blob: 01e745b0a3053c923bdc170579cfc5847e9daa3d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "aom_ports/system_state.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/enums.h"
PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi) {
if (!left_mi) return DC_PRED;
#if CONFIG_SDP
assert(!is_inter_block(left_mi, SHARED_PART) ||
is_intrabc_block(left_mi, SHARED_PART));
#else
assert(!is_inter_block(left_mi) || is_intrabc_block(left_mi));
#endif
return left_mi->mode;
}
PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi) {
if (!above_mi) return DC_PRED;
#if CONFIG_SDP
assert(!is_inter_block(above_mi, SHARED_PART) ||
is_intrabc_block(above_mi, SHARED_PART));
#else
assert(!is_inter_block(above_mi) || is_intrabc_block(above_mi));
#endif
return above_mi->mode;
}
void av1_reset_is_mi_coded_map(MACROBLOCKD *xd, int stride) {
av1_zero(xd->is_mi_coded);
xd->is_mi_coded_stride = stride;
}
void av1_mark_block_as_coded(MACROBLOCKD *xd, BLOCK_SIZE bsize,
BLOCK_SIZE sb_size) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int sb_mi_size = mi_size_wide[sb_size];
const int mi_row_offset = mi_row & (sb_mi_size - 1);
const int mi_col_offset = mi_col & (sb_mi_size - 1);
for (int r = 0; r < mi_size_high[bsize]; ++r)
for (int c = 0; c < mi_size_wide[bsize]; ++c) {
const int pos =
(mi_row_offset + r) * xd->is_mi_coded_stride + mi_col_offset + c;
#if CONFIG_SDP
switch (xd->tree_type) {
case SHARED_PART:
xd->is_mi_coded[0][pos] = 1;
xd->is_mi_coded[1][pos] = 1;
break;
case LUMA_PART: xd->is_mi_coded[0][pos] = 1; break;
case CHROMA_PART: xd->is_mi_coded[1][pos] = 1; break;
default: assert(0 && "Invalid tree type");
}
#else
xd->is_mi_coded[pos] = 1;
#endif // CONFIG_SDP
}
}
void av1_mark_block_as_not_coded(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, BLOCK_SIZE sb_size) {
const int sb_mi_size = mi_size_wide[sb_size];
const int mi_row_offset = mi_row & (sb_mi_size - 1);
const int mi_col_offset = mi_col & (sb_mi_size - 1);
for (int r = 0; r < mi_size_high[bsize]; ++r) {
const int pos =
(mi_row_offset + r) * xd->is_mi_coded_stride + mi_col_offset;
#if CONFIG_SDP
uint8_t *row_ptr_luma = &xd->is_mi_coded[0][pos];
uint8_t *row_ptr_chroma = &xd->is_mi_coded[1][pos];
switch (xd->tree_type) {
case SHARED_PART:
av1_zero_array(row_ptr_luma, mi_size_wide[bsize]);
av1_zero_array(row_ptr_chroma, mi_size_wide[bsize]);
break;
case LUMA_PART: av1_zero_array(row_ptr_luma, mi_size_wide[bsize]); break;
case CHROMA_PART:
av1_zero_array(row_ptr_chroma, mi_size_wide[bsize]);
break;
default: assert(0 && "Invalid tree type");
}
#else
uint8_t *row_ptr = &xd->is_mi_coded[pos];
av1_zero_array(row_ptr, mi_size_wide[bsize]);
#endif // CONFIG_SDP
}
}
PARTITION_TREE *av1_alloc_ptree_node(PARTITION_TREE *parent, int index) {
PARTITION_TREE *ptree = NULL;
struct aom_internal_error_info error;
AOM_CHECK_MEM_ERROR(&error, ptree, aom_calloc(1, sizeof(*ptree)));
ptree->parent = parent;
ptree->index = index;
ptree->partition = PARTITION_NONE;
ptree->is_settled = 0;
for (int i = 0; i < 4; ++i) ptree->sub_tree[i] = NULL;
return ptree;
}
void av1_free_ptree_recursive(PARTITION_TREE *ptree) {
if (ptree == NULL) return;
for (int i = 0; i < 4; ++i) {
av1_free_ptree_recursive(ptree->sub_tree[i]);
ptree->sub_tree[i] = NULL;
}
aom_free(ptree);
}
void av1_reset_ptree_in_sbi(SB_INFO *sbi
#if CONFIG_SDP
,
TREE_TYPE tree_type
#endif // CONFIG_SDP
) {
#if CONFIG_SDP
const int idx = av1_get_sdp_idx(tree_type);
if (sbi->ptree_root[idx]) av1_free_ptree_recursive(sbi->ptree_root[idx]);
sbi->ptree_root[idx] = av1_alloc_ptree_node(NULL, 0);
#else
if (sbi->ptree_root) av1_free_ptree_recursive(sbi->ptree_root);
sbi->ptree_root = av1_alloc_ptree_node(NULL, 0);
#endif // CONFIG_SDP
}
void av1_set_entropy_contexts(const MACROBLOCKD *xd,
struct macroblockd_plane *pd, int plane,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int has_eob, int aoff, int loff) {
ENTROPY_CONTEXT *const a = pd->above_entropy_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_entropy_context + loff;
const int txs_wide = tx_size_wide_unit[tx_size];
const int txs_high = tx_size_high_unit[tx_size];
// above
if (has_eob && xd->mb_to_right_edge < 0) {
const int blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int above_contexts = AOMMIN(txs_wide, blocks_wide - aoff);
memset(a, has_eob, sizeof(*a) * above_contexts);
memset(a + above_contexts, 0, sizeof(*a) * (txs_wide - above_contexts));
} else {
memset(a, has_eob, sizeof(*a) * txs_wide);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
const int blocks_high = max_block_high(xd, plane_bsize, plane);
const int left_contexts = AOMMIN(txs_high, blocks_high - loff);
memset(l, has_eob, sizeof(*l) * left_contexts);
memset(l + left_contexts, 0, sizeof(*l) * (txs_high - left_contexts));
} else {
memset(l, has_eob, sizeof(*l) * txs_high);
}
}
void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
const int num_planes) {
#if CONFIG_SDP && CONFIG_EXT_RECUR_PARTITIONS
// TODO(chiyotsai): This part is needed to avoid encoder/decoder mismatch.
// Investigate why this is the case. It seems like on the decoder side, the
// decoder is failing to clear the context after encoding a skip_txfm chroma
// block.
const int plane_start = (xd->tree_type == CHROMA_PART);
int plane_end = 0;
switch (xd->tree_type) {
case LUMA_PART: plane_end = 1; break;
case CHROMA_PART: plane_end = num_planes; break;
case SHARED_PART:
plane_end = 1 + (num_planes - 1) * xd->is_chroma_ref;
break;
default: assert(0);
}
for (int i = plane_start; i < plane_end; ++i) {
#else
const int nplanes = 1 + (num_planes - 1) * xd->is_chroma_ref;
for (int i = 0; i < nplanes; i++) {
#endif // CONFIG_SDP && CONFIG_EXT_RECUR_PARTITIONS
struct macroblockd_plane *const pd = &xd->plane[i];
#if CONFIG_EXT_RECUR_PARTITIONS || CONFIG_SDP
const BLOCK_SIZE plane_bsize = get_mb_plane_block_size(
xd, xd->mi[0], i, pd->subsampling_x, pd->subsampling_y);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize ==
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
(void)bsize;
#else
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
#endif // CONFIG_SDP
const int txs_wide = mi_size_wide[plane_bsize];
const int txs_high = mi_size_high[plane_bsize];
memset(pd->above_entropy_context, 0, sizeof(ENTROPY_CONTEXT) * txs_wide);
memset(pd->left_entropy_context, 0, sizeof(ENTROPY_CONTEXT) * txs_high);
}
}
void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes) {
xd->delta_lf_from_base = 0;
const int frame_lf_count =
num_planes > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) xd->delta_lf[lf_id] = 0;
}
void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes) {
for (int p = 0; p < num_planes; ++p) {
set_default_wiener(xd->wiener_info + p);
set_default_sgrproj(xd->sgrproj_info + p);
}
}
void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
const int num_planes) {
int i;
for (i = 0; i < num_planes; i++) {
xd->plane[i].plane_type = get_plane_type(i);
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
for (i = num_planes; i < MAX_MB_PLANE; i++) {
xd->plane[i].subsampling_x = 1;
xd->plane[i].subsampling_y = 1;
}
}