|  | /* | 
|  | * | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "./aom_config.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  |  | 
|  | #include "av1/common/alloccommon.h" | 
|  | #include "av1/common/blockd.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/onyxc_int.h" | 
|  |  | 
|  | int av1_get_MBs(int width, int height) { | 
|  | const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); | 
|  | const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); | 
|  | const int mi_cols = aligned_width >> MI_SIZE_LOG2; | 
|  | const int mi_rows = aligned_height >> MI_SIZE_LOG2; | 
|  |  | 
|  | const int mb_cols = (mi_cols + 2) >> 2; | 
|  | const int mb_rows = (mi_rows + 2) >> 2; | 
|  | return mb_rows * mb_cols; | 
|  | } | 
|  |  | 
|  | void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) { | 
|  | // Ensure that the decoded width and height are both multiples of | 
|  | // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if | 
|  | // subsampling is used). | 
|  | // This simplifies the implementation of various experiments, | 
|  | // eg. cdef, which operates on units of 8x8 luma pixels. | 
|  | const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); | 
|  | const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); | 
|  |  | 
|  | cm->mi_cols = aligned_width >> MI_SIZE_LOG2; | 
|  | cm->mi_rows = aligned_height >> MI_SIZE_LOG2; | 
|  | cm->mi_stride = calc_mi_size(cm->mi_cols); | 
|  |  | 
|  | cm->mb_cols = (cm->mi_cols + 2) >> 2; | 
|  | cm->mb_rows = (cm->mi_rows + 2) >> 2; | 
|  | cm->MBs = cm->mb_rows * cm->mb_cols; | 
|  | } | 
|  |  | 
|  | void av1_free_ref_frame_buffers(BufferPool *pool) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < FRAME_BUFFERS; ++i) { | 
|  | if (pool->frame_bufs[i].ref_count > 0 && | 
|  | pool->frame_bufs[i].raw_frame_buffer.data != NULL) { | 
|  | pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer); | 
|  | pool->frame_bufs[i].ref_count = 0; | 
|  | } | 
|  | aom_free(pool->frame_bufs[i].mvs); | 
|  | pool->frame_bufs[i].mvs = NULL; | 
|  | aom_free(pool->frame_bufs[i].seg_map); | 
|  | pool->frame_bufs[i].seg_map = NULL; | 
|  | aom_free_frame_buffer(&pool->frame_bufs[i].buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assumes cm->rst_info[p].restoration_unit_size is already initialized | 
|  | void av1_alloc_restoration_buffers(AV1_COMMON *cm) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int p = 0; p < num_planes; ++p) | 
|  | av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0); | 
|  |  | 
|  | if (cm->rst_tmpbuf == NULL) { | 
|  | CHECK_MEM_ERROR(cm, cm->rst_tmpbuf, | 
|  | (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); | 
|  | } | 
|  |  | 
|  | // For striped loop restoration, we divide each row of tiles into "stripes", | 
|  | // of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET | 
|  | // luma pixels to match the output from CDEF. We will need to store 2 * | 
|  | // RESTORATION_CTX_VERT lines of data for each stripe, and also need to be | 
|  | // able to quickly answer the question "Where is the <n>'th stripe for tile | 
|  | // row <m>?" To make that efficient, we generate the rst_last_stripe array. | 
|  | int num_stripes = 0; | 
|  | for (int i = 0; i < cm->tile_rows; ++i) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, i); | 
|  | const int mi_h = tile_info.mi_row_end - tile_info.mi_row_start; | 
|  | const int ext_h = RESTORATION_UNIT_OFFSET + (mi_h << MI_SIZE_LOG2); | 
|  | const int tile_stripes = (ext_h + 63) / 64; | 
|  | num_stripes += tile_stripes; | 
|  | cm->rst_end_stripe[i] = num_stripes; | 
|  | } | 
|  |  | 
|  | // Now we need to allocate enough space to store the line buffers for the | 
|  | // stripes | 
|  | const int frame_w = cm->superres_upscaled_width; | 
|  | const int use_highbd = cm->use_highbitdepth ? 1 : 0; | 
|  |  | 
|  | for (int p = 0; p < num_planes; ++p) { | 
|  | const int is_uv = p > 0; | 
|  | const int ss_x = is_uv && cm->subsampling_x; | 
|  | const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ; | 
|  | const int stride = ALIGN_POWER_OF_TWO(plane_w, 5); | 
|  | const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT | 
|  | << use_highbd; | 
|  | RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries; | 
|  |  | 
|  | if (buf_size != boundaries->stripe_boundary_size || | 
|  | boundaries->stripe_boundary_above == NULL || | 
|  | boundaries->stripe_boundary_below == NULL) { | 
|  | aom_free(boundaries->stripe_boundary_above); | 
|  | aom_free(boundaries->stripe_boundary_below); | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above, | 
|  | (uint8_t *)aom_memalign(32, buf_size)); | 
|  | CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below, | 
|  | (uint8_t *)aom_memalign(32, buf_size)); | 
|  |  | 
|  | boundaries->stripe_boundary_size = buf_size; | 
|  | } | 
|  | boundaries->stripe_boundary_stride = stride; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_free_restoration_buffers(AV1_COMMON *cm) { | 
|  | int p; | 
|  | for (p = 0; p < MAX_MB_PLANE; ++p) | 
|  | av1_free_restoration_struct(&cm->rst_info[p]); | 
|  | aom_free(cm->rst_tmpbuf); | 
|  | cm->rst_tmpbuf = NULL; | 
|  | for (p = 0; p < MAX_MB_PLANE; ++p) { | 
|  | RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries; | 
|  | aom_free(boundaries->stripe_boundary_above); | 
|  | aom_free(boundaries->stripe_boundary_below); | 
|  | boundaries->stripe_boundary_above = NULL; | 
|  | boundaries->stripe_boundary_below = NULL; | 
|  | } | 
|  |  | 
|  | aom_free_frame_buffer(&cm->rst_frame); | 
|  | } | 
|  |  | 
|  | #if LOOP_FILTER_BITMASK | 
|  | static int alloc_loop_filter(AV1_COMMON *cm) { | 
|  | aom_free(cm->lf.lfm); | 
|  | cm->lf.lfm = NULL; | 
|  | if (cm->coded_lossless) return 0; | 
|  | // Each lfm holds bit masks for all the 4x4 blocks in a max | 
|  | // 64x64 (128x128 for ext_partitions) region.  The stride | 
|  | // and rows are rounded up / truncated to a multiple of 16 | 
|  | // (32 for ext_partition). | 
|  | cm->lf.lfm_stride = (cm->mi_cols + (MAX_MIB_SIZE - 1)) >> MAX_MIB_SIZE_LOG2; | 
|  | cm->lf.lfm_num = ((cm->mi_rows + (MAX_MIB_SIZE - 1)) >> MAX_MIB_SIZE_LOG2) * | 
|  | cm->lf.lfm_stride; | 
|  | cm->lf.lfm = | 
|  | (LoopFilterMask *)aom_calloc(cm->lf.lfm_num, sizeof(*cm->lf.lfm)); | 
|  | if (!cm->lf.lfm) return 1; | 
|  |  | 
|  | unsigned int i; | 
|  | for (i = 0; i < cm->lf.lfm_num; ++i) av1_zero(cm->lf.lfm[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif  // LOOP_FILTER_BITMASK | 
|  |  | 
|  | void av1_free_context_buffers(AV1_COMMON *cm) { | 
|  | int i; | 
|  | cm->free_mi(cm); | 
|  |  | 
|  | aom_free(cm->boundary_info); | 
|  | cm->boundary_info_alloc_size = 0; | 
|  | cm->boundary_info = NULL; | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; i++) { | 
|  | aom_free(cm->above_context[i]); | 
|  | cm->above_context[i] = NULL; | 
|  | } | 
|  | aom_free(cm->above_seg_context); | 
|  | cm->above_seg_context = NULL; | 
|  | cm->above_context_alloc_cols = 0; | 
|  | aom_free(cm->above_txfm_context); | 
|  | cm->above_txfm_context = NULL; | 
|  |  | 
|  | for (i = 0; i < MAX_MB_PLANE; ++i) { | 
|  | aom_free(cm->top_txfm_context[i]); | 
|  | cm->top_txfm_context[i] = NULL; | 
|  | } | 
|  |  | 
|  | #if LOOP_FILTER_BITMASK | 
|  | aom_free(cm->lf.lfm); | 
|  | cm->lf.lfm = NULL; | 
|  | cm->lf.lfm_num = 0; | 
|  | cm->lf.lfm_stride = 0; | 
|  | #endif  // LOOP_FILTER_BITMASK | 
|  | } | 
|  |  | 
|  | int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int new_mi_size; | 
|  |  | 
|  | av1_set_mb_mi(cm, width, height); | 
|  | new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); | 
|  | if (cm->mi_alloc_size < new_mi_size) { | 
|  | cm->free_mi(cm); | 
|  | if (cm->alloc_mi(cm, new_mi_size)) goto fail; | 
|  | } | 
|  |  | 
|  | const int new_boundary_info_alloc_size = cm->mi_rows * cm->mi_stride; | 
|  | if (cm->boundary_info_alloc_size < new_boundary_info_alloc_size) { | 
|  | aom_free(cm->boundary_info); | 
|  | cm->boundary_info = (BOUNDARY_TYPE *)aom_calloc( | 
|  | new_boundary_info_alloc_size, sizeof(BOUNDARY_TYPE)); | 
|  | cm->boundary_info_alloc_size = 0; | 
|  | if (!cm->boundary_info) goto fail; | 
|  | cm->boundary_info_alloc_size = new_boundary_info_alloc_size; | 
|  | } | 
|  |  | 
|  | if (cm->above_context_alloc_cols < cm->mi_cols) { | 
|  | // TODO(geza.lore): These are bigger than they need to be. | 
|  | // cm->tile_width would be enough but it complicates indexing a | 
|  | // little elsewhere. | 
|  | const int aligned_mi_cols = | 
|  | ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num_planes; i++) { | 
|  | aom_free(cm->above_context[i]); | 
|  | cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc( | 
|  | aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]), | 
|  | sizeof(*cm->above_context[0])); | 
|  | if (!cm->above_context[i]) goto fail; | 
|  | } | 
|  |  | 
|  | aom_free(cm->above_seg_context); | 
|  | cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc( | 
|  | aligned_mi_cols, sizeof(*cm->above_seg_context)); | 
|  | if (!cm->above_seg_context) goto fail; | 
|  |  | 
|  | aom_free(cm->above_txfm_context); | 
|  | cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc( | 
|  | aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context)); | 
|  | if (!cm->above_txfm_context) goto fail; | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | aom_free(cm->top_txfm_context[i]); | 
|  | cm->top_txfm_context[i] = | 
|  | (TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2, | 
|  | sizeof(*cm->top_txfm_context[0])); | 
|  | if (!cm->top_txfm_context[i]) goto fail; | 
|  | } | 
|  |  | 
|  | cm->above_context_alloc_cols = aligned_mi_cols; | 
|  | } | 
|  |  | 
|  | #if LOOP_FILTER_BITMASK | 
|  | if (alloc_loop_filter(cm)) goto fail; | 
|  | #endif  // LOOP_FILTER_BITMASK | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | // clear the mi_* values to force a realloc on resync | 
|  | av1_set_mb_mi(cm, 0, 0); | 
|  | av1_free_context_buffers(cm); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void av1_remove_common(AV1_COMMON *cm) { | 
|  | av1_free_context_buffers(cm); | 
|  |  | 
|  | aom_free(cm->fc); | 
|  | cm->fc = NULL; | 
|  | aom_free(cm->frame_contexts); | 
|  | cm->frame_contexts = NULL; | 
|  | } | 
|  |  | 
|  | void av1_init_context_buffers(AV1_COMMON *cm) { cm->setup_mi(cm); } |