| // Copyright 2021 Google LLC |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // clang-format off |
| #if defined(HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_) == defined(HWY_TARGET_TOGGLE) // NOLINT |
| // clang-format on |
| #ifdef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ |
| #undef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ |
| #else |
| #define HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ |
| #endif |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "third_party/highway/hwy/highway.h" |
| |
| HWY_BEFORE_NAMESPACE(); |
| namespace hwy { |
| namespace HWY_NAMESPACE { |
| |
| // NOTE: the D argument describes the inputs, not the output, because both |
| // f32/f32, bf16/bf16, and f32/bf16 inputs accumulate to f32. |
| struct Dot { |
| // Specify zero or more of these, ORed together, as the kAssumptions template |
| // argument to Compute. Each one may improve performance or reduce code size, |
| // at the cost of additional requirements on the arguments. |
| enum Assumptions { |
| // num_elements is at least N, which may be up to HWY_MAX_BYTES / sizeof(T). |
| kAtLeastOneVector = 1, |
| // num_elements is divisible by N (a power of two, so this can be used if |
| // the problem size is known to be a power of two >= HWY_MAX_BYTES / |
| // sizeof(T)). |
| kMultipleOfVector = 2, |
| // RoundUpTo(num_elements, N) elements are accessible; their value does not |
| // matter (will be treated as if they were zero). |
| kPaddedToVector = 4, |
| }; |
| |
| // Returns sum{pa[i] * pb[i]} for floating-point inputs, including float16_t |
| // and double if HWY_HAVE_FLOAT16/64. Aligning the |
| // pointers to a multiple of N elements is helpful but not required. |
| template <int kAssumptions, class D, typename T = TFromD<D>> |
| static HWY_INLINE T Compute(const D d, const T* const HWY_RESTRICT pa, |
| const T* const HWY_RESTRICT pb, |
| const size_t num_elements) { |
| static_assert(IsFloat<T>(), "MulAdd requires float type"); |
| using V = decltype(Zero(d)); |
| |
| HWY_LANES_CONSTEXPR size_t N = Lanes(d); |
| size_t i = 0; |
| |
| constexpr bool kIsAtLeastOneVector = |
| (kAssumptions & kAtLeastOneVector) != 0; |
| constexpr bool kIsMultipleOfVector = |
| (kAssumptions & kMultipleOfVector) != 0; |
| constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; |
| |
| // Won't be able to do a full vector load without padding => scalar loop. |
| if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && |
| HWY_UNLIKELY(num_elements < N)) { |
| // Only 2x unroll to avoid excessive code size. |
| T sum0 = ConvertScalarTo<T>(0); |
| T sum1 = ConvertScalarTo<T>(0); |
| for (; i + 2 <= num_elements; i += 2) { |
| // For reasons unknown, fp16 += does not compile on clang (Arm). |
| sum0 = ConvertScalarTo<T>(sum0 + pa[i + 0] * pb[i + 0]); |
| sum1 = ConvertScalarTo<T>(sum1 + pa[i + 1] * pb[i + 1]); |
| } |
| if (i < num_elements) { |
| sum1 = ConvertScalarTo<T>(sum1 + pa[i] * pb[i]); |
| } |
| return ConvertScalarTo<T>(sum0 + sum1); |
| } |
| |
| // Compiler doesn't make independent sum* accumulators, so unroll manually. |
| // 2 FMA ports * 4 cycle latency = up to 8 in-flight, but that is excessive |
| // for unaligned inputs (each unaligned pointer halves the throughput |
| // because it occupies both L1 load ports for a cycle). We cannot have |
| // arrays of vectors on RVV/SVE, so always unroll 4x. |
| V sum0 = Zero(d); |
| V sum1 = Zero(d); |
| V sum2 = Zero(d); |
| V sum3 = Zero(d); |
| |
| // Main loop: unrolled |
| for (; i + 4 * N <= num_elements; /* i += 4 * N */) { // incr in loop |
| const auto a0 = LoadU(d, pa + i); |
| const auto b0 = LoadU(d, pb + i); |
| i += N; |
| sum0 = MulAdd(a0, b0, sum0); |
| const auto a1 = LoadU(d, pa + i); |
| const auto b1 = LoadU(d, pb + i); |
| i += N; |
| sum1 = MulAdd(a1, b1, sum1); |
| const auto a2 = LoadU(d, pa + i); |
| const auto b2 = LoadU(d, pb + i); |
| i += N; |
| sum2 = MulAdd(a2, b2, sum2); |
| const auto a3 = LoadU(d, pa + i); |
| const auto b3 = LoadU(d, pb + i); |
| i += N; |
| sum3 = MulAdd(a3, b3, sum3); |
| } |
| |
| // Up to 3 iterations of whole vectors |
| for (; i + N <= num_elements; i += N) { |
| const auto a = LoadU(d, pa + i); |
| const auto b = LoadU(d, pb + i); |
| sum0 = MulAdd(a, b, sum0); |
| } |
| |
| if (!kIsMultipleOfVector) { |
| const size_t remaining = num_elements - i; |
| if (remaining != 0) { |
| if (kIsPaddedToVector) { |
| const auto mask = FirstN(d, remaining); |
| const auto a = LoadU(d, pa + i); |
| const auto b = LoadU(d, pb + i); |
| sum1 = MulAdd(IfThenElseZero(mask, a), IfThenElseZero(mask, b), sum1); |
| } else { |
| // Unaligned load such that the last element is in the highest lane - |
| // ensures we do not touch any elements outside the valid range. |
| // If we get here, then num_elements >= N. |
| HWY_DASSERT(i >= N); |
| i += remaining - N; |
| const auto skip = FirstN(d, N - remaining); |
| const auto a = LoadU(d, pa + i); // always unaligned |
| const auto b = LoadU(d, pb + i); |
| sum1 = MulAdd(IfThenZeroElse(skip, a), IfThenZeroElse(skip, b), sum1); |
| } |
| } |
| } // kMultipleOfVector |
| |
| // Reduction tree: sum of all accumulators by pairs, then across lanes. |
| sum0 = Add(sum0, sum1); |
| sum2 = Add(sum2, sum3); |
| sum0 = Add(sum0, sum2); |
| return ReduceSum(d, sum0); |
| } |
| |
| // f32 * bf16 |
| template <int kAssumptions, class DF, HWY_IF_F32_D(DF)> |
| static HWY_INLINE float Compute(const DF df, |
| const float* const HWY_RESTRICT pa, |
| const hwy::bfloat16_t* const HWY_RESTRICT pb, |
| const size_t num_elements) { |
| #if HWY_TARGET == HWY_SCALAR |
| const Rebind<hwy::bfloat16_t, DF> dbf; |
| #else |
| const Repartition<hwy::bfloat16_t, DF> dbf; |
| using VBF = decltype(Zero(dbf)); |
| #endif |
| const Half<decltype(dbf)> dbfh; |
| using VF = decltype(Zero(df)); |
| |
| HWY_LANES_CONSTEXPR size_t NF = Lanes(df); |
| |
| constexpr bool kIsAtLeastOneVector = |
| (kAssumptions & kAtLeastOneVector) != 0; |
| constexpr bool kIsMultipleOfVector = |
| (kAssumptions & kMultipleOfVector) != 0; |
| constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; |
| |
| // Won't be able to do a full vector load without padding => scalar loop. |
| if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && |
| HWY_UNLIKELY(num_elements < NF)) { |
| // Only 2x unroll to avoid excessive code size. |
| float sum0 = 0.0f; |
| float sum1 = 0.0f; |
| size_t i = 0; |
| for (; i + 2 <= num_elements; i += 2) { |
| sum0 += pa[i + 0] * ConvertScalarTo<float>(pb[i + 0]); |
| sum1 += pa[i + 1] * ConvertScalarTo<float>(pb[i + 1]); |
| } |
| for (; i < num_elements; ++i) { |
| sum1 += pa[i] * ConvertScalarTo<float>(pb[i]); |
| } |
| return sum0 + sum1; |
| } |
| |
| // Compiler doesn't make independent sum* accumulators, so unroll manually. |
| // 2 FMA ports * 4 cycle latency = up to 8 in-flight, but that is excessive |
| // for unaligned inputs (each unaligned pointer halves the throughput |
| // because it occupies both L1 load ports for a cycle). We cannot have |
| // arrays of vectors on RVV/SVE, so always unroll 4x. |
| VF sum0 = Zero(df); |
| VF sum1 = Zero(df); |
| VF sum2 = Zero(df); |
| VF sum3 = Zero(df); |
| |
| size_t i = 0; |
| |
| #if HWY_TARGET != HWY_SCALAR // PromoteUpperTo supported |
| // Main loop: unrolled |
| for (; i + 4 * NF <= num_elements; /* i += 4 * N */) { // incr in loop |
| const VF a0 = LoadU(df, pa + i); |
| const VBF b0 = LoadU(dbf, pb + i); |
| i += NF; |
| sum0 = MulAdd(a0, PromoteLowerTo(df, b0), sum0); |
| const VF a1 = LoadU(df, pa + i); |
| i += NF; |
| sum1 = MulAdd(a1, PromoteUpperTo(df, b0), sum1); |
| const VF a2 = LoadU(df, pa + i); |
| const VBF b2 = LoadU(dbf, pb + i); |
| i += NF; |
| sum2 = MulAdd(a2, PromoteLowerTo(df, b2), sum2); |
| const VF a3 = LoadU(df, pa + i); |
| i += NF; |
| sum3 = MulAdd(a3, PromoteUpperTo(df, b2), sum3); |
| } |
| #endif // HWY_TARGET == HWY_SCALAR |
| |
| // Up to 3 iterations of whole vectors |
| for (; i + NF <= num_elements; i += NF) { |
| const VF a = LoadU(df, pa + i); |
| const VF b = PromoteTo(df, LoadU(dbfh, pb + i)); |
| sum0 = MulAdd(a, b, sum0); |
| } |
| |
| if (!kIsMultipleOfVector) { |
| const size_t remaining = num_elements - i; |
| if (remaining != 0) { |
| if (kIsPaddedToVector) { |
| const auto mask = FirstN(df, remaining); |
| const VF a = LoadU(df, pa + i); |
| const VF b = PromoteTo(df, LoadU(dbfh, pb + i)); |
| sum1 = MulAdd(IfThenElseZero(mask, a), IfThenElseZero(mask, b), sum1); |
| } else { |
| // Unaligned load such that the last element is in the highest lane - |
| // ensures we do not touch any elements outside the valid range. |
| // If we get here, then num_elements >= N. |
| HWY_DASSERT(i >= NF); |
| i += remaining - NF; |
| const auto skip = FirstN(df, NF - remaining); |
| const VF a = LoadU(df, pa + i); // always unaligned |
| const VF b = PromoteTo(df, LoadU(dbfh, pb + i)); |
| sum1 = MulAdd(IfThenZeroElse(skip, a), IfThenZeroElse(skip, b), sum1); |
| } |
| } |
| } // kMultipleOfVector |
| |
| // Reduction tree: sum of all accumulators by pairs, then across lanes. |
| sum0 = Add(sum0, sum1); |
| sum2 = Add(sum2, sum3); |
| sum0 = Add(sum0, sum2); |
| return ReduceSum(df, sum0); |
| } |
| |
| // Returns sum{pa[i] * pb[i]} for bfloat16 inputs. Aligning the pointers to a |
| // multiple of N elements is helpful but not required. |
| template <int kAssumptions, class D, HWY_IF_BF16_D(D)> |
| static HWY_INLINE float Compute(const D d, |
| const bfloat16_t* const HWY_RESTRICT pa, |
| const bfloat16_t* const HWY_RESTRICT pb, |
| const size_t num_elements) { |
| const RebindToUnsigned<D> du16; |
| const Repartition<float, D> df32; |
| |
| using V = decltype(Zero(df32)); |
| HWY_LANES_CONSTEXPR size_t N = Lanes(d); |
| size_t i = 0; |
| |
| constexpr bool kIsAtLeastOneVector = |
| (kAssumptions & kAtLeastOneVector) != 0; |
| constexpr bool kIsMultipleOfVector = |
| (kAssumptions & kMultipleOfVector) != 0; |
| constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; |
| |
| // Won't be able to do a full vector load without padding => scalar loop. |
| if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && |
| HWY_UNLIKELY(num_elements < N)) { |
| float sum0 = 0.0f; // Only 2x unroll to avoid excessive code size for.. |
| float sum1 = 0.0f; // this unlikely(?) case. |
| for (; i + 2 <= num_elements; i += 2) { |
| sum0 += F32FromBF16(pa[i + 0]) * F32FromBF16(pb[i + 0]); |
| sum1 += F32FromBF16(pa[i + 1]) * F32FromBF16(pb[i + 1]); |
| } |
| if (i < num_elements) { |
| sum1 += F32FromBF16(pa[i]) * F32FromBF16(pb[i]); |
| } |
| return sum0 + sum1; |
| } |
| |
| // See comment in the other Compute() overload. Unroll 2x, but we need |
| // twice as many sums for ReorderWidenMulAccumulate. |
| V sum0 = Zero(df32); |
| V sum1 = Zero(df32); |
| V sum2 = Zero(df32); |
| V sum3 = Zero(df32); |
| |
| // Main loop: unrolled |
| for (; i + 2 * N <= num_elements; /* i += 2 * N */) { // incr in loop |
| const auto a0 = LoadU(d, pa + i); |
| const auto b0 = LoadU(d, pb + i); |
| i += N; |
| sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1); |
| const auto a1 = LoadU(d, pa + i); |
| const auto b1 = LoadU(d, pb + i); |
| i += N; |
| sum2 = ReorderWidenMulAccumulate(df32, a1, b1, sum2, sum3); |
| } |
| |
| // Possibly one more iteration of whole vectors |
| if (i + N <= num_elements) { |
| const auto a0 = LoadU(d, pa + i); |
| const auto b0 = LoadU(d, pb + i); |
| i += N; |
| sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1); |
| } |
| |
| if (!kIsMultipleOfVector) { |
| const size_t remaining = num_elements - i; |
| if (remaining != 0) { |
| if (kIsPaddedToVector) { |
| const auto mask = FirstN(du16, remaining); |
| const auto va = LoadU(d, pa + i); |
| const auto vb = LoadU(d, pb + i); |
| const auto a16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, va))); |
| const auto b16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, vb))); |
| sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3); |
| |
| } else { |
| // Unaligned load such that the last element is in the highest lane - |
| // ensures we do not touch any elements outside the valid range. |
| // If we get here, then num_elements >= N. |
| HWY_DASSERT(i >= N); |
| i += remaining - N; |
| const auto skip = FirstN(du16, N - remaining); |
| const auto va = LoadU(d, pa + i); // always unaligned |
| const auto vb = LoadU(d, pb + i); |
| const auto a16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, va))); |
| const auto b16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, vb))); |
| sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3); |
| } |
| } |
| } // kMultipleOfVector |
| |
| // Reduction tree: sum of all accumulators by pairs, then across lanes. |
| sum0 = Add(sum0, sum1); |
| sum2 = Add(sum2, sum3); |
| sum0 = Add(sum0, sum2); |
| return ReduceSum(df32, sum0); |
| } |
| |
| // Returns sum{i32(pa[i]) * i32(pb[i])} for i16 inputs. Aligning the pointers |
| // to a multiple of N elements is helpful but not required. |
| template <int kAssumptions, class D, HWY_IF_I16_D(D)> |
| static HWY_INLINE int32_t Compute(const D d, |
| const int16_t* const HWY_RESTRICT pa, |
| const int16_t* const HWY_RESTRICT pb, |
| const size_t num_elements) { |
| const RebindToUnsigned<D> du16; |
| const RepartitionToWide<D> di32; |
| |
| using VI32 = Vec<decltype(di32)>; |
| HWY_LANES_CONSTEXPR size_t N = Lanes(d); |
| size_t i = 0; |
| |
| constexpr bool kIsAtLeastOneVector = |
| (kAssumptions & kAtLeastOneVector) != 0; |
| constexpr bool kIsMultipleOfVector = |
| (kAssumptions & kMultipleOfVector) != 0; |
| constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0; |
| |
| // Won't be able to do a full vector load without padding => scalar loop. |
| if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector && |
| HWY_UNLIKELY(num_elements < N)) { |
| int32_t sum0 = 0; // Only 2x unroll to avoid excessive code size for.. |
| int32_t sum1 = 0; // this unlikely(?) case. |
| for (; i + 2 <= num_elements; i += 2) { |
| sum0 += int32_t{pa[i + 0]} * int32_t{pb[i + 0]}; |
| sum1 += int32_t{pa[i + 1]} * int32_t{pb[i + 1]}; |
| } |
| if (i < num_elements) { |
| sum1 += int32_t{pa[i]} * int32_t{pb[i]}; |
| } |
| return sum0 + sum1; |
| } |
| |
| // See comment in the other Compute() overload. Unroll 2x, but we need |
| // twice as many sums for ReorderWidenMulAccumulate. |
| VI32 sum0 = Zero(di32); |
| VI32 sum1 = Zero(di32); |
| VI32 sum2 = Zero(di32); |
| VI32 sum3 = Zero(di32); |
| |
| // Main loop: unrolled |
| for (; i + 2 * N <= num_elements; /* i += 2 * N */) { // incr in loop |
| const auto a0 = LoadU(d, pa + i); |
| const auto b0 = LoadU(d, pb + i); |
| i += N; |
| sum0 = ReorderWidenMulAccumulate(di32, a0, b0, sum0, sum1); |
| const auto a1 = LoadU(d, pa + i); |
| const auto b1 = LoadU(d, pb + i); |
| i += N; |
| sum2 = ReorderWidenMulAccumulate(di32, a1, b1, sum2, sum3); |
| } |
| |
| // Possibly one more iteration of whole vectors |
| if (i + N <= num_elements) { |
| const auto a0 = LoadU(d, pa + i); |
| const auto b0 = LoadU(d, pb + i); |
| i += N; |
| sum0 = ReorderWidenMulAccumulate(di32, a0, b0, sum0, sum1); |
| } |
| |
| if (!kIsMultipleOfVector) { |
| const size_t remaining = num_elements - i; |
| if (remaining != 0) { |
| if (kIsPaddedToVector) { |
| const auto mask = FirstN(du16, remaining); |
| const auto va = LoadU(d, pa + i); |
| const auto vb = LoadU(d, pb + i); |
| const auto a16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, va))); |
| const auto b16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, vb))); |
| sum2 = ReorderWidenMulAccumulate(di32, a16, b16, sum2, sum3); |
| |
| } else { |
| // Unaligned load such that the last element is in the highest lane - |
| // ensures we do not touch any elements outside the valid range. |
| // If we get here, then num_elements >= N. |
| HWY_DASSERT(i >= N); |
| i += remaining - N; |
| const auto skip = FirstN(du16, N - remaining); |
| const auto va = LoadU(d, pa + i); // always unaligned |
| const auto vb = LoadU(d, pb + i); |
| const auto a16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, va))); |
| const auto b16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, vb))); |
| sum2 = ReorderWidenMulAccumulate(di32, a16, b16, sum2, sum3); |
| } |
| } |
| } // kMultipleOfVector |
| |
| // Reduction tree: sum of all accumulators by pairs, then across lanes. |
| sum0 = Add(sum0, sum1); |
| sum2 = Add(sum2, sum3); |
| sum0 = Add(sum0, sum2); |
| return ReduceSum(di32, sum0); |
| } |
| }; |
| |
| // NOLINTNEXTLINE(google-readability-namespace-comments) |
| } // namespace HWY_NAMESPACE |
| } // namespace hwy |
| HWY_AFTER_NAMESPACE(); |
| |
| #endif // HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_ |