| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/onyxc_int.h" | 
 | #include "av1/common/resize.h" | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 |  | 
 | void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) { | 
 |   av1_tile_set_row(tile, cm, row); | 
 |   av1_tile_set_col(tile, cm, col); | 
 | } | 
 |  | 
 | // Find smallest k>=0 such that (blk_size << k) >= target | 
 | static int tile_log2(int blk_size, int target) { | 
 |   int k; | 
 |   for (k = 0; (blk_size << k) < target; k++) { | 
 |   } | 
 |   return k; | 
 | } | 
 |  | 
 | void av1_get_tile_limits(AV1_COMMON *const cm) { | 
 |   int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
 |   int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
 |   int sb_cols = mi_cols >> cm->seq_params.mib_size_log2; | 
 |   int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; | 
 |  | 
 |   int sb_size_log2 = cm->seq_params.mib_size_log2 + MI_SIZE_LOG2; | 
 |   cm->max_tile_width_sb = MAX_TILE_WIDTH >> sb_size_log2; | 
 |   int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2); | 
 |  | 
 |   cm->min_log2_tile_cols = tile_log2(cm->max_tile_width_sb, sb_cols); | 
 |   cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS)); | 
 |   cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS)); | 
 |   cm->min_log2_tiles = tile_log2(max_tile_area_sb, sb_cols * sb_rows); | 
 |   cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols); | 
 |   // TODO(dominic.symes@arm.com): | 
 |   // Add in levelMinLog2Tiles as a lower limit when levels are defined | 
 | } | 
 |  | 
 | void av1_calculate_tile_cols(AV1_COMMON *const cm) { | 
 |   int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
 |   int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
 |   int sb_cols = mi_cols >> cm->seq_params.mib_size_log2; | 
 |   int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; | 
 |   int i; | 
 |  | 
 |   if (cm->uniform_tile_spacing_flag) { | 
 |     int start_sb; | 
 |     int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols); | 
 |     size_sb >>= cm->log2_tile_cols; | 
 |     assert(size_sb > 0); | 
 |     for (i = 0, start_sb = 0; start_sb < sb_cols; i++) { | 
 |       cm->tile_col_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |     } | 
 |     cm->tile_cols = i; | 
 |     cm->tile_col_start_sb[i] = sb_cols; | 
 |     cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0); | 
 |     cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows; | 
 |   } else { | 
 |     int max_tile_area_sb = (sb_rows * sb_cols); | 
 |     int widest_tile_sb = 1; | 
 |     cm->log2_tile_cols = tile_log2(1, cm->tile_cols); | 
 |     for (i = 0; i < cm->tile_cols; i++) { | 
 |       int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; | 
 |       widest_tile_sb = AOMMAX(widest_tile_sb, size_sb); | 
 |     } | 
 |     if (cm->min_log2_tiles) { | 
 |       max_tile_area_sb >>= (cm->min_log2_tiles + 1); | 
 |     } | 
 |     cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1); | 
 |   } | 
 | } | 
 |  | 
 | void av1_calculate_tile_rows(AV1_COMMON *const cm) { | 
 |   int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
 |   int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; | 
 |   int start_sb, size_sb, i; | 
 |  | 
 |   if (cm->uniform_tile_spacing_flag) { | 
 |     size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows); | 
 |     size_sb >>= cm->log2_tile_rows; | 
 |     assert(size_sb > 0); | 
 |     for (i = 0, start_sb = 0; start_sb < sb_rows; i++) { | 
 |       cm->tile_row_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |     } | 
 |     cm->tile_rows = i; | 
 |     cm->tile_row_start_sb[i] = sb_rows; | 
 |   } else { | 
 |     cm->log2_tile_rows = tile_log2(1, cm->tile_rows); | 
 |   } | 
 | } | 
 |  | 
 | void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { | 
 |   assert(row < cm->tile_rows); | 
 |   int mi_row_start = cm->tile_row_start_sb[row] << cm->seq_params.mib_size_log2; | 
 |   int mi_row_end = cm->tile_row_start_sb[row + 1] | 
 |                    << cm->seq_params.mib_size_log2; | 
 |   tile->mi_row_start = mi_row_start; | 
 |   tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows); | 
 |   assert(tile->mi_row_end > tile->mi_row_start); | 
 | } | 
 |  | 
 | void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { | 
 |   assert(col < cm->tile_cols); | 
 |   int mi_col_start = cm->tile_col_start_sb[col] << cm->seq_params.mib_size_log2; | 
 |   int mi_col_end = cm->tile_col_start_sb[col + 1] | 
 |                    << cm->seq_params.mib_size_log2; | 
 |   tile->mi_col_start = mi_col_start; | 
 |   tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols); | 
 |   assert(tile->mi_col_end > tile->mi_col_start); | 
 | } | 
 |  | 
 | void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) { | 
 |   BOUNDARY_TYPE *bi = cm->boundary_info; | 
 |   int col; | 
 |   for (col = 0; col < cm->mi_cols; ++col) { | 
 |     *bi |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY; | 
 |     bi += 1; | 
 |   } | 
 |  | 
 |   bi = cm->boundary_info; | 
 |   int row; | 
 |   for (row = 0; row < cm->mi_rows; ++row) { | 
 |     *bi |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY; | 
 |     bi += cm->mi_stride; | 
 |   } | 
 |  | 
 |   bi = cm->boundary_info + (cm->mi_rows - 1) * cm->mi_stride; | 
 |   for (col = 0; col < cm->mi_cols; ++col) { | 
 |     *bi |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY; | 
 |     bi += 1; | 
 |   } | 
 |  | 
 |   bi = cm->boundary_info + cm->mi_cols - 1; | 
 |   for (row = 0; row < cm->mi_rows; ++row) { | 
 |     *bi |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY; | 
 |     bi += cm->mi_stride; | 
 |   } | 
 | } | 
 |  | 
 | int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) { | 
 |   // Round the frame up to a whole number of max superblocks | 
 |   mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2); | 
 |  | 
 |   // Divide by the signalled number of tiles, rounding up to the multiple of | 
 |   // the max superblock size. To do this, shift right (and round up) to get the | 
 |   // tile size in max super-blocks and then shift left again to convert it to | 
 |   // mi units. | 
 |   const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2; | 
 |   const int max_sb_tile_size = | 
 |       ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift; | 
 |   const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2; | 
 |  | 
 |   // The actual number of tiles is the ceiling of the frame size in mi units | 
 |   // divided by mi_size. This is at most 1 << log2_tile_num but might be | 
 |   // strictly less if max_sb_tile_size got rounded up significantly. | 
 |   if (ntiles) { | 
 |     *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size; | 
 |     assert(*ntiles <= (1 << log2_tile_num)); | 
 |   } | 
 |  | 
 |   return mi_tile_size; | 
 | } | 
 |  | 
 | AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm, | 
 |                                int is_uv) { | 
 |   AV1PixelRect r; | 
 |  | 
 |   // Calculate position in the Y plane | 
 |   r.left = tile_info->mi_col_start * MI_SIZE; | 
 |   r.right = tile_info->mi_col_end * MI_SIZE; | 
 |   r.top = tile_info->mi_row_start * MI_SIZE; | 
 |   r.bottom = tile_info->mi_row_end * MI_SIZE; | 
 |  | 
 |   // If upscaling is enabled, the tile limits need scaling to match the | 
 |   // upscaled frame where the restoration units live. To do this, scale up the | 
 |   // top-left and bottom-right of the tile. | 
 |   if (!av1_superres_unscaled(cm)) { | 
 |     av1_calculate_unscaled_superres_size(&r.left, &r.top, | 
 |                                          cm->superres_scale_denominator); | 
 |     av1_calculate_unscaled_superres_size(&r.right, &r.bottom, | 
 |                                          cm->superres_scale_denominator); | 
 |   } | 
 |  | 
 |   const int frame_w = cm->superres_upscaled_width; | 
 |   const int frame_h = cm->superres_upscaled_height; | 
 |  | 
 |   // Make sure we don't fall off the bottom-right of the frame. | 
 |   r.right = AOMMIN(r.right, frame_w); | 
 |   r.bottom = AOMMIN(r.bottom, frame_h); | 
 |  | 
 |   // Convert to coordinates in the appropriate plane | 
 |   const int ss_x = is_uv && cm->subsampling_x; | 
 |   const int ss_y = is_uv && cm->subsampling_y; | 
 |  | 
 |   r.left = ROUND_POWER_OF_TWO(r.left, ss_x); | 
 |   r.right = ROUND_POWER_OF_TWO(r.right, ss_x); | 
 |   r.top = ROUND_POWER_OF_TWO(r.top, ss_y); | 
 |   r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y); | 
 |  | 
 |   return r; | 
 | } |