| // Copyright 2020 Google LLC |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Per-target definitions shared by ops/*.h and user code. |
| |
| // IWYU pragma: begin_exports |
| // Export does not seem to be recursive, so re-export these (also in base.h) |
| #include <stddef.h> |
| |
| #include "third_party/highway/hwy/base.h" |
| // "IWYU pragma: keep" does not work for this include, so hide it from the IDE. |
| #if !HWY_IDE |
| #include <stdint.h> |
| #endif |
| |
| #include "third_party/highway/hwy/detect_compiler_arch.h" |
| #include "third_party/highway/hwy/detect_targets.h" |
| |
| // Separate header because foreach_target.h re-enables its include guard. |
| #include "third_party/highway/hwy/ops/set_macros-inl.h" |
| |
| // IWYU pragma: end_exports |
| |
| #if HWY_IS_MSAN |
| #include <sanitizer/msan_interface.h> |
| #endif |
| |
| // We are covered by the highway.h include guard, but generic_ops-inl.h |
| // includes this again #if HWY_IDE. |
| // clang-format off |
| #if defined(HIGHWAY_HWY_OPS_SHARED_TOGGLE) == defined(HWY_TARGET_TOGGLE) // NOLINT |
| // clang-format on |
| #ifdef HIGHWAY_HWY_OPS_SHARED_TOGGLE |
| #undef HIGHWAY_HWY_OPS_SHARED_TOGGLE |
| #else |
| #define HIGHWAY_HWY_OPS_SHARED_TOGGLE |
| #endif |
| |
| HWY_BEFORE_NAMESPACE(); |
| namespace hwy { |
| namespace HWY_NAMESPACE { |
| |
| // NOTE: GCC generates incorrect code for vector arguments to non-inlined |
| // functions in two situations: |
| // - on Windows and GCC 10.3, passing by value crashes due to unaligned loads: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412. |
| // - on aarch64 and GCC 9.3.0 or 11.2.1, passing by value causes many (but not |
| // all) tests to fail. |
| // |
| // We therefore pass by const& only on GCC and (Windows or aarch64). This alias |
| // must be used for all vector/mask parameters of functions marked HWY_NOINLINE, |
| // and possibly also other functions that are not inlined. |
| // |
| // Even better is to avoid passing vector arguments to non-inlined functions, |
| // because the SVE and RISC-V ABIs are still works in progress and may lead to |
| // incorrect codegen. |
| #if HWY_COMPILER_GCC_ACTUAL && (HWY_OS_WIN || HWY_ARCH_ARM_A64) |
| template <class V> |
| using VecArg = const V&; |
| #else |
| template <class V> |
| using VecArg = V; |
| #endif |
| |
| namespace detail { |
| |
| template <typename T> |
| struct NativeLaneTypeT { |
| using type = T; |
| }; |
| template <> |
| struct NativeLaneTypeT<hwy::float16_t> { |
| #if HWY_HAVE_SCALAR_F16_TYPE |
| using type = hwy::float16_t::Native; |
| #else |
| using type = uint16_t; |
| #endif |
| }; |
| template <> |
| struct NativeLaneTypeT<hwy::bfloat16_t> { |
| #if HWY_HAVE_SCALAR_BF16_TYPE |
| using type = hwy::bfloat16_t::Native; |
| #else |
| using type = uint16_t; |
| #endif |
| }; |
| |
| // The type expected by intrinsics for the given Highway lane type T. This |
| // usually matches T, but differs for our wrapper types [b]float16_t. Use this |
| // only when defining intrinsic wrappers, and NOT for casting, which is UB. |
| template <typename T> |
| using NativeLaneType = typename NativeLaneTypeT<T>::type; |
| |
| // Returns the same pointer after changing type to NativeLaneType. Use this only |
| // for wrapper functions that call intrinsics (e.g. load/store) where some of |
| // the overloads expect _Float16* or __bf16* arguments. For non-special floats, |
| // this returns the same pointer and type. |
| // |
| // This makes use of the fact that a wrapper struct is pointer-interconvertible |
| // with its first member (a union), thus also with the union members. Do NOT |
| // call both this and U16LanePointer on the same object - they access different |
| // union members, and this is not guaranteed to be safe. |
| template <typename T, HWY_IF_NOT_SPECIAL_FLOAT(T)> |
| HWY_INLINE T* NativeLanePointer(T* p) { |
| return p; |
| } |
| template <typename T, typename NT = NativeLaneType<RemoveConst<T>>, |
| HWY_IF_F16(T)> |
| HWY_INLINE constexpr If<IsConst<T>(), const NT*, NT*> NativeLanePointer(T* p) { |
| #if HWY_HAVE_SCALAR_F16_TYPE |
| return &p->native; |
| #else |
| return &p->bits; |
| #endif |
| } |
| template <typename T, typename NT = NativeLaneType<RemoveConst<T>>, |
| HWY_IF_BF16(T)> |
| HWY_INLINE constexpr If<IsConst<T>(), const NT*, NT*> NativeLanePointer(T* p) { |
| #if HWY_HAVE_SCALAR_BF16_TYPE |
| return &p->native; |
| #else |
| return &p->bits; |
| #endif |
| } |
| |
| // Returns a pointer to the u16 member of our [b]float16_t wrapper structs. |
| // Use this in Highway targets that lack __bf16 intrinsics; for storing to |
| // memory, we BitCast vectors to u16 and write to the pointer returned here. |
| // Do NOT call both this and U16LanePointer on the same object - they access |
| // different union members, and this is not guaranteed to be safe. |
| template <typename T, HWY_IF_SPECIAL_FLOAT(T)> |
| HWY_INLINE If<IsConst<T>(), const uint16_t*, uint16_t*> U16LanePointer(T* p) { |
| return &p->bits; |
| } |
| |
| // Returns N * 2^pow2. N is the number of lanes in a full vector and pow2 the |
| // desired fraction or multiple of it, see Simd<>. `pow2` is most often in |
| // [-3, 3] but can also be lower for user-specified fractions. |
| constexpr size_t ScaleByPower(size_t N, int pow2) { |
| return pow2 >= 0 ? (N << pow2) : (N >> (-pow2)); |
| } |
| |
| template <typename T> |
| HWY_INLINE void MaybePoison(T* HWY_RESTRICT unaligned, size_t count) { |
| #if HWY_IS_MSAN |
| __msan_poison(unaligned, count * sizeof(T)); |
| #else |
| (void)unaligned; |
| (void)count; |
| #endif |
| } |
| |
| template <typename T> |
| HWY_INLINE void MaybeUnpoison(T* HWY_RESTRICT unaligned, size_t count) { |
| // Workaround for MSAN not marking compressstore as initialized (b/233326619) |
| #if HWY_IS_MSAN |
| __msan_unpoison(unaligned, count * sizeof(T)); |
| #else |
| (void)unaligned; |
| (void)count; |
| #endif |
| } |
| |
| } // namespace detail |
| |
| // Highway operations are implemented as overloaded functions selected using a |
| // zero-sized tag type D := Simd<T, N, kPow2>. T denotes the lane type. |
| // |
| // N defines how many lanes are in a 'full' vector, typically equal to |
| // HWY_LANES(T) (which is the actual count on targets with vectors of known |
| // size, and an upper bound in case of scalable vectors), otherwise a |
| // user-specified limit at most that large. |
| // |
| // 2^kPow2 is a _subsequently_ applied scaling factor that indicates the |
| // desired fraction of a 'full' vector: 0 means full, -1 means half; 1,2,3 |
| // means two/four/eight full vectors ganged together. The largest supported |
| // kPow2 is `HWY_MAX_POW2` and the aliases below take care of clamping |
| // user-specified values to that. Note that `Simd<T, 1, 0>` and `Simd<T, 2, -1>` |
| // have the same `MaxLanes` and `Lanes`. |
| // |
| // We can theoretically keep halving Lanes(), but recursive instantiations of |
| // kPow2 - 1 will eventually fail e.g. because -64 is not a valid shift count. |
| // Users must terminate such compile-time recursions at or above HWY_MIN_POW2. |
| // |
| // WARNING: do not use N directly because it may be a special representation of |
| // a fractional MaxLanes. This arises when we Rebind Simd<uint8_t, 1, 0> to |
| // Simd<uint32_t, ??, 2>. RVV requires that the last argument (kPow2) be two, |
| // but we want MaxLanes to be the same in both cases. Hence ?? is a |
| // fixed-point encoding of 1/4. |
| // |
| // Instead of referring to Simd<> directly, users create D via aliases: |
| // - ScalableTag<T> for a full vector; |
| // - ScalableTag<T, kPow2>() for a fraction/group, where `kPow2` is |
| // interpreted as `HWY_MIN(kPow2, HWY_MAX_POW2)`; |
| // - CappedTag<T, kLimit> for a vector with up to kLimit lanes; or |
| // - FixedTag<T, kNumLanes> for a vector with exactly kNumLanes lanes. |
| // |
| // Instead of N, use Lanes(D()) for the actual number of lanes at runtime and |
| // D().MaxLanes() for a constexpr upper bound. Both are powers of two. |
| template <typename Lane, size_t N, int kPow2> |
| struct Simd { |
| constexpr Simd() = default; |
| using T = Lane; |
| |
| private: |
| static_assert(sizeof(Lane) <= 8, "Lanes are up to 64-bit"); |
| static_assert(IsSame<Lane, RemoveCvRef<Lane>>(), |
| "Lane must not be a reference type, const-qualified type, or " |
| "volatile-qualified type"); |
| static_assert(IsIntegerLaneType<Lane>() || IsFloat<Lane>() || |
| IsSpecialFloat<Lane>(), |
| "IsIntegerLaneType<T>(), IsFloat<T>(), or IsSpecialFloat<T>() " |
| "must be true"); |
| // 20 bits are sufficient for any HWY_MAX_BYTES. This is the 'normal' value of |
| // N when kFrac == 0, otherwise it is one (see FracN). |
| static constexpr size_t kWhole = N & 0xFFFFF; |
| // Fractional part is in the bits above kWhole. |
| static constexpr int kFrac = static_cast<int>(N >> 20); |
| // Can be 8x larger because kPow2 may be as low as -3 (Rebind of a larger |
| // type to u8 results in fractions). |
| static_assert(kWhole <= 8 * HWY_MAX_N && kFrac <= 3, "Out of range"); |
| static_assert(kFrac == 0 || kWhole == 1, "If frac, whole must be 1"); |
| static_assert((kWhole & (kWhole - 1)) == 0 && kWhole != 0, "Not 2^x"); |
| // Important to check this here because kPow2 <= -64 causes confusing |
| // compile errors (invalid shift count). |
| static_assert(kPow2 >= HWY_MIN_POW2, "Forgot kPow2 recursion terminator?"); |
| // However, do NOT verify kPow2 <= HWY_MAX_POW2 - users should be able to |
| // Rebind<uint64_t, ScalableTag<uint8_t, 3>> in order to discover that its |
| // kPow2 is out of bounds. |
| |
| public: |
| // Upper bound on the number of lanes (tight if !HWY_HAVE_SCALABLE). In the |
| // common case, N == kWhole, but if kFrac is nonzero, we deduct it from kPow2. |
| // E.g. Rebind<uint32_t, Simd<uint8_t, 1, 0>> is Simd<uint32_t, 0x200001, 2>. |
| // The resulting number of lanes is still 1 because this N represents 1/4 |
| // (the ratio of the sizes). Note that RVV requires kPow2 to be the ratio of |
| // the sizes so that the correct LMUL overloads are chosen, even if N is |
| // small enough that it would fit in an LMUL=1 vector. |
| // |
| // Cannot be an enum because GCC warns when using enums and non-enums in the |
| // same expression. Cannot be a static constexpr function (MSVC limitation). |
| // Rounded up to one so this is a valid array length. |
| // |
| // Do not use this directly - only 'public' so it is visible from the accessor |
| // macro required by MSVC. |
| static constexpr size_t kPrivateLanes = |
| HWY_MAX(size_t{1}, detail::ScaleByPower(kWhole, kPow2 - kFrac)); |
| // Do not use this directly - only 'public' so it is visible from the accessor |
| // macro required by MSVC. |
| static constexpr int kPrivatePow2 = kPow2; |
| |
| constexpr size_t MaxLanes() const { return kPrivateLanes; } |
| constexpr size_t MaxBytes() const { return kPrivateLanes * sizeof(Lane); } |
| constexpr size_t MaxBlocks() const { return (MaxBytes() + 15) / 16; } |
| // For SFINAE (HWY_IF_POW2_GT_D). |
| constexpr int Pow2() const { return kPow2; } |
| |
| // ------------------------------ Changing lane type or count |
| // Do not use any of these directly. Anything used from member typedefs cannot |
| // be made private, but functions only used within other functions can. |
| |
| // Returns number of NewT lanes that fit within MaxBytes(). |
| template <typename NewT> |
| static constexpr size_t RepartitionLanes() { |
| // Round up to correctly handle larger NewT. |
| return (kPrivateLanes * sizeof(T) + sizeof(NewT) - 1) / sizeof(NewT); |
| } |
| |
| // Returns the new kPow2 required for lanes of type NewT. |
| template <typename NewT> |
| static constexpr int RebindPow2() { |
| return kPow2 + |
| ((sizeof(NewT) >= sizeof(T)) |
| ? static_cast<int>(CeilLog2(sizeof(NewT) / sizeof(T))) |
| : -static_cast<int>(CeilLog2(sizeof(T) / sizeof(NewT)))); |
| } |
| |
| private: |
| // Returns 0 or whole NewN such that kNewMaxLanes = NewN * 2^kNewPow2. |
| template <int kNewPow2, size_t kNewMaxLanes> |
| static constexpr size_t WholeN() { |
| return detail::ScaleByPower(kNewMaxLanes, -kNewPow2); |
| } |
| |
| // Returns fractional NewN such that kNewMaxLanes = NewN * 2^kNewPow2. |
| template <int kNewPow2, size_t kNewMaxLanes> |
| static constexpr size_t FracN() { |
| // Only reached if kNewPow2 > CeilLog2(kNewMaxLanes) >= 0 (else WholeN |
| // would not have been zero), but clamp to zero to avoid warnings. kFrac is |
| // the difference, stored in the upper bits of N, and we also set kWhole = |
| // 1 so that the new kPrivateLanes = kNewMaxLanes. |
| static_assert(HWY_MAX_N <= (size_t{1} << 20), "Change bit shift"); |
| return static_cast<size_t>( |
| 1 + (HWY_MAX(0, kNewPow2 - static_cast<int>(CeilLog2(kNewMaxLanes))) |
| << 20)); |
| } |
| |
| public: |
| // Returns (whole or fractional) NewN, see above. |
| template <int kNewPow2, size_t kNewMaxLanes> |
| static constexpr size_t NewN() { |
| // We require a fraction if inverting kNewPow2 results in 0. |
| return WholeN<kNewPow2, kNewMaxLanes>() == 0 |
| ? FracN<kNewPow2, kNewMaxLanes>() |
| : WholeN<kNewPow2, kNewMaxLanes>(); |
| } |
| |
| // PromoteTo/DemoteTo() with another lane type, but same number of lanes. |
| template <typename NewT> |
| using Rebind = |
| Simd<NewT, NewN<RebindPow2<NewT>(), kPrivateLanes>(), RebindPow2<NewT>()>; |
| |
| // Change lane type while keeping the same vector size, e.g. for MulEven. |
| template <typename NewT> |
| using Repartition = |
| Simd<NewT, NewN<kPow2, RepartitionLanes<NewT>()>(), kPow2>; |
| |
| // Half the lanes while keeping the same lane type, e.g. for LowerHalf. |
| using Half = Simd<T, N, kPow2 - 1>; |
| |
| // Twice the lanes while keeping the same lane type, e.g. for Combine. |
| using Twice = Simd<T, N, kPow2 + 1>; |
| }; |
| |
| namespace detail { |
| |
| template <typename T, size_t N, int kPow2> |
| constexpr bool IsFull(Simd<T, N, kPow2> /* d */) { |
| return N == HWY_LANES(T) && kPow2 == 0; |
| } |
| |
| // Struct wrappers enable validation of arguments via static_assert. |
| template <typename T, size_t N, int kPow2> |
| struct ClampNAndPow2 { |
| using type = Simd<T, HWY_MIN(N, HWY_MAX_N), HWY_MIN(kPow2, HWY_MAX_POW2)>; |
| }; |
| |
| template <typename T, int kPow2> |
| struct ScalableTagChecker { |
| using type = typename ClampNAndPow2<T, HWY_LANES(T), kPow2>::type; |
| }; |
| |
| template <typename T, size_t kLimit, int kPow2> |
| struct CappedTagChecker { |
| static_assert(kLimit != 0, "Does not make sense to have zero lanes"); |
| // Safely handle non-power-of-two inputs by rounding down, which is allowed by |
| // CappedTag. Otherwise, Simd<T, 3, 0> would static_assert. |
| static constexpr size_t kLimitPow2 = size_t{1} << hwy::FloorLog2(kLimit); |
| static constexpr size_t N = HWY_MIN(kLimitPow2, HWY_LANES(T)); |
| using type = typename ClampNAndPow2<T, N, kPow2>::type; |
| }; |
| |
| template <typename T, size_t kNumLanes> |
| struct FixedTagChecker { |
| static_assert(kNumLanes != 0, "Does not make sense to have zero lanes"); |
| static_assert(kNumLanes <= HWY_LANES(T), "Too many lanes"); |
| using type = Simd<T, kNumLanes, 0>; |
| }; |
| |
| } // namespace detail |
| |
| // ------------------------------ Aliases for Simd<> |
| |
| // Tag describing a full vector (kPow2 == 0: the most common usage, e.g. 1D |
| // loops where the application does not care about the vector size) or a |
| // fraction/multiple of one. Fractions (kPow2 < 0) are useful for arguments or |
| // return values of type promotion and demotion. User-specified kPow2 is |
| // interpreted as `HWY_MIN(kPow2, HWY_MAX_POW2)`. |
| template <typename T, int kPow2 = 0> |
| using ScalableTag = typename detail::ScalableTagChecker<T, kPow2>::type; |
| |
| // Tag describing a vector with *up to* kLimit active lanes, even on targets |
| // with scalable vectors and HWY_SCALAR. The runtime lane count `Lanes(tag)` may |
| // be less than kLimit, and is 1 on HWY_SCALAR. This alias is typically used for |
| // 1D loops with a relatively low application-defined upper bound, e.g. for 8x8 |
| // DCTs. However, it is better if data structures are designed to be |
| // vector-length-agnostic (e.g. a hybrid SoA where there are chunks of `M >= |
| // MaxLanes(d)` DC components followed by M AC1, .., and M AC63; this would |
| // enable vector-length-agnostic loops using ScalableTag). User-specified kPow2 |
| // is interpreted as `HWY_MIN(kPow2, HWY_MAX_POW2)`. |
| template <typename T, size_t kLimit, int kPow2 = 0> |
| using CappedTag = typename detail::CappedTagChecker<T, kLimit, kPow2>::type; |
| |
| #if !HWY_HAVE_SCALABLE |
| // If the vector size is known, and the app knows it does not want more than |
| // kLimit lanes, then capping can be beneficial. For example, AVX-512 has lower |
| // IPC and potentially higher costs for unaligned load/store vs. 256-bit AVX2. |
| template <typename T, size_t kLimit, int kPow2 = 0> |
| using CappedTagIfFixed = CappedTag<T, kLimit, kPow2>; |
| #else // HWY_HAVE_SCALABLE |
| // .. whereas on RVV/SVE, the cost of clamping Lanes() may exceed the benefit. |
| template <typename T, size_t kLimit, int kPow2 = 0> |
| using CappedTagIfFixed = ScalableTag<T, kPow2>; |
| #endif |
| |
| // Alias for a tag describing a vector with *exactly* kNumLanes active lanes, |
| // even on targets with scalable vectors. Requires `kNumLanes` to be a power of |
| // two not exceeding `HWY_LANES(T)`. |
| // |
| // NOTE: if the application does not need to support HWY_SCALAR (+), use this |
| // instead of CappedTag to emphasize that there will be exactly kNumLanes lanes. |
| // This is useful for data structures that rely on exactly 128-bit SIMD, but |
| // these are discouraged because they cannot benefit from wider vectors. |
| // Instead, applications would ideally define a larger problem size and loop |
| // over it with the (unknown size) vectors from ScalableTag. |
| // |
| // + e.g. if the baseline is known to support SIMD, or the application requires |
| // ops such as TableLookupBytes not supported by HWY_SCALAR. |
| template <typename T, size_t kNumLanes> |
| using FixedTag = typename detail::FixedTagChecker<T, kNumLanes>::type; |
| |
| // Convenience form for fixed sizes. |
| template <typename T> |
| using Full16 = Simd<T, 2 / sizeof(T), 0>; |
| |
| template <typename T> |
| using Full32 = Simd<T, 4 / sizeof(T), 0>; |
| |
| template <typename T> |
| using Full64 = Simd<T, 8 / sizeof(T), 0>; |
| |
| template <typename T> |
| using Full128 = Simd<T, 16 / sizeof(T), 0>; |
| |
| // ------------------------------ Accessors for Simd<> |
| |
| // Lane type. |
| template <class D> |
| using TFromD = typename D::T; |
| |
| // Upper bound on the number of lanes, typically used for SFINAE conditions and |
| // to allocate storage for targets with known vector sizes. Note: this may be a |
| // loose bound, instead use Lanes() as the actual size for AllocateAligned. |
| // MSVC workaround: use static constant directly instead of a function. |
| #define HWY_MAX_LANES_D(D) D::kPrivateLanes |
| |
| // Same as D().Pow2(), but this is too complex for SFINAE with MSVC, so we use a |
| // static constant directly. |
| #define HWY_POW2_D(D) D::kPrivatePow2 |
| |
| // Non-macro form of HWY_MAX_LANES_D in case that is preferable. WARNING: the |
| // macro form may be required for MSVC, which has limitations on deducing |
| // arguments. |
| template <class D> |
| HWY_INLINE HWY_MAYBE_UNUSED constexpr size_t MaxLanes(D) { |
| return HWY_MAX_LANES_D(D); |
| } |
| |
| #undef HWY_HAVE_CONSTEXPR_LANES |
| #undef HWY_LANES_CONSTEXPR |
| |
| #if HWY_HAVE_SCALABLE |
| #define HWY_HAVE_CONSTEXPR_LANES 0 |
| #define HWY_LANES_CONSTEXPR |
| #else |
| |
| // We want Lanes() to be constexpr where possible, so that compilers are able to |
| // precompute offsets. However, user code must not depend on the constexpr, |
| // because that will fail for RISC-V V and Arm SVE. To achieve both, we mark it |
| // as non-constexpr in debug builds, but not sanitizers, because we typically |
| // want them to see the same code. |
| #if HWY_IS_DEBUG_BUILD && !HWY_IS_SANITIZER |
| #define HWY_HAVE_CONSTEXPR_LANES 0 |
| #define HWY_LANES_CONSTEXPR |
| #else |
| #define HWY_HAVE_CONSTEXPR_LANES 1 |
| #define HWY_LANES_CONSTEXPR constexpr |
| #endif |
| |
| // Returns actual vector length, used when advancing loop counters. The |
| // non-constexpr implementations are defined in their target's header. For a |
| // guaranteed-constexpr upper bound, use `MaxLanes(d)`. |
| template <class D> |
| HWY_INLINE HWY_MAYBE_UNUSED HWY_LANES_CONSTEXPR size_t Lanes(D) { |
| return HWY_MAX_LANES_D(D); |
| } |
| |
| #endif // !HWY_HAVE_SCALABLE |
| |
| // Tag for the same number of lanes as D, but with the LaneType T. |
| template <class T, class D> |
| using Rebind = typename D::template Rebind<T>; |
| |
| template <class D> |
| using RebindToSigned = Rebind<MakeSigned<TFromD<D>>, D>; |
| template <class D> |
| using RebindToUnsigned = Rebind<MakeUnsigned<TFromD<D>>, D>; |
| template <class D> |
| using RebindToFloat = Rebind<MakeFloat<TFromD<D>>, D>; |
| |
| // Tag for the same total size as D, but with the LaneType T. |
| template <class T, class D> |
| using Repartition = typename D::template Repartition<T>; |
| |
| template <class D> |
| using RepartitionToWide = Repartition<MakeWide<TFromD<D>>, D>; |
| template <class D> |
| using RepartitionToNarrow = Repartition<MakeNarrow<TFromD<D>>, D>; |
| |
| // Shorthand for applying RepartitionToWide twice (for 8/16-bit types). |
| template <class D> |
| using RepartitionToWideX2 = RepartitionToWide<RepartitionToWide<D>>; |
| // Shorthand for applying RepartitionToWide three times (for 8-bit types). |
| template <class D> |
| using RepartitionToWideX3 = RepartitionToWide<RepartitionToWideX2<D>>; |
| |
| // Tag for the same lane type as D, but half the lanes. |
| template <class D> |
| using Half = typename D::Half; |
| |
| // Tag for the same lane type as D, but twice the lanes. |
| template <class D> |
| using Twice = typename D::Twice; |
| |
| // Tag for a 16-byte block with the same lane type as D |
| #if HWY_HAVE_SCALABLE |
| namespace detail { |
| |
| template <class D> |
| class BlockDFromD_t {}; |
| |
| template <typename T, size_t N, int kPow2> |
| class BlockDFromD_t<Simd<T, N, kPow2>> { |
| using D = Simd<T, N, kPow2>; |
| static constexpr int kNewPow2 = HWY_MIN(kPow2, 0); |
| static constexpr size_t kMaxLpb = HWY_MIN(16 / sizeof(T), HWY_MAX_LANES_D(D)); |
| static constexpr size_t kNewN = D::template NewN<kNewPow2, kMaxLpb>(); |
| |
| public: |
| using type = Simd<T, kNewN, kNewPow2>; |
| }; |
| |
| } // namespace detail |
| |
| template <class D> |
| using BlockDFromD = typename detail::BlockDFromD_t<RemoveConst<D>>::type; |
| #else |
| template <class D> |
| using BlockDFromD = |
| Simd<TFromD<D>, HWY_MIN(16 / sizeof(TFromD<D>), HWY_MAX_LANES_D(D)), 0>; |
| #endif |
| |
| // Returns whether `ptr` is a multiple of `Lanes(d)` elements. |
| template <class D, typename T> |
| HWY_API bool IsAligned(D d, T* ptr) { |
| const size_t N = Lanes(d); |
| return reinterpret_cast<uintptr_t>(ptr) % (N * sizeof(T)) == 0; |
| } |
| |
| // ------------------------------ Choosing overloads (SFINAE) |
| |
| // Same as base.h macros but with a Simd<T, N, kPow2> argument instead of T. |
| #define HWY_IF_UNSIGNED_D(D) HWY_IF_UNSIGNED(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_UNSIGNED_D(D) \ |
| HWY_IF_NOT_UNSIGNED(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_SIGNED_D(D) HWY_IF_SIGNED(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_FLOAT_D(D) HWY_IF_FLOAT(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_FLOAT_D(D) HWY_IF_NOT_FLOAT(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_FLOAT3264_D(D) HWY_IF_FLOAT3264(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_FLOAT3264_D(D) \ |
| HWY_IF_NOT_FLOAT3264(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_SPECIAL_FLOAT_D(D) \ |
| HWY_IF_SPECIAL_FLOAT(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_SPECIAL_FLOAT_D(D) \ |
| HWY_IF_NOT_SPECIAL_FLOAT(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_FLOAT_OR_SPECIAL_D(D) \ |
| HWY_IF_FLOAT_OR_SPECIAL(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_FLOAT_NOR_SPECIAL_D(D) \ |
| HWY_IF_NOT_FLOAT_NOR_SPECIAL(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_IF_T_SIZE_D(D, bytes) \ |
| HWY_IF_T_SIZE(hwy::HWY_NAMESPACE::TFromD<D>, bytes) |
| #define HWY_IF_NOT_T_SIZE_D(D, bytes) \ |
| HWY_IF_NOT_T_SIZE(hwy::HWY_NAMESPACE::TFromD<D>, bytes) |
| #define HWY_IF_T_SIZE_ONE_OF_D(D, bit_array) \ |
| HWY_IF_T_SIZE_ONE_OF(hwy::HWY_NAMESPACE::TFromD<D>, bit_array) |
| #define HWY_IF_T_SIZE_LE_D(D, bytes) \ |
| HWY_IF_T_SIZE_LE(hwy::HWY_NAMESPACE::TFromD<D>, bytes) |
| #define HWY_IF_T_SIZE_GT_D(D, bytes) \ |
| HWY_IF_T_SIZE_GT(hwy::HWY_NAMESPACE::TFromD<D>, bytes) |
| |
| #define HWY_IF_LANES_D(D, lanes) HWY_IF_LANES(HWY_MAX_LANES_D(D), lanes) |
| #define HWY_IF_LANES_LE_D(D, lanes) HWY_IF_LANES_LE(HWY_MAX_LANES_D(D), lanes) |
| #define HWY_IF_LANES_GT_D(D, lanes) HWY_IF_LANES_GT(HWY_MAX_LANES_D(D), lanes) |
| #define HWY_IF_LANES_PER_BLOCK_D(D, lanes) \ |
| HWY_IF_LANES_PER_BLOCK(hwy::HWY_NAMESPACE::TFromD<D>, HWY_MAX_LANES_D(D), \ |
| lanes) |
| |
| #if HWY_COMPILER_MSVC |
| #define HWY_IF_POW2_LE_D(D, pow2) \ |
| hwy::EnableIf<HWY_POW2_D(D) <= pow2>* = nullptr |
| #define HWY_IF_POW2_GT_D(D, pow2) \ |
| hwy::EnableIf<(HWY_POW2_D(D) > pow2)>* = nullptr |
| #else |
| #define HWY_IF_POW2_LE_D(D, pow2) hwy::EnableIf<D().Pow2() <= pow2>* = nullptr |
| #define HWY_IF_POW2_GT_D(D, pow2) hwy::EnableIf<(D().Pow2() > pow2)>* = nullptr |
| #endif // HWY_COMPILER_MSVC |
| |
| #define HWY_IF_U8_D(D) HWY_IF_U8(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_U16_D(D) HWY_IF_U16(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_U32_D(D) HWY_IF_U32(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_U64_D(D) HWY_IF_U64(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_IF_I8_D(D) HWY_IF_I8(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_I16_D(D) HWY_IF_I16(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_I32_D(D) HWY_IF_I32(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_I64_D(D) HWY_IF_I64(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| // Use instead of HWY_IF_T_SIZE_D to avoid ambiguity with float16_t/float/double |
| // overloads. |
| #define HWY_IF_UI8_D(D) HWY_IF_UI8(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_UI16_D(D) HWY_IF_UI16(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_UI32_D(D) HWY_IF_UI32(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_UI64_D(D) HWY_IF_UI64(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_IF_BF16_D(D) HWY_IF_BF16(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_BF16_D(D) HWY_IF_NOT_BF16(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_IF_F16_D(D) HWY_IF_F16(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_NOT_F16_D(D) HWY_IF_NOT_F16(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_IF_F32_D(D) HWY_IF_F32(hwy::HWY_NAMESPACE::TFromD<D>) |
| #define HWY_IF_F64_D(D) HWY_IF_F64(hwy::HWY_NAMESPACE::TFromD<D>) |
| |
| #define HWY_V_SIZE_D(D) \ |
| (HWY_MAX_LANES_D(D) * sizeof(hwy::HWY_NAMESPACE::TFromD<D>)) |
| #define HWY_IF_V_SIZE_D(D, bytes) \ |
| HWY_IF_V_SIZE(hwy::HWY_NAMESPACE::TFromD<D>, HWY_MAX_LANES_D(D), bytes) |
| #define HWY_IF_V_SIZE_LE_D(D, bytes) \ |
| HWY_IF_V_SIZE_LE(hwy::HWY_NAMESPACE::TFromD<D>, HWY_MAX_LANES_D(D), bytes) |
| #define HWY_IF_V_SIZE_GT_D(D, bytes) \ |
| HWY_IF_V_SIZE_GT(hwy::HWY_NAMESPACE::TFromD<D>, HWY_MAX_LANES_D(D), bytes) |
| |
| // Same, but with a vector argument. ops/*-inl.h define their own TFromV. |
| #define HWY_IF_UNSIGNED_V(V) HWY_IF_UNSIGNED(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_NOT_UNSIGNED_V(V) \ |
| HWY_IF_NOT_UNSIGNED(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_SIGNED_V(V) HWY_IF_SIGNED(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_FLOAT_V(V) HWY_IF_FLOAT(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_NOT_FLOAT_V(V) HWY_IF_NOT_FLOAT(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_FLOAT3264_V(V) HWY_IF_FLOAT3264(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_SPECIAL_FLOAT_V(V) \ |
| HWY_IF_SPECIAL_FLOAT(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_FLOAT_OR_SPECIAL_V(V) \ |
| HWY_IF_FLOAT_OR_SPECIAL(hwy::HWY_NAMESPACE::TFromV<V>) |
| #define HWY_IF_NOT_FLOAT_NOR_SPECIAL_V(V) \ |
| HWY_IF_NOT_FLOAT_NOR_SPECIAL(hwy::HWY_NAMESPACE::TFromV<V>) |
| |
| #define HWY_IF_T_SIZE_V(V, bytes) \ |
| HWY_IF_T_SIZE(hwy::HWY_NAMESPACE::TFromV<V>, bytes) |
| #define HWY_IF_NOT_T_SIZE_V(V, bytes) \ |
| HWY_IF_NOT_T_SIZE(hwy::HWY_NAMESPACE::TFromV<V>, bytes) |
| #define HWY_IF_T_SIZE_ONE_OF_V(V, bit_array) \ |
| HWY_IF_T_SIZE_ONE_OF(hwy::HWY_NAMESPACE::TFromV<V>, bit_array) |
| |
| #define HWY_MAX_LANES_V(V) HWY_MAX_LANES_D(hwy::HWY_NAMESPACE::DFromV<V>) |
| #define HWY_IF_V_SIZE_V(V, bytes) \ |
| HWY_IF_V_SIZE(hwy::HWY_NAMESPACE::TFromV<V>, HWY_MAX_LANES_V(V), bytes) |
| #define HWY_IF_V_SIZE_LE_V(V, bytes) \ |
| HWY_IF_V_SIZE_LE(hwy::HWY_NAMESPACE::TFromV<V>, HWY_MAX_LANES_V(V), bytes) |
| #define HWY_IF_V_SIZE_GT_V(V, bytes) \ |
| HWY_IF_V_SIZE_GT(hwy::HWY_NAMESPACE::TFromV<V>, HWY_MAX_LANES_V(V), bytes) |
| |
| // Use in implementations of ReduceSum etc. to avoid conflicts with the N=1 and |
| // N=4 8-bit specializations in generic_ops-inl. |
| #undef HWY_IF_REDUCE_D |
| #define HWY_IF_REDUCE_D(D) \ |
| hwy::EnableIf<HWY_MAX_LANES_D(D) != 1 && \ |
| (HWY_MAX_LANES_D(D) != 4 || \ |
| sizeof(hwy::HWY_NAMESPACE::TFromD<D>) != 1)>* = nullptr |
| |
| #undef HWY_IF_SUM_OF_LANES_D |
| #define HWY_IF_SUM_OF_LANES_D(D) HWY_IF_LANES_GT_D(D, 1) |
| |
| #undef HWY_IF_MINMAX_OF_LANES_D |
| #define HWY_IF_MINMAX_OF_LANES_D(D) HWY_IF_LANES_GT_D(D, 1) |
| |
| #undef HWY_IF_ADDSUB_V |
| #define HWY_IF_ADDSUB_V(V) HWY_IF_LANES_GT_D(hwy::HWY_NAMESPACE::DFromV<V>, 1) |
| |
| #undef HWY_IF_MULADDSUB_V |
| #define HWY_IF_MULADDSUB_V(V) \ |
| HWY_IF_LANES_GT_D(hwy::HWY_NAMESPACE::DFromV<V>, 1) |
| |
| #undef HWY_IF_PAIRWISE_ADD_128_D |
| #define HWY_IF_PAIRWISE_ADD_128_D(D) HWY_IF_V_SIZE_GT_D(D, 8) |
| |
| #undef HWY_IF_PAIRWISE_SUB_128_D |
| #define HWY_IF_PAIRWISE_SUB_128_D(D) HWY_IF_V_SIZE_GT_D(D, 8) |
| |
| // HWY_IF_U2I_DEMOTE_FROM_LANE_SIZE_V is used to disable the default |
| // implementation of unsigned to signed DemoteTo/ReorderDemote2To in |
| // generic_ops-inl.h for at least some of the unsigned to signed demotions on |
| // SCALAR/EMU128/SSE2/SSSE3/SSE4/AVX2/SVE/SVE2 |
| |
| #undef HWY_IF_U2I_DEMOTE_FROM_LANE_SIZE_V |
| #define HWY_IF_U2I_DEMOTE_FROM_LANE_SIZE_V(V) void* = nullptr |
| |
| // Old names (deprecated) |
| #define HWY_IF_LANE_SIZE_D(D, bytes) HWY_IF_T_SIZE_D(D, bytes) |
| #define HWY_IF_NOT_LANE_SIZE_D(D, bytes) HWY_IF_NOT_T_SIZE_D(D, bytes) |
| |
| // NOLINTNEXTLINE(google-readability-namespace-comments) |
| } // namespace HWY_NAMESPACE |
| } // namespace hwy |
| HWY_AFTER_NAMESPACE(); |
| |
| #endif // HIGHWAY_HWY_OPS_SHARED_TOGGLE |