end = pic_width - block_size + 1; |
| const int y_end = pic_height - block_size + 1; |
| |
| int add_value = hash_block_size_to_index(block_size); |
| assert(add_value >= 0); |
| add_value <<= kSrcBits; |
| const int crc_mask = (1 << kSrcBits) - 1; |
| int step = block_size; |
| int x_offset = 0; |
| int y_offset = 0; |
| |
| // Explore the entire frame hierarchically to add intrabc candidate blocks to |
| // the hash table, by starting with coarser steps (the block size), towards |
| // finer-grained steps until every candidate block has been considered. |
| // The nested for loop goes through the pic_hash array column by column. |
| |
| // Doing a hierarchical block exploration helps maximize spatial dispersion |
| // of the first and foremost candidate blocks while minimizing overlap between |
| // them. This is helpful because we only keep up to 256 entries of the |
| // same candidate block (located in different places), so we want those |
| // entries to cover the biggest area of the image to encode to maximize coding |
| // efficiency. |
| |
| // This is the coordinate exploration order example for an 8x8 region, with |
| // block_size = 4. The top-left corner (x, y) coordinates of each candidate |
| // block are shown below. There are 5 * 5 (25) candidate blocks. |
| // x 0 1 2 3 4 5 6 7 |
| // y +------------------------ |
| // 0 | 1 10 5 13 3 |
| // 1 | 16 22 18 24 20 |
| // 2 | 7 11 9 14 8 |
| // 3 | 17 23 19 25 21 |
| // 4 | 2 12 6 15 4--------+ |
| // 5 | | 4 x 4 | |
| // 6 | | block | |
| // 7 | +--------+ |
| |
| // Please note that due to the way block exploration works, the smallest step |
| // used is 2 (i.e. no two adjacent blocks will be explored consecutively). |
| // Also, the exploration is designed to visit each block candidate only once. |
| while (step > 1) { |
| for (int x_pos = x_offset; x_pos < x_end; x_pos += step) { |
| for (int y_pos = y_offset; y_pos < y_end; y_pos += step) { |
| const int pos = y_pos * pic_width + x_pos; |
| block_hash curr_block_hash; |
| |
| curr_block_hash.x = x_pos; |
| curr_block_hash.y = y_pos; |
| |
| const uint32_t hash_value1 = (pic_hash[pos] & crc_mask) + add_value; |
| curr_block_hash.hash_value2 = pic_hash[pos]; |
| |
| if (!hash_table_add_to_table(p_hash_table, hash_value1, |
| &curr_block_hash)) { |
| return false; |
| } |
| } |
| } |
| |
| // Adjust offsets and step sizes with this state machine. |
| // State 0 is needed because no blocks in pic_hash have been explored, |
| // so exploration requires a way to account for blocks with both zero |
| // x_offset and zero y_offset. |
| // State 0 is always meant to be executed first, but the relative order of |
| // states 1, 2 and 3 can be arbitrary, as long as no two adjacent blocks |
| // are explored consecutively. |
| if (x_offset == 0 && y_offset == 0) { |
| // State 0 -> State 1: special case |
| // This state transition will only execute when step == block_size |
| x_offset = step / 2; |
| } else if (x_offset == step / 2 && y_offset == 0) { |
| // State 1 -> State 2 |
| x_offset = 0; |
| y_offset = step / 2; |
| } else if (x_offset == 0 && y_offset == step / 2) { |
| // State 2 -> State 3 |
| x_offset = step / 2; |
| } else { |
| assert(x_offset == step / 2 && y_offset == step / 2); |
| // State 3 -> State 1: We've fully explored all the coordinates for the |
| // current step size, continue by halving the step size |
| step /= 2; |
| x_offset = step / 2; |
| y_offset = 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture, |
| int block_size, int x_start, int y_start) { |
| const int stride = picture->y_stride; |
| const uint8_t *p = picture->y_buffer + y_start * stride + x_start; |
| |
| if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { |
| const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); |
| for (int i = 0; i < block_size; i++) { |
| for (int j = 1; j < block_size; j++) { |
| if (p16[j] != p16[0]) { |
| return 0; |
| } |
| } |
| p16 += stride; |
| } |
| } else { |
| for (int i = 0; i < block_size; i++) { |
| for (int j = 1; j < block_size; j++) { |
| if (p[j] != p[0]) { |
| return 0; |
| } |
| } |
| p += stride; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture, |
| int block_size, int x_start, int y_start) { |
| const int stride = picture->y_stride; |
| const uint8_t *p = picture->y_buffer + y_start * stride + x_start; |
| |
| if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { |
| const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); |
| for (int i = 0; i < block_size; i++) { |
| for (int j = 1; j < block_size; j++) { |
| if (p16[j * stride + i] != p16[i]) { |
| return 0; |
| } |
| } |
| } |
| } else { |
| for (int i = 0; i < block_size; i++) { |
| for (int j = 1; j < block_size; j++) { |
| if (p[j * stride + i] != p[i]) { |
| return 0; |
| } |
| } |
| } |
| } |
| return 1; |
| } |
| |
| void av1_get_block_hash_value(IntraBCHashInfo *intra_bc_hash_info, |
| const uint8_t *y_src, int stride, int block_size, |
| uint32_t *hash_value1, uint32_t *hash_value2, |
| int use_highbitdepth) { |
| int add_value = hash_block_size_to_index(block_size); |
| assert(add_value >= 0); |
| add_value <<= kSrcBits; |
| const int crc_mask = (1 << kSrcBits) - 1; |
| |
| CRC32C *calc = &intra_bc_hash_info->crc_calculator; |
| uint32_t **buf = intra_bc_hash_info->hash_value_buffer; |
| |
| // 2x2 subblock hash values in current CU |
| int sub_block_in_width = (block_size >> 1); |
| if (use_highbitdepth) { |
| uint16_t pixel_to_hash[4]; |
| uint16_t *y16_src = CONVERT_TO_SHORTPTR(y_src); |
| for (int y_pos = 0; y_pos < block_size; y_pos += 2) { |
| for (int x_pos = 0; x_pos < block_size; x_pos += 2) { |
| int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); |
| get_pixels_in_1D_short_array_by_block_2x2( |
| y16_src + y_pos * stride + x_pos, stride, pixel_to_hash); |
| assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); |
| // For HBD, we either have 40 or 48 bits of input data that the xor hash |
| // reduce to 32 bits. We intentionally don't want to "discard" bits to |
| // avoid any kind of biasing. |
| buf[0][pos] = |
| get_xor_hash_value_hbd(pixel_to_hash[0], pixel_to_hash[1], |
| pixel_to_hash[2], pixel_to_hash[3]); |
| } |
| } |
| } else { |
| uint8_t pixel_to_hash[4]; |
| for (int y_pos = 0; y_pos < block_size; y_pos += 2) { |
| for (int x_pos = 0; x_pos < block_size; x_pos += 2) { |
| int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); |
| get_pixels_in_1D_char_array_by_block_2x2(y_src + y_pos * stride + x_pos, |
| stride, pixel_to_hash); |
| assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); |
| // This 2x2 hash isn't used directly as a "key" for the hash table, so |
| // we can afford to just copy the 4 8-bit pixel values as a single |
| // 32-bit value directly. (i.e. there are no concerns of a lack of |
| // uniform distribution) |
| buf[0][pos] = |
| get_identity_hash_value(pixel_to_hash[0], pixel_to_hash[1], |
| pixel_to_hash[2], pixel_to_hash[3]); |
| } |
| } |
| } |
| |
| int src_sub_block_in_width = sub_block_in_width; |
| sub_block_in_width >>= 1; |
| |
| int src_idx = 0; |
| int dst_idx = !src_idx; |
| |
| // 4x4 subblock hash values to current block hash values |
| uint32_t to_hash[4]; |
| for (int sub_width = 4; sub_width <= block_size; |
| sub_width *= 2, src_idx = !src_idx) { |
| dst_idx = !src_idx; |
| |
| int dst_pos = 0; |
| for (int y_pos = 0; y_pos < sub_block_in_width; y_pos++) { |
| for (int x_pos = 0; x_pos < sub_block_in_width; x_pos++) { |
| int srcPos = (y_pos << 1) * src_sub_block_in_width + (x_pos << 1); |
| |
| assert(srcPos + 1 < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); |
| assert(srcPos + src_sub_block_in_width + 1 < |
| AOM_BUFFER_SIZE_FOR_BLOCK_HASH); |
| assert(dst_pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); |
| |
| to_hash[0] = buf[src_idx][srcPos]; |
| to_hash[1] = buf[src_idx][srcPos + 1]; |
| to_hash[2] = buf[src_idx][srcPos + src_sub_block_in_width]; |
| to_hash[3] = buf[src_idx][srcPos + src_sub_block_in_width + 1]; |
| |
| // TODO: bug aomedia:433531610 - serialize input values in a way that's |
| // independent of the computer architecture's endianness |
| buf[dst_idx][dst_pos] = |
| av1_get_crc32c_value(calc, (uint8_t *)to_hash, sizeof(to_hash)); |
| dst_pos++; |
| } |
| } |
| |
| src_sub_block_in_width = sub_block_in_width; |
| sub_block_in_width >>= 1; |
| } |
| |
| *hash_value1 = (buf[dst_idx][0] & crc_mask) + add_value; |
| *hash_value2 = buf[dst_idx][0]; |
| } |