|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "aom/aom_encoder.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/binary_codes_writer.h" | 
|  | #include "aom_dsp/bitwriter_buffer.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/mem_ops.h" | 
|  | #include "aom_ports/system_state.h" | 
|  | #if CONFIG_BITSTREAM_DEBUG | 
|  | #include "aom_util/debug_util.h" | 
|  | #endif  // CONFIG_BITSTREAM_DEBUG | 
|  |  | 
|  | #include "av1/common/cdef.h" | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/entropymv.h" | 
|  | #include "av1/common/mvref_common.h" | 
|  | #include "av1/common/odintrin.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/seg_common.h" | 
|  | #include "av1/common/tile_common.h" | 
|  |  | 
|  | #include "av1/encoder/bitstream.h" | 
|  | #include "av1/encoder/cost.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encodetxb.h" | 
|  | #include "av1/encoder/mcomp.h" | 
|  | #include "av1/encoder/palette.h" | 
|  | #include "av1/encoder/segmentation.h" | 
|  | #include "av1/encoder/tokenize.h" | 
|  |  | 
|  | #define ENC_MISMATCH_DEBUG 0 | 
|  |  | 
|  | static INLINE void write_uniform(aom_writer *w, int n, int v) { | 
|  | const int l = get_unsigned_bits(n); | 
|  | const int m = (1 << l) - n; | 
|  | if (l == 0) return; | 
|  | if (v < m) { | 
|  | aom_write_literal(w, v, l - 1); | 
|  | } else { | 
|  | aom_write_literal(w, m + ((v - m) >> 1), l - 1); | 
|  | aom_write_literal(w, (v - m) & 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *xd, | 
|  | const RestorationUnitInfo *rui, | 
|  | aom_writer *const w, int plane, | 
|  | FRAME_COUNTS *counts); | 
|  |  | 
|  | static void write_intra_mode_kf(FRAME_CONTEXT *frame_ctx, const MODE_INFO *mi, | 
|  | const MODE_INFO *above_mi, | 
|  | const MODE_INFO *left_mi, PREDICTION_MODE mode, | 
|  | aom_writer *w) { | 
|  | assert(!is_intrabc_block(&mi->mbmi)); | 
|  | (void)mi; | 
|  | aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), | 
|  | INTRA_MODES); | 
|  | } | 
|  |  | 
|  | static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, | 
|  | FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { | 
|  | const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; | 
|  |  | 
|  | aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); | 
|  |  | 
|  | if (mode != NEWMV) { | 
|  | const int16_t zeromv_ctx = | 
|  | (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
|  | aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); | 
|  |  | 
|  | if (mode != GLOBALMV) { | 
|  | int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
|  | aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) { | 
|  | uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); | 
|  |  | 
|  | assert(mbmi->ref_mv_idx < 3); | 
|  |  | 
|  | const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; | 
|  | if (new_mv) { | 
|  | int idx; | 
|  | for (idx = 0; idx < 2; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | uint8_t drl_ctx = | 
|  | av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); | 
|  |  | 
|  | aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], | 
|  | 2); | 
|  | if (mbmi->ref_mv_idx == idx) return; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (have_nearmv_in_inter_mode(mbmi->mode)) { | 
|  | int idx; | 
|  | // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. | 
|  | for (idx = 1; idx < 3; ++idx) { | 
|  | if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { | 
|  | uint8_t drl_ctx = | 
|  | av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); | 
|  | aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), | 
|  | ec_ctx->drl_cdf[drl_ctx], 2); | 
|  | if (mbmi->ref_mv_idx == (idx - 1)) return; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, | 
|  | PREDICTION_MODE mode, | 
|  | const int16_t mode_ctx) { | 
|  | assert(is_inter_compound_mode(mode)); | 
|  | aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), | 
|  | xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], | 
|  | INTER_COMPOUND_MODES); | 
|  | } | 
|  |  | 
|  | static void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, | 
|  | TX_SIZE tx_size, int depth, int blk_row, | 
|  | int blk_col, aom_writer *w) { | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | if (depth == MAX_VARTX_DEPTH) { | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, | 
|  | mbmi->sb_type, tx_size); | 
|  | const int txb_size_index = | 
|  | av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col); | 
|  | const int write_txfm_partition = | 
|  | tx_size == mbmi->inter_tx_size[txb_size_index]; | 
|  | if (write_txfm_partition) { | 
|  | aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); | 
|  |  | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, tx_size, tx_size); | 
|  | // TODO(yuec): set correct txfm partition update for qttx | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  |  | 
|  | aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); | 
|  |  | 
|  | if (sub_txs == TX_4X4) { | 
|  | txfm_partition_update(xd->above_txfm_context + blk_col, | 
|  | xd->left_txfm_context + blk_row, sub_txs, tx_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(bsw > 0 && bsh > 0); | 
|  | for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) | 
|  | for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
|  | int offsetr = blk_row + row; | 
|  | int offsetc = blk_col + col; | 
|  | write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | if (block_signals_txsize(bsize)) { | 
|  | const TX_SIZE tx_size = mbmi->tx_size; | 
|  | const int tx_size_ctx = get_tx_size_context(xd); | 
|  | const int depth = tx_size_to_depth(tx_size, bsize, 0); | 
|  | const int max_depths = bsize_to_max_depth(bsize, 0); | 
|  | const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize, 0); | 
|  |  | 
|  | assert(depth >= 0 && depth <= max_depths); | 
|  | assert(!is_inter_block(mbmi)); | 
|  | assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); | 
|  |  | 
|  | aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], | 
|  | max_depths + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int segment_id, const MODE_INFO *mi, aom_writer *w) { | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
|  | return 1; | 
|  | } else { | 
|  | const int skip = mi->mbmi.skip; | 
|  | const int ctx = av1_get_skip_context(xd); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2); | 
|  | return skip; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int segment_id, const MODE_INFO *mi, aom_writer *w) { | 
|  | if (!cm->skip_mode_flag) return 0; | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { | 
|  | return 0; | 
|  | } | 
|  | const int skip_mode = mi->mbmi.skip_mode; | 
|  | if (!is_comp_ref_allowed(mi->mbmi.sb_type)) { | 
|  | assert(!skip_mode); | 
|  | return 0; | 
|  | } | 
|  | const int ctx = av1_get_skip_mode_context(xd); | 
|  | aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); | 
|  | return skip_mode; | 
|  | } | 
|  |  | 
|  | static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int segment_id, aom_writer *w, const int is_inter) { | 
|  | if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || | 
|  | segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) | 
|  | if (!av1_is_valid_scale(&cm->frame_refs[0].sf)) | 
|  | return;  // LAST_FRAME not valid for reference | 
|  |  | 
|  | const int ctx = av1_get_intra_inter_context(xd); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | const MODE_INFO *mi, aom_writer *w) { | 
|  | const MB_MODE_INFO *mbmi = &mi->mbmi; | 
|  |  | 
|  | MOTION_MODE last_motion_mode_allowed = | 
|  | cm->switchable_motion_mode | 
|  | ? motion_mode_allowed(cm->global_motion, xd, mi, | 
|  | cm->allow_warped_motion) | 
|  | : SIMPLE_TRANSLATION; | 
|  | assert(mbmi->motion_mode <= last_motion_mode_allowed); | 
|  | switch (last_motion_mode_allowed) { | 
|  | case SIMPLE_TRANSLATION: break; | 
|  | case OBMC_CAUSAL: | 
|  | aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, | 
|  | xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2); | 
|  | break; | 
|  | default: | 
|  | aom_write_symbol(w, mbmi->motion_mode, | 
|  | xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], | 
|  | MOTION_MODES); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex, | 
|  | aom_writer *w) { | 
|  | int sign = delta_qindex < 0; | 
|  | int abs = sign ? -delta_qindex : delta_qindex; | 
|  | int rem_bits, thr; | 
|  | int smallval = abs < DELTA_Q_SMALL ? 1 : 0; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, | 
|  | DELTA_Q_PROBS + 1); | 
|  |  | 
|  | if (!smallval) { | 
|  | rem_bits = OD_ILOG_NZ(abs - 1) - 1; | 
|  | thr = (1 << rem_bits) + 1; | 
|  | aom_write_literal(w, rem_bits - 1, 3); | 
|  | aom_write_literal(w, abs - thr, rem_bits); | 
|  | } | 
|  | if (abs > 0) { | 
|  | aom_write_bit(w, sign); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | int lf_id, int delta_lflevel, aom_writer *w) { | 
|  | int sign = delta_lflevel < 0; | 
|  | int abs = sign ? -delta_lflevel : delta_lflevel; | 
|  | int rem_bits, thr; | 
|  | int smallval = abs < DELTA_LF_SMALL ? 1 : 0; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | if (cm->delta_lf_multi) { | 
|  | assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT | 
|  | : FRAME_LF_COUNT - 2)); | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), | 
|  | ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); | 
|  | } else { | 
|  | aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, | 
|  | DELTA_LF_PROBS + 1); | 
|  | } | 
|  |  | 
|  | if (!smallval) { | 
|  | rem_bits = OD_ILOG_NZ(abs - 1) - 1; | 
|  | thr = (1 << rem_bits) + 1; | 
|  | aom_write_literal(w, rem_bits - 1, 3); | 
|  | aom_write_literal(w, abs - thr, rem_bits); | 
|  | } | 
|  | if (abs > 0) { | 
|  | aom_write_bit(w, sign); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n, | 
|  | int num) { | 
|  | const TOKENEXTRA *p = *tp; | 
|  | write_uniform(w, n, p->token);  // The first color index. | 
|  | ++p; | 
|  | --num; | 
|  | for (int i = 0; i < num; ++i) { | 
|  | aom_write_symbol(w, p->token, p->color_map_cdf, n); | 
|  | ++p; | 
|  | } | 
|  | *tp = p; | 
|  | } | 
|  |  | 
|  | static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, | 
|  | const TOKENEXTRA **tp, | 
|  | const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, | 
|  | MB_MODE_INFO *mbmi, int plane, | 
|  | BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, | 
|  | int block, int blk_row, int blk_col, | 
|  | TX_SIZE tx_size, TOKEN_STATS *token_stats) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | const TX_SIZE plane_tx_size = | 
|  | plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) | 
|  | : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
|  | blk_col)]; | 
|  |  | 
|  | if (tx_size == plane_tx_size || plane) { | 
|  | TOKEN_STATS tmp_token_stats; | 
|  | init_token_stats(&tmp_token_stats); | 
|  |  | 
|  | tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); | 
|  | uint16_t eob = x->mbmi_ext->eobs[plane][block]; | 
|  | TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], | 
|  | x->mbmi_ext->dc_sign_ctx[plane][block] }; | 
|  | av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, | 
|  | eob, &txb_ctx); | 
|  | #if CONFIG_RD_DEBUG | 
|  | token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; | 
|  | token_stats->cost += tmp_token_stats.cost; | 
|  | #endif | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; | 
|  | const int bsw = tx_size_wide_unit[sub_txs]; | 
|  | const int bsh = tx_size_high_unit[sub_txs]; | 
|  |  | 
|  | assert(bsw > 0 && bsh > 0); | 
|  |  | 
|  | for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { | 
|  | for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { | 
|  | const int offsetr = blk_row + r; | 
|  | const int offsetc = blk_col + c; | 
|  | const int step = bsh * bsw; | 
|  |  | 
|  | if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
|  |  | 
|  | pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, | 
|  | bit_depth, block, offsetr, offsetc, sub_txs, | 
|  | token_stats); | 
|  | block += step; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm, | 
|  | uint8_t *segment_ids, | 
|  | BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col, int segment_id) { | 
|  | const int mi_offset = mi_row * cm->mi_cols + mi_col; | 
|  | const int bw = mi_size_wide[bsize]; | 
|  | const int bh = mi_size_high[bsize]; | 
|  | const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); | 
|  | const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); | 
|  | int x, y; | 
|  |  | 
|  | for (y = 0; y < ymis; ++y) | 
|  | for (x = 0; x < xmis; ++x) | 
|  | segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id; | 
|  | } | 
|  |  | 
|  | int av1_neg_interleave(int x, int ref, int max) { | 
|  | const int diff = x - ref; | 
|  | if (!ref) return x; | 
|  | if (ref >= (max - 1)) return -x + max - 1; | 
|  | if (2 * ref < max) { | 
|  | if (abs(diff) <= ref) { | 
|  | if (diff > 0) | 
|  | return (diff << 1) - 1; | 
|  | else | 
|  | return ((-diff) << 1); | 
|  | } | 
|  | return x; | 
|  | } else { | 
|  | if (abs(diff) < (max - ref)) { | 
|  | if (diff > 0) | 
|  | return (diff << 1) - 1; | 
|  | else | 
|  | return ((-diff) << 1); | 
|  | } | 
|  | return (max - x) - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w, const struct segmentation *seg, | 
|  | struct segmentation_probs *segp, int mi_row, | 
|  | int mi_col, int skip) { | 
|  | if (!seg->enabled || !seg->update_map) return; | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | int cdf_num; | 
|  | const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num); | 
|  |  | 
|  | if (skip) { | 
|  | // Still need to transmit tx size for intra blocks even if skip is | 
|  | // true. Changing segment_id may make the tx size become invalid, e.g | 
|  | // changing from lossless to lossy. | 
|  | assert(is_inter_block(mbmi) || !cpi->has_lossless_segment); | 
|  |  | 
|  | set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, | 
|  | mi_col, pred); | 
|  | set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row, | 
|  | mi_col, pred); | 
|  | /* mbmi is read only but we need to update segment_id */ | 
|  | ((MB_MODE_INFO *)mbmi)->segment_id = pred; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int coded_id = | 
|  | av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); | 
|  | aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; | 
|  | aom_write_symbol(w, coded_id, pred_cdf, 8); | 
|  | set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, | 
|  | mi_col, mbmi->segment_id); | 
|  | } | 
|  |  | 
|  | #define WRITE_REF_BIT(bname, pname) \ | 
|  | aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) | 
|  |  | 
|  | // This function encodes the reference frame | 
|  | static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  | const int segment_id = mbmi->segment_id; | 
|  |  | 
|  | // If segment level coding of this signal is disabled... | 
|  | // or the segment allows multiple reference frame options | 
|  | if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { | 
|  | assert(!is_compound); | 
|  | assert(mbmi->ref_frame[0] == | 
|  | get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); | 
|  | } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || | 
|  | segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { | 
|  | assert(!is_compound); | 
|  | assert(mbmi->ref_frame[0] == LAST_FRAME); | 
|  | } else { | 
|  | // does the feature use compound prediction or not | 
|  | // (if not specified at the frame/segment level) | 
|  | if (cm->reference_mode == REFERENCE_MODE_SELECT) { | 
|  | if (is_comp_ref_allowed(mbmi->sb_type)) | 
|  | aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2); | 
|  | } else { | 
|  | assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); | 
|  | } | 
|  |  | 
|  | if (is_compound) { | 
|  | const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) | 
|  | ? UNIDIR_COMP_REFERENCE | 
|  | : BIDIR_COMP_REFERENCE; | 
|  | aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), | 
|  | 2); | 
|  |  | 
|  | if (comp_ref_type == UNIDIR_COMP_REFERENCE) { | 
|  | const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; | 
|  | WRITE_REF_BIT(bit, uni_comp_ref_p); | 
|  |  | 
|  | if (!bit) { | 
|  | assert(mbmi->ref_frame[0] == LAST_FRAME); | 
|  | const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || | 
|  | mbmi->ref_frame[1] == GOLDEN_FRAME; | 
|  | WRITE_REF_BIT(bit1, uni_comp_ref_p1); | 
|  | if (bit1) { | 
|  | const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; | 
|  | WRITE_REF_BIT(bit2, uni_comp_ref_p2); | 
|  | } | 
|  | } else { | 
|  | assert(mbmi->ref_frame[1] == ALTREF_FRAME); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(comp_ref_type == BIDIR_COMP_REFERENCE); | 
|  |  | 
|  | const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || | 
|  | mbmi->ref_frame[0] == LAST3_FRAME); | 
|  | WRITE_REF_BIT(bit, comp_ref_p); | 
|  |  | 
|  | if (!bit) { | 
|  | const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; | 
|  | WRITE_REF_BIT(bit1, comp_ref_p1); | 
|  | } else { | 
|  | const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; | 
|  | WRITE_REF_BIT(bit2, comp_ref_p2); | 
|  | } | 
|  |  | 
|  | const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; | 
|  | WRITE_REF_BIT(bit_bwd, comp_bwdref_p); | 
|  |  | 
|  | if (!bit_bwd) { | 
|  | WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && | 
|  | mbmi->ref_frame[0] >= BWDREF_FRAME); | 
|  | WRITE_REF_BIT(bit0, single_ref_p1); | 
|  |  | 
|  | if (bit0) { | 
|  | const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; | 
|  | WRITE_REF_BIT(bit1, single_ref_p2); | 
|  |  | 
|  | if (!bit1) { | 
|  | WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); | 
|  | } | 
|  | } else { | 
|  | const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || | 
|  | mbmi->ref_frame[0] == GOLDEN_FRAME); | 
|  | WRITE_REF_BIT(bit2, single_ref_p3); | 
|  |  | 
|  | if (!bit2) { | 
|  | const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; | 
|  | WRITE_REF_BIT(bit3, single_ref_p4); | 
|  | } else { | 
|  | const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; | 
|  | WRITE_REF_BIT(bit4, single_ref_p5); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_filter_intra_mode_info(const AV1_COMMON *cm, | 
|  | const MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO *const mbmi, | 
|  | aom_writer *w) { | 
|  | if (av1_filter_intra_allowed(cm, mbmi)) { | 
|  | aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, | 
|  | xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2); | 
|  | if (mbmi->filter_intra_mode_info.use_filter_intra) { | 
|  | const FILTER_INTRA_MODE mode = | 
|  | mbmi->filter_intra_mode_info.filter_intra_mode; | 
|  | aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, | 
|  | FILTER_INTRA_MODES); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_angle_delta(aom_writer *w, int angle_delta, | 
|  | aom_cdf_prob *cdf) { | 
|  | aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, | 
|  | 2 * MAX_ANGLE_DELTA + 1); | 
|  | } | 
|  |  | 
|  | static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd, | 
|  | aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | if (!av1_is_interp_needed(xd)) { | 
|  | assert(mbmi->interp_filters == | 
|  | av1_broadcast_interp_filter( | 
|  | av1_unswitchable_filter(cm->interp_filter))); | 
|  | return; | 
|  | } | 
|  | if (cm->interp_filter == SWITCHABLE) { | 
|  | int dir; | 
|  | for (dir = 0; dir < 2; ++dir) { | 
|  | const int ctx = av1_get_pred_context_switchable_interp(xd, dir); | 
|  | InterpFilter filter = | 
|  | av1_extract_interp_filter(mbmi->interp_filters, dir); | 
|  | aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], | 
|  | SWITCHABLE_FILTERS); | 
|  | ++cpi->interp_filter_selected[0][filter]; | 
|  | if (cm->seq_params.enable_dual_filter == 0) return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transmit color values with delta encoding. Write the first value as | 
|  | // literal, and the deltas between each value and the previous one. "min_val" is | 
|  | // the smallest possible value of the deltas. | 
|  | static void delta_encode_palette_colors(const int *colors, int num, | 
|  | int bit_depth, int min_val, | 
|  | aom_writer *w) { | 
|  | if (num <= 0) return; | 
|  | assert(colors[0] < (1 << bit_depth)); | 
|  | aom_write_literal(w, colors[0], bit_depth); | 
|  | if (num == 1) return; | 
|  | int max_delta = 0; | 
|  | int deltas[PALETTE_MAX_SIZE]; | 
|  | memset(deltas, 0, sizeof(deltas)); | 
|  | for (int i = 1; i < num; ++i) { | 
|  | assert(colors[i] < (1 << bit_depth)); | 
|  | const int delta = colors[i] - colors[i - 1]; | 
|  | deltas[i - 1] = delta; | 
|  | assert(delta >= min_val); | 
|  | if (delta > max_delta) max_delta = delta; | 
|  | } | 
|  | const int min_bits = bit_depth - 3; | 
|  | int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); | 
|  | assert(bits <= bit_depth); | 
|  | int range = (1 << bit_depth) - colors[0] - min_val; | 
|  | aom_write_literal(w, bits - min_bits, 2); | 
|  | for (int i = 0; i < num - 1; ++i) { | 
|  | aom_write_literal(w, deltas[i] - min_val, bits); | 
|  | range -= deltas[i]; | 
|  | bits = AOMMIN(bits, av1_ceil_log2(range)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transmit luma palette color values. First signal if each color in the color | 
|  | // cache is used. Those colors that are not in the cache are transmitted with | 
|  | // delta encoding. | 
|  | static void write_palette_colors_y(const MACROBLOCKD *const xd, | 
|  | const PALETTE_MODE_INFO *const pmi, | 
|  | int bit_depth, aom_writer *w) { | 
|  | const int n = pmi->palette_size[0]; | 
|  | uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_cache = av1_get_palette_cache(xd, 0, color_cache); | 
|  | int out_cache_colors[PALETTE_MAX_SIZE]; | 
|  | uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_out_cache = | 
|  | av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, | 
|  | cache_color_found, out_cache_colors); | 
|  | int n_in_cache = 0; | 
|  | for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
|  | const int found = cache_color_found[i]; | 
|  | aom_write_bit(w, found); | 
|  | n_in_cache += found; | 
|  | } | 
|  | assert(n_in_cache + n_out_cache == n); | 
|  | delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); | 
|  | } | 
|  |  | 
|  | // Write chroma palette color values. U channel is handled similarly to the luma | 
|  | // channel. For v channel, either use delta encoding or transmit raw values | 
|  | // directly, whichever costs less. | 
|  | static void write_palette_colors_uv(const MACROBLOCKD *const xd, | 
|  | const PALETTE_MODE_INFO *const pmi, | 
|  | int bit_depth, aom_writer *w) { | 
|  | const int n = pmi->palette_size[1]; | 
|  | const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; | 
|  | const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; | 
|  | // U channel colors. | 
|  | uint16_t color_cache[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_cache = av1_get_palette_cache(xd, 1, color_cache); | 
|  | int out_cache_colors[PALETTE_MAX_SIZE]; | 
|  | uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; | 
|  | const int n_out_cache = av1_index_color_cache( | 
|  | color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); | 
|  | int n_in_cache = 0; | 
|  | for (int i = 0; i < n_cache && n_in_cache < n; ++i) { | 
|  | const int found = cache_color_found[i]; | 
|  | aom_write_bit(w, found); | 
|  | n_in_cache += found; | 
|  | } | 
|  | delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); | 
|  |  | 
|  | // V channel colors. Don't use color cache as the colors are not sorted. | 
|  | const int max_val = 1 << bit_depth; | 
|  | int zero_count = 0, min_bits_v = 0; | 
|  | int bits_v = | 
|  | av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); | 
|  | const int rate_using_delta = | 
|  | 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; | 
|  | const int rate_using_raw = bit_depth * n; | 
|  | if (rate_using_delta < rate_using_raw) {  // delta encoding | 
|  | assert(colors_v[0] < (1 << bit_depth)); | 
|  | aom_write_bit(w, 1); | 
|  | aom_write_literal(w, bits_v - min_bits_v, 2); | 
|  | aom_write_literal(w, colors_v[0], bit_depth); | 
|  | for (int i = 1; i < n; ++i) { | 
|  | assert(colors_v[i] < (1 << bit_depth)); | 
|  | if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit. | 
|  | aom_write_literal(w, 0, bits_v); | 
|  | continue; | 
|  | } | 
|  | const int delta = abs((int)colors_v[i] - colors_v[i - 1]); | 
|  | const int sign_bit = colors_v[i] < colors_v[i - 1]; | 
|  | if (delta <= max_val - delta) { | 
|  | aom_write_literal(w, delta, bits_v); | 
|  | aom_write_bit(w, sign_bit); | 
|  | } else { | 
|  | aom_write_literal(w, max_val - delta, bits_v); | 
|  | aom_write_bit(w, !sign_bit); | 
|  | } | 
|  | } | 
|  | } else {  // Transmit raw values. | 
|  | aom_write_bit(w, 0); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | assert(colors_v[i] < (1 << bit_depth)); | 
|  | aom_write_literal(w, colors_v[i], bit_depth); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | const MODE_INFO *const mi, int mi_row, | 
|  | int mi_col, aom_writer *w) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); | 
|  | const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); | 
|  |  | 
|  | if (mbmi->mode == DC_PRED) { | 
|  | const int n = pmi->palette_size[0]; | 
|  | const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); | 
|  | aom_write_symbol( | 
|  | w, n > 0, | 
|  | xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); | 
|  | if (n > 0) { | 
|  | aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
|  | xd->tile_ctx->palette_y_size_cdf[bsize_ctx], | 
|  | PALETTE_SIZES); | 
|  | write_palette_colors_y(xd, pmi, cm->bit_depth, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | const int uv_dc_pred = | 
|  | num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && | 
|  | is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
|  | xd->plane[1].subsampling_y); | 
|  | if (uv_dc_pred) { | 
|  | const int n = pmi->palette_size[1]; | 
|  | const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); | 
|  | aom_write_symbol(w, n > 0, | 
|  | xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); | 
|  | if (n > 0) { | 
|  | aom_write_symbol(w, n - PALETTE_MIN_SIZE, | 
|  | xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], | 
|  | PALETTE_SIZES); | 
|  | write_palette_colors_uv(xd, pmi, cm->bit_depth, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, | 
|  | int blk_row, int blk_col, int plane, TX_SIZE tx_size, | 
|  | aom_writer *w) { | 
|  | MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | // Only y plane's tx_type is transmitted | 
|  | if (plane > 0) return; | 
|  | PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, | 
|  | cm->reduced_tx_set_used); | 
|  |  | 
|  | const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; | 
|  | if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && | 
|  | ((!cm->seg.enabled && cm->base_qindex > 0) || | 
|  | (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && | 
|  | !mbmi->skip && | 
|  | !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { | 
|  | const TxSetType tx_set_type = | 
|  | get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); | 
|  | const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); | 
|  | // eset == 0 should correspond to a set with only DCT_DCT and there | 
|  | // is no need to send the tx_type | 
|  | assert(eset > 0); | 
|  | assert(av1_ext_tx_used[tx_set_type][tx_type]); | 
|  | if (is_inter) { | 
|  | aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], | 
|  | ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], | 
|  | av1_num_ext_tx_set[tx_set_type]); | 
|  | } else { | 
|  | PREDICTION_MODE intra_dir; | 
|  | if (mbmi->filter_intra_mode_info.use_filter_intra) | 
|  | intra_dir = | 
|  | fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; | 
|  | else | 
|  | intra_dir = mbmi->mode; | 
|  | aom_write_symbol( | 
|  | w, av1_ext_tx_ind[tx_set_type][tx_type], | 
|  | ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], | 
|  | av1_num_ext_tx_set[tx_set_type]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_intra_mode(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, | 
|  | PREDICTION_MODE mode, aom_writer *w) { | 
|  | aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], | 
|  | INTRA_MODES); | 
|  | } | 
|  |  | 
|  | static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, | 
|  | UV_PREDICTION_MODE uv_mode, | 
|  | PREDICTION_MODE y_mode, | 
|  | CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) { | 
|  | aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], | 
|  | UV_INTRA_MODES - !cfl_allowed); | 
|  | } | 
|  |  | 
|  | static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx, | 
|  | int joint_sign, aom_writer *w) { | 
|  | aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); | 
|  | // Magnitudes are only signaled for nonzero codes. | 
|  | if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
|  | aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); | 
|  | } | 
|  | if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { | 
|  | aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
|  | aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_cdef(AV1_COMMON *cm, aom_writer *w, int skip, int mi_col, | 
|  | int mi_row) { | 
|  | if (cm->coded_lossless || (cm->allow_intrabc && NO_FILTER_FOR_IBC)) { | 
|  | // Initialize to indicate no CDEF for safety. | 
|  | cm->cdef_bits = 0; | 
|  | cm->cdef_strengths[0] = 0; | 
|  | cm->nb_cdef_strengths = 1; | 
|  | cm->cdef_uv_strengths[0] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1); | 
|  | const MB_MODE_INFO *mbmi = | 
|  | &cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)]->mbmi; | 
|  | // Initialise when at top left part of the superblock | 
|  | if (!(mi_row & (cm->seq_params.mib_size - 1)) && | 
|  | !(mi_col & (cm->seq_params.mib_size - 1))) {  // Top left? | 
|  | cm->cdef_preset[0] = cm->cdef_preset[1] = cm->cdef_preset[2] = | 
|  | cm->cdef_preset[3] = -1; | 
|  | } | 
|  |  | 
|  | // Emit CDEF param at first non-skip coding block | 
|  | const int mask = 1 << (6 - MI_SIZE_LOG2); | 
|  | const int index = cm->seq_params.sb_size == BLOCK_128X128 | 
|  | ? !!(mi_col & mask) + 2 * !!(mi_row & mask) | 
|  | : 0; | 
|  | if (cm->cdef_preset[index] == -1 && !skip) { | 
|  | aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); | 
|  | cm->cdef_preset[index] = mbmi->cdef_strength; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w, | 
|  | const struct segmentation *const seg, | 
|  | struct segmentation_probs *const segp, | 
|  | int mi_row, int mi_col, int skip, | 
|  | int preskip) { | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | const MODE_INFO *mi = xd->mi[0]; | 
|  | const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  |  | 
|  | if (seg->update_map) { | 
|  | if (preskip) { | 
|  | if (!seg->preskip_segid) return; | 
|  | } else { | 
|  | if (seg->preskip_segid) return; | 
|  | if (skip) { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1); | 
|  | if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (seg->temporal_update) { | 
|  | const int pred_flag = mbmi->seg_id_predicted; | 
|  | aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); | 
|  | aom_write_symbol(w, pred_flag, pred_cdf, 2); | 
|  | if (!pred_flag) { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
|  | } | 
|  | if (pred_flag) { | 
|  | set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, | 
|  | mi_row, mi_col, mbmi->segment_id); | 
|  | } | 
|  | } else { | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row, | 
|  | const int mi_col, aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const MODE_INFO *mi = xd->mi[0]; | 
|  |  | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | struct segmentation_probs *const segp = &ec_ctx->seg; | 
|  | const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
|  | const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const int segment_id = mbmi->segment_id; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | const int allow_hp = cm->allow_high_precision_mv; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int is_compound = has_second_ref(mbmi); | 
|  | int skip, ref; | 
|  | (void)mi_row; | 
|  | (void)mi_col; | 
|  |  | 
|  | write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1); | 
|  |  | 
|  | write_skip_mode(cm, xd, segment_id, mi, w); | 
|  |  | 
|  | assert(IMPLIES(mbmi->skip_mode, mbmi->skip)); | 
|  | skip = mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mi, w); | 
|  |  | 
|  | write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0); | 
|  |  | 
|  | write_cdef(cm, w, skip, mi_col, mi_row); | 
|  |  | 
|  | if (cm->delta_q_present_flag) { | 
|  | int super_block_upper_left = | 
|  | ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
|  | ((mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
|  | if ((bsize != cm->seq_params.sb_size || skip == 0) && | 
|  | super_block_upper_left) { | 
|  | assert(mbmi->current_q_index > 0); | 
|  | int reduced_delta_qindex = | 
|  | (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; | 
|  | write_delta_qindex(xd, reduced_delta_qindex, w); | 
|  | xd->prev_qindex = mbmi->current_q_index; | 
|  | if (cm->delta_lf_present_flag) { | 
|  | if (cm->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) / | 
|  | cm->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); | 
|  | xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id]; | 
|  | } | 
|  | } else { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
|  | cm->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); | 
|  | xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); | 
|  |  | 
|  | if (mbmi->skip_mode) return; | 
|  |  | 
|  | if (!is_inter) { | 
|  | write_intra_mode(ec_ctx, bsize, mode, w); | 
|  | const int use_angle_delta = av1_use_angle_delta(bsize); | 
|  |  | 
|  | if (use_angle_delta && av1_is_directional_mode(mode)) { | 
|  | write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], | 
|  | ec_ctx->angle_delta_cdf[mode - V_PRED]); | 
|  | } | 
|  |  | 
|  | if (!cm->seq_params.monochrome && | 
|  | is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
|  | xd->plane[1].subsampling_y)) { | 
|  | const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
|  | write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); | 
|  | if (uv_mode == UV_CFL_PRED) | 
|  | write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); | 
|  | if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { | 
|  | write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], | 
|  | ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) | 
|  | write_palette_mode_info(cm, xd, mi, mi_row, mi_col, w); | 
|  |  | 
|  | write_filter_intra_mode_info(cm, xd, mbmi, w); | 
|  | } else { | 
|  | int16_t mode_ctx; | 
|  |  | 
|  | av1_collect_neighbors_ref_counts(xd); | 
|  |  | 
|  | write_ref_frames(cm, xd, w); | 
|  |  | 
|  | mode_ctx = | 
|  | av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); | 
|  |  | 
|  | // If segment skip is not enabled code the mode. | 
|  | if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { | 
|  | if (is_inter_compound_mode(mode)) | 
|  | write_inter_compound_mode(xd, w, mode, mode_ctx); | 
|  | else if (is_inter_singleref_mode(mode)) | 
|  | write_inter_mode(w, mode, ec_ctx, mode_ctx); | 
|  |  | 
|  | if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) | 
|  | write_drl_idx(ec_ctx, mbmi, mbmi_ext, w); | 
|  | else | 
|  | assert(mbmi->ref_mv_idx == 0); | 
|  | } | 
|  |  | 
|  | if (mode == NEWMV || mode == NEW_NEWMV) { | 
|  | int_mv ref_mv; | 
|  | for (ref = 0; ref < 1 + is_compound; ++ref) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0]; | 
|  | av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, | 
|  | allow_hp); | 
|  | } | 
|  | } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, | 
|  | &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc, | 
|  | allow_hp); | 
|  | } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { | 
|  | nmv_context *nmvc = &ec_ctx->nmvc; | 
|  | av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, | 
|  | &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc, | 
|  | allow_hp); | 
|  | } | 
|  |  | 
|  | if (cpi->common.reference_mode != COMPOUND_REFERENCE && | 
|  | cpi->common.seq_params.enable_interintra_compound && | 
|  | is_interintra_allowed(mbmi)) { | 
|  | const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; | 
|  | const int bsize_group = size_group_lookup[bsize]; | 
|  | aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); | 
|  | if (interintra) { | 
|  | aom_write_symbol(w, mbmi->interintra_mode, | 
|  | ec_ctx->interintra_mode_cdf[bsize_group], | 
|  | INTERINTRA_MODES); | 
|  | if (is_interintra_wedge_used(bsize)) { | 
|  | aom_write_symbol(w, mbmi->use_wedge_interintra, | 
|  | ec_ctx->wedge_interintra_cdf[bsize], 2); | 
|  | if (mbmi->use_wedge_interintra) { | 
|  | aom_write_symbol(w, mbmi->interintra_wedge_index, | 
|  | ec_ctx->wedge_idx_cdf[bsize], 16); | 
|  | assert(mbmi->interintra_wedge_sign == 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mi, w); | 
|  |  | 
|  | // First write idx to indicate current compound inter prediction mode group | 
|  | // Group A (0): jnt_comp, compound_average | 
|  | // Group B (1): interintra, compound_segment, wedge | 
|  | if (has_second_ref(mbmi)) { | 
|  | const int masked_compound_used = is_any_masked_compound_used(bsize) && | 
|  | cm->seq_params.enable_masked_compound; | 
|  |  | 
|  | if (masked_compound_used) { | 
|  | const int ctx_comp_group_idx = get_comp_group_idx_context(xd); | 
|  | aom_write_symbol(w, mbmi->comp_group_idx, | 
|  | ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); | 
|  | } else { | 
|  | assert(mbmi->comp_group_idx == 0); | 
|  | } | 
|  |  | 
|  | if (mbmi->comp_group_idx == 0) { | 
|  | if (mbmi->compound_idx) | 
|  | assert(mbmi->interinter_compound_type == COMPOUND_AVERAGE); | 
|  |  | 
|  | if (cm->seq_params.enable_jnt_comp) { | 
|  | const int comp_index_ctx = get_comp_index_context(cm, xd); | 
|  | aom_write_symbol(w, mbmi->compound_idx, | 
|  | ec_ctx->compound_index_cdf[comp_index_ctx], 2); | 
|  | } else { | 
|  | assert(mbmi->compound_idx == 1); | 
|  | } | 
|  | } else { | 
|  | assert(cpi->common.reference_mode != SINGLE_REFERENCE && | 
|  | is_inter_compound_mode(mbmi->mode) && | 
|  | mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  | assert(masked_compound_used); | 
|  | // compound_segment, wedge | 
|  | assert(mbmi->interinter_compound_type == COMPOUND_WEDGE || | 
|  | mbmi->interinter_compound_type == COMPOUND_SEG); | 
|  |  | 
|  | if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) | 
|  | aom_write_symbol(w, mbmi->interinter_compound_type - 1, | 
|  | ec_ctx->compound_type_cdf[bsize], | 
|  | COMPOUND_TYPES - 1); | 
|  |  | 
|  | if (mbmi->interinter_compound_type == COMPOUND_WEDGE) { | 
|  | assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); | 
|  | aom_write_symbol(w, mbmi->wedge_index, ec_ctx->wedge_idx_cdf[bsize], | 
|  | 16); | 
|  | aom_write_bit(w, mbmi->wedge_sign); | 
|  | } else { | 
|  | assert(mbmi->interinter_compound_type == COMPOUND_SEG); | 
|  | aom_write_literal(w, mbmi->mask_type, MAX_SEG_MASK_BITS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | write_mb_interp_filter(cpi, xd, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_intrabc_info(MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, | 
|  | aom_writer *w) { | 
|  | const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; | 
|  | int use_intrabc = is_intrabc_block(mbmi); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); | 
|  | if (use_intrabc) { | 
|  | assert(mbmi->mode == DC_PRED); | 
|  | assert(mbmi->uv_mode == UV_DC_PRED); | 
|  | assert(mbmi->motion_mode == SIMPLE_TRANSLATION); | 
|  | int_mv dv_ref = mbmi_ext->ref_mvs[INTRA_FRAME][0]; | 
|  | av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd, | 
|  | const MB_MODE_INFO_EXT *mbmi_ext, | 
|  | const int mi_row, const int mi_col, | 
|  | aom_writer *w) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  | const struct segmentation *const seg = &cm->seg; | 
|  | struct segmentation_probs *const segp = &ec_ctx->seg; | 
|  | const MODE_INFO *const mi = xd->mi[0]; | 
|  | const MODE_INFO *const above_mi = xd->above_mi; | 
|  | const MODE_INFO *const left_mi = xd->left_mi; | 
|  | const MB_MODE_INFO *const mbmi = &mi->mbmi; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  |  | 
|  | if (seg->preskip_segid && seg->update_map) | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); | 
|  |  | 
|  | const int skip = write_skip(cm, xd, mbmi->segment_id, mi, w); | 
|  |  | 
|  | if (!seg->preskip_segid && seg->update_map) | 
|  | write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip); | 
|  |  | 
|  | write_cdef(cm, w, skip, mi_col, mi_row); | 
|  |  | 
|  | if (cm->delta_q_present_flag) { | 
|  | int super_block_upper_left = | 
|  | ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && | 
|  | ((mi_col & (cm->seq_params.mib_size - 1)) == 0); | 
|  | if ((bsize != cm->seq_params.sb_size || skip == 0) && | 
|  | super_block_upper_left) { | 
|  | assert(mbmi->current_q_index > 0); | 
|  | int reduced_delta_qindex = | 
|  | (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res; | 
|  | write_delta_qindex(xd, reduced_delta_qindex, w); | 
|  | xd->prev_qindex = mbmi->current_q_index; | 
|  | if (cm->delta_lf_present_flag) { | 
|  | if (cm->delta_lf_multi) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) / | 
|  | cm->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); | 
|  | xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id]; | 
|  | } | 
|  | } else { | 
|  | int reduced_delta_lflevel = | 
|  | (mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) / | 
|  | cm->delta_lf_res; | 
|  | write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); | 
|  | xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (av1_allow_intrabc(cm)) { | 
|  | write_intrabc_info(xd, mbmi_ext, w); | 
|  | if (is_intrabc_block(mbmi)) return; | 
|  | } | 
|  |  | 
|  | write_intra_mode_kf(ec_ctx, mi, above_mi, left_mi, mode, w); | 
|  |  | 
|  | const int use_angle_delta = av1_use_angle_delta(bsize); | 
|  | if (use_angle_delta && av1_is_directional_mode(mode)) { | 
|  | write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], | 
|  | ec_ctx->angle_delta_cdf[mode - V_PRED]); | 
|  | } | 
|  |  | 
|  | if (!cm->seq_params.monochrome && | 
|  | is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, | 
|  | xd->plane[1].subsampling_y)) { | 
|  | const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; | 
|  | write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); | 
|  | if (uv_mode == UV_CFL_PRED) | 
|  | write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); | 
|  | if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { | 
|  | write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], | 
|  | ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) | 
|  | write_palette_mode_info(cm, xd, mi, mi_row, mi_col, w); | 
|  |  | 
|  | write_filter_intra_mode_info(cm, xd, mbmi, w); | 
|  | } | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | static void dump_mode_info(MODE_INFO *mi) { | 
|  | printf("\nmi->mbmi.mi_row == %d\n", mi->mbmi.mi_row); | 
|  | printf("&& mi->mbmi.mi_col == %d\n", mi->mbmi.mi_col); | 
|  | printf("&& mi->mbmi.sb_type == %d\n", mi->mbmi.sb_type); | 
|  | printf("&& mi->mbmi.tx_size == %d\n", mi->mbmi.tx_size); | 
|  | printf("&& mi->mbmi.mode == %d\n", mi->mbmi.mode); | 
|  | } | 
|  | static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, | 
|  | int plane) { | 
|  | if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { | 
|  | int r, c; | 
|  | printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", | 
|  | plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); | 
|  | printf("rd txb_coeff_cost_map\n"); | 
|  | for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
|  | for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
|  | printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  |  | 
|  | printf("pack txb_coeff_cost_map\n"); | 
|  | for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { | 
|  | for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { | 
|  | printf("%d ", token_stats->txb_coeff_cost_map[r][c]); | 
|  | } | 
|  | printf("\n"); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if ENC_MISMATCH_DEBUG | 
|  | static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | MODE_INFO *m; | 
|  | xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); | 
|  | m = xd->mi[0]; | 
|  | if (is_inter_block(&m->mbmi)) { | 
|  | #define FRAME_TO_CHECK 11 | 
|  | if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { | 
|  | const MB_MODE_INFO *const mbmi = &m->mbmi; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  |  | 
|  | int_mv mv[2]; | 
|  | int is_comp_ref = has_second_ref(&m->mbmi); | 
|  | int ref; | 
|  |  | 
|  | for (ref = 0; ref < 1 + is_comp_ref; ++ref) | 
|  | mv[ref].as_mv = m->mbmi.mv[ref].as_mv; | 
|  |  | 
|  | if (!is_comp_ref) { | 
|  | mv[1].as_int = 0; | 
|  | } | 
|  |  | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; | 
|  | const int16_t mode_ctx = | 
|  | is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]] | 
|  | : av1_mode_context_analyzer(mbmi_ext->mode_context, | 
|  | mbmi->ref_frame); | 
|  |  | 
|  | const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; | 
|  | int16_t zeromv_ctx = -1; | 
|  | int16_t refmv_ctx = -1; | 
|  |  | 
|  | if (mbmi->mode != NEWMV) { | 
|  | zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; | 
|  | if (mbmi->mode != GLOBALMV) | 
|  | refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; | 
|  | } | 
|  |  | 
|  | printf( | 
|  | "=== ENCODER ===: " | 
|  | "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " | 
|  | "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " | 
|  | "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " | 
|  | "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", | 
|  | cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, | 
|  | bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, | 
|  | mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], | 
|  | mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, | 
|  | zeromv_ctx, refmv_ctx, mbmi->tx_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // ENC_MISMATCH_DEBUG | 
|  |  | 
|  | static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | aom_writer *w, int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | MODE_INFO *m; | 
|  | int bh, bw; | 
|  | xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); | 
|  | m = xd->mi[0]; | 
|  |  | 
|  | assert(m->mbmi.sb_type <= cm->seq_params.sb_size || | 
|  | (m->mbmi.sb_type >= BLOCK_SIZES && m->mbmi.sb_type < BLOCK_SIZES_ALL)); | 
|  |  | 
|  | bh = mi_size_high[m->mbmi.sb_type]; | 
|  | bw = mi_size_wide[m->mbmi.sb_type]; | 
|  |  | 
|  | cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); | 
|  |  | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
|  |  | 
|  | xd->above_txfm_context = | 
|  | cm->above_txfm_context + (mi_col << TX_UNIT_WIDE_LOG2); | 
|  | xd->left_txfm_context = xd->left_txfm_context_buffer + | 
|  | ((mi_row & MAX_MIB_MASK) << TX_UNIT_HIGH_LOG2); | 
|  |  | 
|  | if (frame_is_intra_only(cm)) { | 
|  | write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext, mi_row, mi_col, w); | 
|  | } else { | 
|  | // has_subpel_mv_component needs the ref frame buffers set up to look | 
|  | // up if they are scaled. has_subpel_mv_component is in turn needed by | 
|  | // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. | 
|  | set_ref_ptrs(cm, xd, m->mbmi.ref_frame[0], m->mbmi.ref_frame[1]); | 
|  |  | 
|  | #if ENC_MISMATCH_DEBUG | 
|  | enc_dump_logs(cpi, mi_row, mi_col); | 
|  | #endif  // ENC_MISMATCH_DEBUG | 
|  |  | 
|  | pack_inter_mode_mvs(cpi, mi_row, mi_col, w); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x, | 
|  | MB_MODE_INFO *const mbmi, aom_writer *w, | 
|  | const TOKENEXTRA **tok, | 
|  | const TOKENEXTRA *const tok_end, | 
|  | TOKEN_STATS *token_stats, const int row, | 
|  | const int col, int *block, const int plane) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | const BLOCK_SIZE bsizec = | 
|  | scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); | 
|  |  | 
|  | const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd); | 
|  |  | 
|  | TX_SIZE max_tx_size = get_vartx_max_txsize( | 
|  | xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); | 
|  | const int step = | 
|  | tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
|  | const int bkw = tx_size_wide_unit[max_tx_size]; | 
|  | const int bkh = tx_size_high_unit[max_tx_size]; | 
|  |  | 
|  | const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); | 
|  | int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
|  | int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
|  |  | 
|  | int blk_row, blk_col; | 
|  |  | 
|  | const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
|  | const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; | 
|  |  | 
|  | const int unit_height = | 
|  | AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h); | 
|  | const int unit_width = | 
|  | AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w); | 
|  | for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; | 
|  | blk_row += bkh) { | 
|  | for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; | 
|  | blk_col += bkw) { | 
|  | pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, | 
|  | cm->bit_depth, *block, blk_row, blk_col, max_tx_size, | 
|  | token_stats); | 
|  | *block += step; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | aom_writer *w, const TOKENEXTRA **tok, | 
|  | const TOKENEXTRA *const tok_end, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | const int mi_offset = mi_row * cm->mi_stride + mi_col; | 
|  | MODE_INFO *const m = *(cm->mi_grid_visible + mi_offset); | 
|  | MB_MODE_INFO *const mbmi = &m->mbmi; | 
|  | int plane; | 
|  | int bh, bw; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | (void)tok; | 
|  | (void)tok_end; | 
|  | xd->mi = cm->mi_grid_visible + mi_offset; | 
|  |  | 
|  | assert(mbmi->sb_type <= cm->seq_params.sb_size || | 
|  | (mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL)); | 
|  |  | 
|  | bh = mi_size_high[mbmi->sb_type]; | 
|  | bw = mi_size_wide[mbmi->sb_type]; | 
|  | cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); | 
|  |  | 
|  | set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
|  |  | 
|  | if (!mbmi->skip) { | 
|  | if (!is_inter_block(mbmi)) | 
|  | av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type); | 
|  |  | 
|  | if (is_inter_block(mbmi)) { | 
|  | int block[MAX_MB_PLANE] = { 0 }; | 
|  | const struct macroblockd_plane *const y_pd = &xd->plane[0]; | 
|  | const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, y_pd); | 
|  | const int num_4x4_w = | 
|  | block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; | 
|  | const int num_4x4_h = | 
|  | block_size_high[plane_bsize] >> tx_size_wide_log2[0]; | 
|  | int row, col; | 
|  | TOKEN_STATS token_stats; | 
|  | init_token_stats(&token_stats); | 
|  |  | 
|  | const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, y_pd); | 
|  | int mu_blocks_wide = | 
|  | block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
|  | int mu_blocks_high = | 
|  | block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
|  |  | 
|  | mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); | 
|  | mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); | 
|  |  | 
|  | for (row = 0; row < num_4x4_h; row += mu_blocks_high) { | 
|  | for (col = 0; col < num_4x4_w; col += mu_blocks_wide) { | 
|  | for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) { | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, | 
|  | pd->subsampling_x, pd->subsampling_y)) { | 
|  | continue; | 
|  | } | 
|  | write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, | 
|  | row, col, &block[plane], plane); | 
|  | } | 
|  | } | 
|  | #if CONFIG_RD_DEBUG | 
|  | if (mbmi->sb_type >= BLOCK_8X8 && | 
|  | rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { | 
|  | dump_mode_info(m); | 
|  | assert(0); | 
|  | } | 
|  | #endif  // CONFIG_RD_DEBUG | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, | 
|  | aom_writer *w, const TOKENEXTRA **tok, | 
|  | const TOKENEXTRA *const tok_end, int mi_row, | 
|  | int mi_col) { | 
|  | write_mbmi_b(cpi, tile, w, mi_row, mi_col); | 
|  |  | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &cpi->td.mb.e_mbd; | 
|  | MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; | 
|  | for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) { | 
|  | const uint8_t palette_size_plane = | 
|  | mbmi->palette_mode_info.palette_size[plane]; | 
|  | assert(!mbmi->skip_mode || !palette_size_plane); | 
|  | if (palette_size_plane > 0) { | 
|  | assert(mbmi->use_intrabc == 0); | 
|  | assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type)); | 
|  | int rows, cols; | 
|  | av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows, | 
|  | &cols); | 
|  | assert(*tok < tok_end); | 
|  | pack_map_tokens(w, tok, palette_size_plane, rows * cols); | 
|  | } | 
|  | } | 
|  |  | 
|  | BLOCK_SIZE bsize = mbmi->sb_type; | 
|  | int is_inter_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); | 
|  | int skip = mbmi->skip; | 
|  | int segment_id = mbmi->segment_id; | 
|  | if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && | 
|  | !(is_inter_tx && skip) && !xd->lossless[segment_id]) { | 
|  | if (is_inter_tx) {  // This implies skip flag is 0. | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); | 
|  | const int txbh = tx_size_high_unit[max_tx_size]; | 
|  | const int txbw = tx_size_wide_unit[max_tx_size]; | 
|  | const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; | 
|  | const int height = block_size_high[bsize] >> tx_size_wide_log2[0]; | 
|  | int idx, idy; | 
|  | for (idy = 0; idy < height; idy += txbh) | 
|  | for (idx = 0; idx < width; idx += txbw) | 
|  | write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); | 
|  | } else { | 
|  | write_selected_tx_size(xd, w); | 
|  | set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, 0, xd); | 
|  | } | 
|  | } else { | 
|  | set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, | 
|  | skip && is_inter_block(mbmi), xd); | 
|  | } | 
|  |  | 
|  | write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | static void write_partition(const AV1_COMMON *const cm, | 
|  | const MACROBLOCKD *const xd, int hbs, int mi_row, | 
|  | int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, | 
|  | aom_writer *w) { | 
|  | const int is_partition_point = bsize >= BLOCK_8X8; | 
|  |  | 
|  | if (!is_partition_point) return; | 
|  |  | 
|  | const int has_rows = (mi_row + hbs) < cm->mi_rows; | 
|  | const int has_cols = (mi_col + hbs) < cm->mi_cols; | 
|  | const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
|  | FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
|  |  | 
|  | if (!has_rows && !has_cols) { | 
|  | assert(p == PARTITION_SPLIT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (has_rows && has_cols) { | 
|  | aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], | 
|  | partition_cdf_length(bsize)); | 
|  | } else if (!has_rows && has_cols) { | 
|  | assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); | 
|  | assert(bsize > BLOCK_8X8); | 
|  | aom_cdf_prob cdf[2]; | 
|  | partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); | 
|  | aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
|  | } else { | 
|  | assert(has_rows && !has_cols); | 
|  | assert(p == PARTITION_SPLIT || p == PARTITION_VERT); | 
|  | assert(bsize > BLOCK_8X8); | 
|  | aom_cdf_prob cdf[2]; | 
|  | partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); | 
|  | aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile, | 
|  | aom_writer *const w, const TOKENEXTRA **tok, | 
|  | const TOKENEXTRA *const tok_end, int mi_row, | 
|  | int mi_col, BLOCK_SIZE bsize) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | const int hbs = mi_size_wide[bsize] / 2; | 
|  | const int quarter_step = mi_size_wide[bsize] / 4; | 
|  | int i; | 
|  | const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); | 
|  | const BLOCK_SIZE subsize = get_subsize(bsize, partition); | 
|  |  | 
|  | if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
|  |  | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | int rcol0, rcol1, rrow0, rrow1, tile_tl_idx; | 
|  | if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, | 
|  | &rcol0, &rcol1, &rrow0, &rrow1, | 
|  | &tile_tl_idx)) { | 
|  | const int rstride = cm->rst_info[plane].horz_units_per_tile; | 
|  | for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
|  | for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
|  | const int runit_idx = tile_tl_idx + rcol + rrow * rstride; | 
|  | const RestorationUnitInfo *rui = | 
|  | &cm->rst_info[plane].unit_info[runit_idx]; | 
|  | loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, | 
|  | cpi->td.counts); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); | 
|  | switch (partition) { | 
|  | case PARTITION_NONE: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | break; | 
|  | case PARTITION_HORZ: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | if (mi_row + hbs < cm->mi_rows) | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
|  | break; | 
|  | case PARTITION_VERT: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | if (mi_col + hbs < cm->mi_cols) | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
|  | break; | 
|  | case PARTITION_SPLIT: | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, | 
|  | subsize); | 
|  | break; | 
|  | case PARTITION_HORZ_A: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
|  | break; | 
|  | case PARTITION_HORZ_B: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); | 
|  | break; | 
|  | case PARTITION_VERT_A: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
|  | break; | 
|  | case PARTITION_VERT_B: | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); | 
|  | break; | 
|  | case PARTITION_HORZ_4: | 
|  | for (i = 0; i < 4; ++i) { | 
|  | int this_mi_row = mi_row + i * quarter_step; | 
|  | if (i > 0 && this_mi_row >= cm->mi_rows) break; | 
|  |  | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); | 
|  | } | 
|  | break; | 
|  | case PARTITION_VERT_4: | 
|  | for (i = 0; i < 4; ++i) { | 
|  | int this_mi_col = mi_col + i * quarter_step; | 
|  | if (i > 0 && this_mi_col >= cm->mi_cols) break; | 
|  |  | 
|  | write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); | 
|  | } | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  |  | 
|  | // update partition context | 
|  | update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
|  | } | 
|  |  | 
|  | static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile, | 
|  | aom_writer *const w, const TOKENEXTRA **tok, | 
|  | const TOKENEXTRA *const tok_end) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | const int mi_row_start = tile->mi_row_start; | 
|  | const int mi_row_end = tile->mi_row_end; | 
|  | const int mi_col_start = tile->mi_col_start; | 
|  | const int mi_col_end = tile->mi_col_end; | 
|  | int mi_row, mi_col; | 
|  |  | 
|  | av1_zero_above_context(cm, mi_col_start, mi_col_end); | 
|  | if (cpi->common.delta_q_present_flag) { | 
|  | xd->prev_qindex = cpi->common.base_qindex; | 
|  | if (cpi->common.delta_lf_present_flag) { | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | xd->prev_delta_lf[lf_id] = 0; | 
|  | xd->prev_delta_lf_from_base = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (mi_row = mi_row_start; mi_row < mi_row_end; | 
|  | mi_row += cm->seq_params.mib_size) { | 
|  | av1_zero_left_context(xd); | 
|  |  | 
|  | for (mi_col = mi_col_start; mi_col < mi_col_end; | 
|  | mi_col += cm->seq_params.mib_size) { | 
|  | write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, | 
|  | cm->seq_params.sb_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_restoration_mode(AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->all_lossless); | 
|  | if (!cm->seq_params.enable_restoration) return; | 
|  | if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int all_none = 1, chroma_none = 1; | 
|  | for (int p = 0; p < num_planes; ++p) { | 
|  | RestorationInfo *rsi = &cm->rst_info[p]; | 
|  | if (rsi->frame_restoration_type != RESTORE_NONE) { | 
|  | all_none = 0; | 
|  | chroma_none &= p == 0; | 
|  | } | 
|  | switch (rsi->frame_restoration_type) { | 
|  | case RESTORE_NONE: | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, 0); | 
|  | break; | 
|  | case RESTORE_WIENER: | 
|  | aom_wb_write_bit(wb, 1); | 
|  | aom_wb_write_bit(wb, 0); | 
|  | break; | 
|  | case RESTORE_SGRPROJ: | 
|  | aom_wb_write_bit(wb, 1); | 
|  | aom_wb_write_bit(wb, 1); | 
|  | break; | 
|  | case RESTORE_SWITCHABLE: | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, 1); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | } | 
|  | if (!all_none) { | 
|  | assert(cm->seq_params.sb_size == BLOCK_64X64 || | 
|  | cm->seq_params.sb_size == BLOCK_128X128); | 
|  | const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; | 
|  |  | 
|  | RestorationInfo *rsi = &cm->rst_info[0]; | 
|  |  | 
|  | assert(rsi->restoration_unit_size >= sb_size); | 
|  | assert(RESTORATION_UNITSIZE_MAX == 256); | 
|  |  | 
|  | if (sb_size == 64) { | 
|  | aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); | 
|  | } | 
|  | if (rsi->restoration_unit_size > 64) { | 
|  | aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_planes > 1) { | 
|  | int s = AOMMIN(cm->subsampling_x, cm->subsampling_y); | 
|  | if (s && !chroma_none) { | 
|  | aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != | 
|  | cm->rst_info[0].restoration_unit_size); | 
|  | assert(cm->rst_info[1].restoration_unit_size == | 
|  | cm->rst_info[0].restoration_unit_size || | 
|  | cm->rst_info[1].restoration_unit_size == | 
|  | (cm->rst_info[0].restoration_unit_size >> s)); | 
|  | assert(cm->rst_info[2].restoration_unit_size == | 
|  | cm->rst_info[1].restoration_unit_size); | 
|  | } else if (!s) { | 
|  | assert(cm->rst_info[1].restoration_unit_size == | 
|  | cm->rst_info[0].restoration_unit_size); | 
|  | assert(cm->rst_info[2].restoration_unit_size == | 
|  | cm->rst_info[1].restoration_unit_size); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, | 
|  | WienerInfo *ref_wiener_info, aom_writer *wb) { | 
|  | if (wiener_win == WIENER_WIN) | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | else | 
|  | assert(wiener_info->vfilter[0] == 0 && | 
|  | wiener_info->vfilter[WIENER_WIN - 1] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | if (wiener_win == WIENER_WIN) | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
|  | WIENER_FILT_TAP0_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, | 
|  | wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); | 
|  | else | 
|  | assert(wiener_info->hfilter[0] == 0 && | 
|  | wiener_info->hfilter[WIENER_WIN - 1] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
|  | WIENER_FILT_TAP1_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, | 
|  | wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
|  | WIENER_FILT_TAP2_SUBEXP_K, | 
|  | ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, | 
|  | wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); | 
|  | memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); | 
|  | } | 
|  |  | 
|  | static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, | 
|  | SgrprojInfo *ref_sgrproj_info, | 
|  | aom_writer *wb) { | 
|  | aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); | 
|  | const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; | 
|  |  | 
|  | if (params->r0 == 0) { | 
|  | assert(sgrproj_info->xqd[0] == 0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
|  | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
|  | } else if (params->r1 == 0) { | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
|  | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
|  | } else { | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, | 
|  | sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); | 
|  | aom_write_primitive_refsubexpfin( | 
|  | wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
|  | ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, | 
|  | sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); | 
|  | } | 
|  |  | 
|  | memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); | 
|  | } | 
|  |  | 
|  | static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, | 
|  | MACROBLOCKD *xd, | 
|  | const RestorationUnitInfo *rui, | 
|  | aom_writer *const w, int plane, | 
|  | FRAME_COUNTS *counts) { | 
|  | const RestorationInfo *rsi = cm->rst_info + plane; | 
|  | RestorationType frame_rtype = rsi->frame_restoration_type; | 
|  | if (frame_rtype == RESTORE_NONE) return; | 
|  |  | 
|  | assert(!cm->all_lossless); | 
|  |  | 
|  | const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; | 
|  | WienerInfo *wiener_info = xd->wiener_info + plane; | 
|  | SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; | 
|  | RestorationType unit_rtype = rui->restoration_type; | 
|  |  | 
|  | if (frame_rtype == RESTORE_SWITCHABLE) { | 
|  | aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, | 
|  | RESTORE_SWITCHABLE_TYPES); | 
|  | ++counts->switchable_restore[unit_rtype]; | 
|  | switch (unit_rtype) { | 
|  | case RESTORE_WIENER: | 
|  | write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); | 
|  | break; | 
|  | case RESTORE_SGRPROJ: | 
|  | write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); | 
|  | break; | 
|  | default: assert(unit_rtype == RESTORE_NONE); break; | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_WIENER) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->wiener_restore_cdf, 2); | 
|  | ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); | 
|  | } | 
|  | } else if (frame_rtype == RESTORE_SGRPROJ) { | 
|  | aom_write_symbol(w, unit_rtype != RESTORE_NONE, | 
|  | xd->tile_ctx->sgrproj_restore_cdf, 2); | 
|  | ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; | 
|  | if (unit_rtype != RESTORE_NONE) { | 
|  | write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->coded_lossless); | 
|  | if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int i; | 
|  | struct loopfilter *lf = &cm->lf; | 
|  |  | 
|  | // Encode the loop filter level and type | 
|  | aom_wb_write_literal(wb, lf->filter_level[0], 6); | 
|  | aom_wb_write_literal(wb, lf->filter_level[1], 6); | 
|  | if (num_planes > 1) { | 
|  | if (lf->filter_level[0] || lf->filter_level[1]) { | 
|  | aom_wb_write_literal(wb, lf->filter_level_u, 6); | 
|  | aom_wb_write_literal(wb, lf->filter_level_v, 6); | 
|  | } | 
|  | } | 
|  | aom_wb_write_literal(wb, lf->sharpness_level, 3); | 
|  |  | 
|  | // Write out loop filter deltas applied at the MB level based on mode or | 
|  | // ref frame (if they are enabled). | 
|  | aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); | 
|  |  | 
|  | if (lf->mode_ref_delta_enabled) { | 
|  | aom_wb_write_bit(wb, lf->mode_ref_delta_update); | 
|  |  | 
|  | if (lf->mode_ref_delta_update) { | 
|  | const int prime_idx = cm->primary_ref_frame; | 
|  | const int buf_idx = | 
|  | prime_idx == PRIMARY_REF_NONE ? -1 : cm->frame_refs[prime_idx].idx; | 
|  | int8_t last_ref_deltas[REF_FRAMES]; | 
|  | if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { | 
|  | av1_set_default_ref_deltas(last_ref_deltas); | 
|  | } else { | 
|  | memcpy(last_ref_deltas, cm->buffer_pool->frame_bufs[buf_idx].ref_deltas, | 
|  | REF_FRAMES); | 
|  | } | 
|  | for (i = 0; i < REF_FRAMES; i++) { | 
|  | const int delta = lf->ref_deltas[i]; | 
|  | const int changed = delta != last_ref_deltas[i]; | 
|  | aom_wb_write_bit(wb, changed); | 
|  | if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); | 
|  | } | 
|  |  | 
|  | int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; | 
|  | if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { | 
|  | av1_set_default_mode_deltas(last_mode_deltas); | 
|  | } else { | 
|  | memcpy(last_mode_deltas, | 
|  | cm->buffer_pool->frame_bufs[buf_idx].mode_deltas, | 
|  | MAX_MODE_LF_DELTAS); | 
|  | } | 
|  | for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { | 
|  | const int delta = lf->mode_deltas[i]; | 
|  | const int changed = delta != last_mode_deltas[i]; | 
|  | aom_wb_write_bit(wb, changed); | 
|  | if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { | 
|  | assert(!cm->coded_lossless); | 
|  | if (!cm->seq_params.enable_cdef) return; | 
|  | if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | int i; | 
|  | aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2); | 
|  | assert(cm->cdef_pri_damping == cm->cdef_sec_damping); | 
|  | aom_wb_write_literal(wb, cm->cdef_bits, 2); | 
|  | for (i = 0; i < cm->nb_cdef_strengths; i++) { | 
|  | aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS); | 
|  | if (num_planes > 1) | 
|  | aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { | 
|  | if (delta_q != 0) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | aom_wb_write_inv_signed_literal(wb, delta_q, 6); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_quantization(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const int num_planes = av1_num_planes(cm); | 
|  |  | 
|  | aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); | 
|  | write_delta_q(wb, cm->y_dc_delta_q); | 
|  | if (num_planes > 1) { | 
|  | int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) || | 
|  | (cm->u_ac_delta_q != cm->v_ac_delta_q); | 
|  | if (cm->separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); | 
|  | write_delta_q(wb, cm->u_dc_delta_q); | 
|  | write_delta_q(wb, cm->u_ac_delta_q); | 
|  | if (diff_uv_delta) { | 
|  | write_delta_q(wb, cm->v_dc_delta_q); | 
|  | write_delta_q(wb, cm->v_ac_delta_q); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(wb, cm->using_qmatrix); | 
|  | if (cm->using_qmatrix) { | 
|  | aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS); | 
|  | aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS); | 
|  | if (!cm->separate_uv_delta_q) | 
|  | assert(cm->qm_u == cm->qm_v); | 
|  | else | 
|  | aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | int i, j; | 
|  | struct segmentation *seg = &cm->seg; | 
|  |  | 
|  | aom_wb_write_bit(wb, seg->enabled); | 
|  | if (!seg->enabled) return; | 
|  |  | 
|  | // Write update flags | 
|  | if (cm->primary_ref_frame == PRIMARY_REF_NONE) { | 
|  | assert(seg->update_map == 1); | 
|  | seg->temporal_update = 0; | 
|  | assert(seg->update_data == 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, seg->update_map); | 
|  | if (seg->update_map) { | 
|  | // Select the coding strategy (temporal or spatial) | 
|  | av1_choose_segmap_coding_method(cm, xd); | 
|  | aom_wb_write_bit(wb, seg->temporal_update); | 
|  | } | 
|  | aom_wb_write_bit(wb, seg->update_data); | 
|  | } | 
|  |  | 
|  | // Segmentation data | 
|  | if (seg->update_data) { | 
|  | for (i = 0; i < MAX_SEGMENTS; i++) { | 
|  | for (j = 0; j < SEG_LVL_MAX; j++) { | 
|  | const int active = segfeature_active(seg, i, j); | 
|  | aom_wb_write_bit(wb, active); | 
|  | if (active) { | 
|  | const int data_max = av1_seg_feature_data_max(j); | 
|  | const int data_min = -data_max; | 
|  | const int ubits = get_unsigned_bits(data_max); | 
|  | const int data = clamp(get_segdata(seg, i, j), data_min, data_max); | 
|  |  | 
|  | if (av1_is_segfeature_signed(j)) { | 
|  | aom_wb_write_inv_signed_literal(wb, data, ubits); | 
|  | } else { | 
|  | aom_wb_write_literal(wb, data, ubits); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | if (cm->coded_lossless) { | 
|  | *mode = ONLY_4X4; | 
|  | return; | 
|  | } | 
|  | aom_wb_write_bit(wb, *mode == TX_MODE_SELECT); | 
|  | } | 
|  |  | 
|  | static void write_frame_interp_filter(InterpFilter filter, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_bit(wb, filter == SWITCHABLE); | 
|  | if (filter != SWITCHABLE) | 
|  | aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); | 
|  | } | 
|  |  | 
|  | static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) { | 
|  | if (cm->interp_filter == SWITCHABLE) { | 
|  | // Check to see if only one of the filters is actually used | 
|  | int count[SWITCHABLE_FILTERS]; | 
|  | int i, j, c = 0; | 
|  | for (i = 0; i < SWITCHABLE_FILTERS; ++i) { | 
|  | count[i] = 0; | 
|  | for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) | 
|  | count[i] += counts->switchable_interp[j][i]; | 
|  | c += (count[i] > 0); | 
|  | } | 
|  | if (c == 1) { | 
|  | // Only one filter is used. So set the filter at frame level | 
|  | for (i = 0; i < SWITCHABLE_FILTERS; ++i) { | 
|  | if (count[i]) { | 
|  | if (i == EIGHTTAP_REGULAR) cm->interp_filter = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Same function as write_uniform but writing to uncompresses header wb | 
|  | static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { | 
|  | const int l = get_unsigned_bits(n); | 
|  | const int m = (1 << l) - n; | 
|  | if (l == 0) return; | 
|  | if (v < m) { | 
|  | aom_wb_write_literal(wb, v, l - 1); | 
|  | } else { | 
|  | aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); | 
|  | aom_wb_write_literal(wb, (v - m) & 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_tile_info_max_tile(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
|  | int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
|  | int width_sb = width_mi >> cm->seq_params.mib_size_log2; | 
|  | int height_sb = height_mi >> cm->seq_params.mib_size_log2; | 
|  | int size_sb, i; | 
|  |  | 
|  | aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag); | 
|  |  | 
|  | if (cm->uniform_tile_spacing_flag) { | 
|  | // Uniform spaced tiles with power-of-two number of rows and columns | 
|  | // tile columns | 
|  | int ones = cm->log2_tile_cols - cm->min_log2_tile_cols; | 
|  | while (ones--) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | if (cm->log2_tile_cols < cm->max_log2_tile_cols) { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  |  | 
|  | // rows | 
|  | ones = cm->log2_tile_rows - cm->min_log2_tile_rows; | 
|  | while (ones--) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | if (cm->log2_tile_rows < cm->max_log2_tile_rows) { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | } | 
|  | } else { | 
|  | // Explicit tiles with configurable tile widths and heights | 
|  | // columns | 
|  | for (i = 0; i < cm->tile_cols; i++) { | 
|  | size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; | 
|  | wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb), | 
|  | size_sb - 1); | 
|  | width_sb -= size_sb; | 
|  | } | 
|  | assert(width_sb == 0); | 
|  |  | 
|  | // rows | 
|  | for (i = 0; i < cm->tile_rows; i++) { | 
|  | size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i]; | 
|  | wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb), | 
|  | size_sb - 1); | 
|  | height_sb -= size_sb; | 
|  | } | 
|  | assert(height_sb == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_tile_info(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | if (cm->large_scale_tile) { | 
|  | const int tile_width = | 
|  | ALIGN_POWER_OF_TWO(cm->tile_width, cm->seq_params.mib_size_log2) >> | 
|  | cm->seq_params.mib_size_log2; | 
|  | const int tile_height = | 
|  | ALIGN_POWER_OF_TWO(cm->tile_height, cm->seq_params.mib_size_log2) >> | 
|  | cm->seq_params.mib_size_log2; | 
|  |  | 
|  | assert(tile_width > 0); | 
|  | assert(tile_height > 0); | 
|  |  | 
|  | // Write the tile sizes | 
|  | if (cm->seq_params.sb_size == BLOCK_128X128) { | 
|  | assert(tile_width <= 32); | 
|  | assert(tile_height <= 32); | 
|  | aom_wb_write_literal(wb, tile_width - 1, 5); | 
|  | aom_wb_write_literal(wb, tile_height - 1, 5); | 
|  | } else { | 
|  | assert(tile_width <= 64); | 
|  | assert(tile_height <= 64); | 
|  | aom_wb_write_literal(wb, tile_width - 1, 6); | 
|  | aom_wb_write_literal(wb, tile_height - 1, 6); | 
|  | } | 
|  | } else { | 
|  | write_tile_info_max_tile(cm, wb); | 
|  | } | 
|  |  | 
|  | *saved_wb = *wb; | 
|  | if (cm->large_scale_tile) { | 
|  | if (cm->tile_rows * cm->tile_cols > 1) { | 
|  | // Note that the last item in the uncompressed header is the data | 
|  | // describing tile configuration. | 
|  | // Number of bytes in tile column size - 1 | 
|  | aom_wb_write_literal(wb, 0, 2); | 
|  | // Number of bytes in tile size - 1 | 
|  | aom_wb_write_literal(wb, 0, 2); | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (cm->tile_rows * cm->tile_cols > 1) { | 
|  | // Number of bytes in tile size - 1 | 
|  | aom_wb_write_literal(wb, 3, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | static int get_refresh_mask_gf16(AV1_COMP *cpi) { | 
|  | if (cpi->common.frame_type == KEY_FRAME || frame_is_sframe(&cpi->common)) | 
|  | return 0xFF; | 
|  |  | 
|  | int refresh_mask = 0; | 
|  |  | 
|  | if (cpi->refresh_last_frame || cpi->refresh_golden_frame || | 
|  | cpi->refresh_bwd_ref_frame || cpi->refresh_alt2_ref_frame || | 
|  | cpi->refresh_alt_ref_frame) { | 
|  | assert(cpi->refresh_fb_idx >= 0 && cpi->refresh_fb_idx < REF_FRAMES); | 
|  | refresh_mask |= (1 << cpi->refresh_fb_idx); | 
|  | } | 
|  |  | 
|  | return refresh_mask; | 
|  | } | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | static int get_refresh_mask(AV1_COMP *cpi) { | 
|  | if (cpi->common.frame_type == KEY_FRAME || frame_is_sframe(&cpi->common)) | 
|  | return 0xFF; | 
|  |  | 
|  | int refresh_mask = 0; | 
|  | #if USE_GF16_MULTI_LAYER | 
|  | if (cpi->rc.baseline_gf_interval == 16) return get_refresh_mask_gf16(cpi); | 
|  | #endif  // USE_GF16_MULTI_LAYER | 
|  |  | 
|  | // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be | 
|  | // notified to get LAST3_FRAME refreshed and then the virtual indexes for all | 
|  | // the 3 LAST reference frames will be updated accordingly, i.e.: | 
|  | // (1) The original virtual index for LAST3_FRAME will become the new virtual | 
|  | //     index for LAST_FRAME; and | 
|  | // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be | 
|  | //     shifted and become the new virtual indexes for LAST2_FRAME and | 
|  | //     LAST3_FRAME. | 
|  | refresh_mask |= | 
|  | (cpi->refresh_last_frame << cpi->lst_fb_idxes[LAST_REF_FRAMES - 1]); | 
|  |  | 
|  | refresh_mask |= (cpi->refresh_bwd_ref_frame << cpi->bwd_fb_idx); | 
|  | refresh_mask |= (cpi->refresh_alt2_ref_frame << cpi->alt2_fb_idx); | 
|  |  | 
|  | if (av1_preserve_existing_gf(cpi)) { | 
|  | // We have decided to preserve the previously existing golden frame as our | 
|  | // new ARF frame. However, in the short term we leave it in the GF slot and, | 
|  | // if we're updating the GF with the current decoded frame, we save it | 
|  | // instead to the ARF slot. | 
|  | // Later, in the function av1_encoder.c:av1_update_reference_frames() we | 
|  | // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it | 
|  | // there so that it can be done outside of the recode loop. | 
|  | // Note: This is highly specific to the use of ARF as a forward reference, | 
|  | // and this needs to be generalized as other uses are implemented | 
|  | // (like RTC/temporal scalability). | 
|  | return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx); | 
|  | } else { | 
|  | const int arf_idx = cpi->alt_fb_idx; | 
|  | return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | | 
|  | (cpi->refresh_alt_ref_frame << arf_idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int find_identical_tile( | 
|  | const int tile_row, const int tile_col, | 
|  | TileBufferEnc (*const tile_buffers)[1024]) { | 
|  | const MV32 candidate_offset[1] = { { 1, 0 } }; | 
|  | const uint8_t *const cur_tile_data = | 
|  | tile_buffers[tile_row][tile_col].data + 4; | 
|  | const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | if (tile_row == 0) return 0; | 
|  |  | 
|  | // (TODO: yunqingwang) For now, only above tile is checked and used. | 
|  | // More candidates such as left tile can be added later. | 
|  | for (i = 0; i < 1; i++) { | 
|  | int row_offset = candidate_offset[0].row; | 
|  | int col_offset = candidate_offset[0].col; | 
|  | int row = tile_row - row_offset; | 
|  | int col = tile_col - col_offset; | 
|  | uint8_t tile_hdr; | 
|  | const uint8_t *tile_data; | 
|  | TileBufferEnc *candidate; | 
|  |  | 
|  | if (row < 0 || col < 0) continue; | 
|  |  | 
|  | tile_hdr = *(tile_buffers[row][col].data); | 
|  |  | 
|  | // Read out tcm bit | 
|  | if ((tile_hdr >> 7) == 1) { | 
|  | // The candidate is a copy tile itself | 
|  | row_offset += tile_hdr & 0x7f; | 
|  | row = tile_row - row_offset; | 
|  | } | 
|  |  | 
|  | candidate = &tile_buffers[row][col]; | 
|  |  | 
|  | if (row_offset >= 128 || candidate->size != cur_tile_size) continue; | 
|  |  | 
|  | tile_data = candidate->data + 4; | 
|  |  | 
|  | if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; | 
|  |  | 
|  | // Identical tile found | 
|  | assert(row_offset > 0); | 
|  | return row_offset; | 
|  | } | 
|  |  | 
|  | // No identical tile found | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void write_render_size(const AV1_COMMON *cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const int scaling_active = !av1_resize_unscaled(cm); | 
|  | aom_wb_write_bit(wb, scaling_active); | 
|  | if (scaling_active) { | 
|  | aom_wb_write_literal(wb, cm->render_width - 1, 16); | 
|  | aom_wb_write_literal(wb, cm->render_height - 1, 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_superres_scale(const AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const SequenceHeader *const seq_params = &cm->seq_params; | 
|  | if (!seq_params->enable_superres) { | 
|  | assert(cm->superres_scale_denominator == SCALE_NUMERATOR); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // First bit is whether to to scale or not | 
|  | if (cm->superres_scale_denominator == SCALE_NUMERATOR) { | 
|  | aom_wb_write_bit(wb, 0);  // no scaling | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 1);  // scaling, write scale factor | 
|  | assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); | 
|  | assert(cm->superres_scale_denominator < | 
|  | SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); | 
|  | aom_wb_write_literal( | 
|  | wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, | 
|  | SUPERRES_SCALE_BITS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_frame_size(const AV1_COMMON *cm, int frame_size_override, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | const int coded_width = cm->superres_upscaled_width - 1; | 
|  | const int coded_height = cm->superres_upscaled_height - 1; | 
|  |  | 
|  | if (frame_size_override) { | 
|  | const SequenceHeader *seq_params = &cm->seq_params; | 
|  | int num_bits_width = seq_params->num_bits_width; | 
|  | int num_bits_height = seq_params->num_bits_height; | 
|  | aom_wb_write_literal(wb, coded_width, num_bits_width); | 
|  | aom_wb_write_literal(wb, coded_height, num_bits_height); | 
|  | } | 
|  |  | 
|  | write_superres_scale(cm, wb); | 
|  | write_render_size(cm, wb); | 
|  | } | 
|  |  | 
|  | static void write_frame_size_with_refs(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | int found = 0; | 
|  |  | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  | for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
|  | YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); | 
|  |  | 
|  | if (cfg != NULL) { | 
|  | found = cm->superres_upscaled_width == cfg->y_crop_width && | 
|  | cm->superres_upscaled_height == cfg->y_crop_height; | 
|  | found &= cm->render_width == cfg->render_width && | 
|  | cm->render_height == cfg->render_height; | 
|  | } | 
|  | aom_wb_write_bit(wb, found); | 
|  | if (found) { | 
|  | write_superres_scale(cm, wb); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | int frame_size_override = 1;  // Always equal to 1 in this function | 
|  | write_frame_size(cm, frame_size_override, wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_profile(BITSTREAM_PROFILE profile, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | assert(profile >= PROFILE_0 && profile < MAX_PROFILES); | 
|  | aom_wb_write_literal(wb, profile, 2); | 
|  | } | 
|  |  | 
|  | static void write_bitdepth(AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | // Profile 0/1: [0] for 8 bit, [1]  10-bit | 
|  | // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit | 
|  | aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_8 ? 0 : 1); | 
|  | if (cm->profile == PROFILE_2 && cm->bit_depth != AOM_BITS_8) { | 
|  | aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_bitdepth_colorspace_sampling( | 
|  | AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { | 
|  | write_bitdepth(cm, wb); | 
|  | const int is_monochrome = cm->seq_params.monochrome; | 
|  | // monochrome bit | 
|  | if (cm->profile != PROFILE_1) | 
|  | aom_wb_write_bit(wb, is_monochrome); | 
|  | else | 
|  | assert(!is_monochrome); | 
|  | if (cm->color_primaries == AOM_CICP_CP_UNSPECIFIED && | 
|  | cm->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && | 
|  | cm->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { | 
|  | aom_wb_write_bit(wb, 0);  // No color description present | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 1);  // Color description present | 
|  | aom_wb_write_literal(wb, cm->color_primaries, 8); | 
|  | aom_wb_write_literal(wb, cm->transfer_characteristics, 8); | 
|  | aom_wb_write_literal(wb, cm->matrix_coefficients, 8); | 
|  | } | 
|  | if (is_monochrome) return; | 
|  | if (cm->color_primaries == AOM_CICP_CP_BT_709 && | 
|  | cm->transfer_characteristics == AOM_CICP_TC_SRGB && | 
|  | cm->matrix_coefficients == | 
|  | AOM_CICP_MC_IDENTITY) {  // it would be better to remove this | 
|  | // dependency too | 
|  | assert(cm->subsampling_x == 0 && cm->subsampling_y == 0); | 
|  | assert(cm->profile == PROFILE_1 || | 
|  | (cm->profile == PROFILE_2 && cm->bit_depth == AOM_BITS_12)); | 
|  | } else { | 
|  | // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] | 
|  | aom_wb_write_bit(wb, cm->color_range); | 
|  | if (cm->profile == PROFILE_0) { | 
|  | // 420 only | 
|  | assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); | 
|  | } else if (cm->profile == PROFILE_1) { | 
|  | // 444 only | 
|  | assert(cm->subsampling_x == 0 && cm->subsampling_y == 0); | 
|  | } else if (cm->profile == PROFILE_2) { | 
|  | if (cm->bit_depth == AOM_BITS_12) { | 
|  | // 420, 444 or 422 | 
|  | aom_wb_write_bit(wb, cm->subsampling_x); | 
|  | if (cm->subsampling_x == 0) { | 
|  | assert(cm->subsampling_y == 0 && | 
|  | "4:4:0 subsampling not allowed in AV1"); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, cm->subsampling_y); | 
|  | } | 
|  | } else { | 
|  | // 422 only | 
|  | assert(cm->subsampling_x == 1 && cm->subsampling_y == 0); | 
|  | } | 
|  | } | 
|  | if (cm->subsampling_x == 1 && cm->subsampling_y == 1) { | 
|  | aom_wb_write_literal(wb, cm->chroma_sample_position, 2); | 
|  | } | 
|  | } | 
|  | aom_wb_write_bit(wb, cm->separate_uv_delta_q); | 
|  | } | 
|  |  | 
|  | static void write_timing_info_header(AV1_COMMON *const cm, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | aom_wb_write_bit(wb, cm->timing_info_present);  // timing info present flag | 
|  |  | 
|  | if (cm->timing_info_present) { | 
|  | aom_wb_write_unsigned_literal(wb, cm->num_units_in_tick, | 
|  | 32);  // Number of units in tick | 
|  | aom_wb_write_unsigned_literal(wb, cm->time_scale, 32);  // Time scale | 
|  | aom_wb_write_bit(wb, | 
|  | cm->equal_picture_interval);  // Equal picture interval bit | 
|  | if (cm->equal_picture_interval) { | 
|  | aom_wb_write_uvlc(wb, | 
|  | cm->num_ticks_per_picture - 1);  // ticks per picture | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_FILM_GRAIN | 
|  | static void write_film_grain_params(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | aom_film_grain_t *pars = &cm->film_grain_params; | 
|  |  | 
|  | cm->cur_frame->film_grain_params = *pars; | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->apply_grain); | 
|  | if (!pars->apply_grain) return; | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->random_seed, 16); | 
|  |  | 
|  | pars->random_seed += 3245;  // For film grain test vectors purposes | 
|  | if (!pars->random_seed)     // Random seed should not be zero | 
|  | pars->random_seed += 1735; | 
|  | if (cm->frame_type == INTER_FRAME) | 
|  | aom_wb_write_bit(wb, pars->update_parameters); | 
|  | else | 
|  | pars->update_parameters = 1; | 
|  | #if CONFIG_FILM_GRAIN_SHOWEX | 
|  | if (!pars->update_parameters) { | 
|  | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
|  | int ref_frame, ref_idx, buf_idx; | 
|  | for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) { | 
|  | ref_idx = get_ref_frame_map_idx(cpi, ref_frame); | 
|  | assert(ref_idx != INVALID_IDX); | 
|  | buf_idx = cm->ref_frame_map[ref_idx]; | 
|  | if (frame_bufs[buf_idx].film_grain_params_present && | 
|  | memcmp(pars, &frame_bufs[buf_idx].film_grain_params, sizeof(*pars))) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(ref_frame < REF_FRAMES); | 
|  | aom_wb_write_literal(wb, ref_idx, 3); | 
|  | return; | 
|  | } | 
|  | #else | 
|  | if (!pars->update_parameters) return; | 
|  | #endif | 
|  |  | 
|  | // Scaling functions parameters | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14 | 
|  | for (int i = 0; i < pars->num_y_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); | 
|  | } | 
|  |  | 
|  | if (!cm->seq_params.monochrome) | 
|  | aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); | 
|  |  | 
|  | if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || | 
|  | ((cm->subsampling_x == 1) && (cm->subsampling_y == 1) && | 
|  | (pars->num_y_points == 0))) { | 
|  | pars->num_cb_points = 0; | 
|  | pars->num_cr_points = 0; | 
|  | } else { | 
|  | aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10 | 
|  | for (int i = 0; i < pars->num_cb_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); | 
|  | } | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10 | 
|  | for (int i = 0; i < pars->num_cr_points; i++) { | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); | 
|  | aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value | 
|  |  | 
|  | // AR coefficients | 
|  | // Only sent if the corresponsing scaling function has | 
|  | // more than 0 points | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); | 
|  |  | 
|  | int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); | 
|  | int num_pos_chroma = num_pos_luma; | 
|  | if (pars->num_y_points > 0) ++num_pos_chroma; | 
|  |  | 
|  | if (pars->num_y_points) | 
|  | for (int i = 0; i < num_pos_luma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); | 
|  |  | 
|  | if (pars->num_cb_points || pars->chroma_scaling_from_luma) | 
|  | for (int i = 0; i < num_pos_chroma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); | 
|  |  | 
|  | if (pars->num_cr_points || pars->chroma_scaling_from_luma) | 
|  | for (int i = 0; i < num_pos_chroma; i++) | 
|  | aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value | 
|  |  | 
|  | aom_wb_write_literal(wb, pars->grain_scale_shift, 2); | 
|  |  | 
|  | if (pars->num_cb_points) { | 
|  | aom_wb_write_literal(wb, pars->cb_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cb_luma_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cb_offset, 9); | 
|  | } | 
|  |  | 
|  | if (pars->num_cr_points) { | 
|  | aom_wb_write_literal(wb, pars->cr_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cr_luma_mult, 8); | 
|  | aom_wb_write_literal(wb, pars->cr_offset, 9); | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->overlap_flag); | 
|  |  | 
|  | aom_wb_write_bit(wb, pars->clip_to_restricted_range); | 
|  | } | 
|  | #endif  // CONFIG_FILM_GRAIN | 
|  |  | 
|  | static void write_sb_size(SequenceHeader *seq_params, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | (void)seq_params; | 
|  | (void)wb; | 
|  | assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); | 
|  | assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); | 
|  | assert(seq_params->sb_size == BLOCK_128X128 || | 
|  | seq_params->sb_size == BLOCK_64X64); | 
|  | aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); | 
|  | } | 
|  |  | 
|  | void write_sequence_header(AV1_COMP *cpi, struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | SequenceHeader *seq_params = &cm->seq_params; | 
|  |  | 
|  | int num_bits_width = 16; | 
|  | int num_bits_height = 16; | 
|  | int max_frame_width = cpi->oxcf.forced_max_frame_width | 
|  | ? cpi->oxcf.forced_max_frame_width | 
|  | : cpi->oxcf.width; | 
|  | int max_frame_height = cpi->oxcf.forced_max_frame_height | 
|  | ? cpi->oxcf.forced_max_frame_height | 
|  | : cpi->oxcf.height; | 
|  |  | 
|  | seq_params->num_bits_width = num_bits_width; | 
|  | seq_params->num_bits_height = num_bits_height; | 
|  | seq_params->max_frame_width = max_frame_width; | 
|  | seq_params->max_frame_height = max_frame_height; | 
|  |  | 
|  | aom_wb_write_literal(wb, num_bits_width - 1, 4); | 
|  | aom_wb_write_literal(wb, num_bits_height - 1, 4); | 
|  | aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width); | 
|  | aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height); | 
|  |  | 
|  | /* Placeholder for actually writing to the bitstream */ | 
|  | seq_params->frame_id_numbers_present_flag = | 
|  | cm->large_scale_tile ? 0 : cm->error_resilient_mode; | 
|  | seq_params->frame_id_length = FRAME_ID_LENGTH; | 
|  | seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); | 
|  | if (seq_params->frame_id_numbers_present_flag) { | 
|  | // We must always have delta_frame_id_length < frame_id_length, | 
|  | // in order for a frame to be referenced with a unique delta. | 
|  | // Avoid wasting bits by using a coding that enforces this restriction. | 
|  | aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); | 
|  | aom_wb_write_literal( | 
|  | wb, seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, | 
|  | 3); | 
|  | } | 
|  |  | 
|  | write_sb_size(seq_params, wb); | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_filter_intra); | 
|  | aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_interintra_compound); | 
|  | aom_wb_write_bit(wb, seq_params->enable_masked_compound); | 
|  | aom_wb_write_bit(wb, seq_params->enable_warped_motion); | 
|  | aom_wb_write_bit(wb, seq_params->enable_dual_filter); | 
|  |  | 
|  | aom_wb_write_bit(wb, seq_params->enable_order_hint); | 
|  |  | 
|  | if (seq_params->enable_order_hint) { | 
|  | aom_wb_write_bit(wb, seq_params->enable_jnt_comp); | 
|  | aom_wb_write_bit(wb, seq_params->enable_ref_frame_mvs); | 
|  | } | 
|  |  | 
|  | if (seq_params->force_screen_content_tools == 2) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, seq_params->force_screen_content_tools); | 
|  | } | 
|  |  | 
|  | #if CONFIG_AMVR | 
|  | if (seq_params->force_screen_content_tools > 0) { | 
|  | if (seq_params->force_integer_mv == 2) { | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0); | 
|  | aom_wb_write_bit(wb, seq_params->force_integer_mv); | 
|  | } | 
|  | } else { | 
|  | assert(seq_params->force_integer_mv == 2); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_EXPLICIT_ORDER_HINT | 
|  | if (seq_params->enable_order_hint) | 
|  | aom_wb_write_literal(wb, seq_params->order_hint_bits_minus1, 3); | 
|  | #endif | 
|  | aom_wb_write_bit(wb, seq_params->enable_superres); | 
|  | aom_wb_write_bit(wb, seq_params->enable_cdef); | 
|  | aom_wb_write_bit(wb, seq_params->enable_restoration); | 
|  | } | 
|  |  | 
|  | static void write_global_motion_params(const WarpedMotionParams *params, | 
|  | const WarpedMotionParams *ref_params, | 
|  | struct aom_write_bit_buffer *wb, | 
|  | int allow_hp) { | 
|  | const TransformationType type = params->wmtype; | 
|  |  | 
|  | aom_wb_write_bit(wb, type != IDENTITY); | 
|  | if (type != IDENTITY) { | 
|  | #if GLOBAL_TRANS_TYPES > 4 | 
|  | aom_wb_write_literal(wb, type - 1, GLOBAL_TYPE_BITS); | 
|  | #else | 
|  | aom_wb_write_bit(wb, type == ROTZOOM); | 
|  | if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); | 
|  | #endif  // GLOBAL_TRANS_TYPES > 4 | 
|  | } | 
|  |  | 
|  | if (type >= ROTZOOM) { | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - | 
|  | (1 << GM_ALPHA_PREC_BITS), | 
|  | (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), | 
|  | (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); | 
|  | } | 
|  |  | 
|  | if (type >= AFFINE) { | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), | 
|  | (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - | 
|  | (1 << GM_ALPHA_PREC_BITS), | 
|  | (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); | 
|  | } | 
|  |  | 
|  | if (type >= TRANSLATION) { | 
|  | const int trans_bits = (type == TRANSLATION) | 
|  | ? GM_ABS_TRANS_ONLY_BITS - !allow_hp | 
|  | : GM_ABS_TRANS_BITS; | 
|  | const int trans_prec_diff = (type == TRANSLATION) | 
|  | ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp | 
|  | : GM_TRANS_PREC_DIFF; | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[0] >> trans_prec_diff), | 
|  | (params->wmmat[0] >> trans_prec_diff)); | 
|  | aom_wb_write_signed_primitive_refsubexpfin( | 
|  | wb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
|  | (ref_params->wmmat[1] >> trans_prec_diff), | 
|  | (params->wmmat[1] >> trans_prec_diff)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void write_global_motion(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | int frame; | 
|  | for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { | 
|  | const WarpedMotionParams *ref_params = | 
|  | cm->prev_frame ? &cm->prev_frame->global_motion[frame] | 
|  | : &default_warp_params; | 
|  | write_global_motion_params(&cm->global_motion[frame], ref_params, wb, | 
|  | cm->allow_high_precision_mv); | 
|  | // TODO(sarahparker, debargha): The logic in the commented out code below | 
|  | // does not work currently and causes mismatches when resize is on. | 
|  | // Fix it before turning the optimization back on. | 
|  | /* | 
|  | YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame); | 
|  | if (cpi->source->y_crop_width == ref_buf->y_crop_width && | 
|  | cpi->source->y_crop_height == ref_buf->y_crop_height) { | 
|  | write_global_motion_params(&cm->global_motion[frame], | 
|  | &cm->prev_frame->global_motion[frame], wb, | 
|  | cm->allow_high_precision_mv); | 
|  | } else { | 
|  | assert(cm->global_motion[frame].wmtype == IDENTITY && | 
|  | "Invalid warp type for frames of different resolutions"); | 
|  | } | 
|  | */ | 
|  | /* | 
|  | printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", | 
|  | cm->current_video_frame, cm->show_frame, frame, | 
|  | cm->global_motion[frame].wmmat[0], | 
|  | cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], | 
|  | cm->global_motion[frame].wmmat[3]); | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | // New function based on HLS R18 | 
|  | static void write_uncompressed_header_obu(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | struct aom_write_bit_buffer *wb) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  |  | 
|  | // NOTE: By default all coded frames to be used as a reference | 
|  | cm->is_reference_frame = 1; | 
|  |  | 
|  | if (cm->show_existing_frame) { | 
|  | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
|  | const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; | 
|  |  | 
|  | if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Buffer %d does not contain a reconstructed frame", | 
|  | frame_to_show); | 
|  | } | 
|  | ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); | 
|  |  | 
|  | aom_wb_write_bit(wb, 1);  // show_existing_frame | 
|  | aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); | 
|  |  | 
|  | if (cm->seq_params.frame_id_numbers_present_flag) { | 
|  | int frame_id_len = cm->seq_params.frame_id_length; | 
|  | int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; | 
|  | aom_wb_write_literal(wb, display_frame_id, frame_id_len); | 
|  | } | 
|  |  | 
|  | #if CONFIG_FILM_GRAIN && !CONFIG_FILM_GRAIN_SHOWEX | 
|  | if (cm->film_grain_params_present && cm->show_frame) { | 
|  | int flip_back_update_parameters_flag = 0; | 
|  | if (cm->frame_type == KEY_FRAME && | 
|  | cm->film_grain_params.update_parameters == 0) { | 
|  | cm->film_grain_params.update_parameters = 1; | 
|  | flip_back_update_parameters_flag = 1; | 
|  | } | 
|  | write_film_grain_params(cpi, wb); | 
|  |  | 
|  | if (flip_back_update_parameters_flag) | 
|  | cm->film_grain_params.update_parameters = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cm->reset_decoder_state && | 
|  | frame_bufs[frame_to_show].frame_type != KEY_FRAME) { | 
|  | aom_internal_error( | 
|  | &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "show_existing_frame to reset state on KEY_FRAME only"); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } else { | 
|  | aom_wb_write_bit(wb, 0);  // show_existing_frame | 
|  | } | 
|  |  | 
|  | cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type; | 
|  | aom_wb_write_literal(wb, cm->frame_type, 2); | 
|  |  | 
|  | if (cm->intra_only) cm->frame_type = INTRA_ONLY_FRAME; | 
|  |  | 
|  | aom_wb_write_bit(wb, cm->show_frame); | 
|  | #if CONFIG_FILM_GRAIN_SHOWEX | 
|  | if (!cm->show_frame) { | 
|  | aom_wb_write_bit(wb, cm->showable_frame); | 
|  | } | 
|  | #endif | 
|  | if (frame_is_sframe(cm)) { | 
|  | assert(cm->error_resilient_mode); | 
|  | } else { | 
|  | aom_wb_write_bit(wb, cm->error_resilient_mode); | 
|  | } | 
|  |  | 
|  | aom_wb_write_bit(wb, cm->disable_cdf_update); | 
|  |  | 
|  | if (cm->seq_params.force_screen_content_tools == 2) { | 
|  | aom_wb_write_bit(wb, cm->allow_screen_content_tools); | 
|  | } else { | 
|  | assert(cm->allow_screen_content_tools == | 
|  | cm->seq_params.force_screen_content_tools); | 
|  | } | 
|  |  | 
|  | #if CONFIG_AMVR | 
|  | if (cm->allow_screen_content_tools) { | 
|  | if (cm->seq_params.force_integer_mv == 2) { | 
|  | aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); | 
|  | } else { | 
|  | assert(cm->cur_frame_force_integer_mv == cm->seq_params.force_integer_mv); | 
|  | } | 
|  | } else { | 
|  | assert(cm->cur_frame_force_integer_mv == 0); | 
|  | } | 
|  | #endif  // CONFIG_AMVR | 
|  |  | 
|  | cm->invalid_delta_frame_id_minus1 = 0; | 
|  | if (cm->seq_params.frame_id_numbers_present_flag) { | 
|  | int frame_id_len = cm->seq_params.frame_id_length; | 
|  | aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); | 
|  | } | 
|  |  | 
|  | if (cm->width > cm->seq_params.max_frame_width || | 
|  | cm->height > cm->seq_params.max_frame_height) { | 
|  | aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
|  | "Frame dimensions are larger than the maximum values"); | 
|  | } | 
|  |  | 
|  | int frame_size_override_flag = | 
|  | frame_is_sframe(cm) ? 1 | 
|  | : (cm->width != cm->seq_params.max_frame_width || | 
|  | cm->height != cm->seq_params.max_frame_height); | 
|  | if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); | 
|  |  | 
|  | cm->frame_refs_short_signaling = 0; | 
|  |  | 
|  | #if CONFIG_EXPLICIT_ORDER_HINT | 
|  | aom_wb_write_literal(wb, cm->frame_offset, | 
|  | cm->seq_params.order_hint_bits_minus1 + 1); | 
|  | #else | 
|  | if (cm->show_frame == 0) { | 
|  | int arf_offset = AOMMIN( | 
|  | (MAX_GF_INTERVAL - 1), | 
|  | cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); | 
|  | int brf_offset = | 
|  | cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; | 
|  |  | 
|  | arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); | 
|  | aom_wb_write_literal(wb, arf_offset, FRAME_OFFSET_BITS); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { | 
|  | aom_wb_write_literal(wb, cm->primary_ref_frame, PRIMARY_REF_BITS); | 
|  | } | 
|  |  | 
|  | if (cm->frame_type == KEY_FRAME) { | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | assert(av1_superres_unscaled(cm) || | 
|  | !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
|  | if (cm->allow_screen_content_tools && | 
|  | (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
|  | aom_wb_write_bit(wb, cm->allow_intrabc); | 
|  | // all eight fbs are refreshed, pick one that will live long enough | 
|  | cm->fb_of_context_type[REGULAR_FRAME] = 0; | 
|  | } else { | 
|  | #if CONFIG_EXPLICIT_ORDER_HINT | 
|  | // Write all ref frame order hints if error_resilient_mode == 1 | 
|  | if (cm->error_resilient_mode && cm->seq_params.enable_order_hint) { | 
|  | RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
|  | for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
|  | // Get buffer index | 
|  | const int buf_idx = cm->ref_frame_map[ref_idx]; | 
|  | assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); | 
|  |  | 
|  | // Write order hint to bit stream | 
|  | aom_wb_write_literal(wb, frame_bufs[buf_idx].cur_frame_offset, | 
|  | cm->seq_params.order_hint_bits_minus1 + 1); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_EXPLICIT_ORDER_HINT | 
|  |  | 
|  | if (cm->frame_type == INTRA_ONLY_FRAME) { | 
|  | cpi->refresh_frame_mask = get_refresh_mask(cpi); | 
|  | int updated_fb = -1; | 
|  | for (int i = 0; i < REF_FRAMES; i++) { | 
|  | // If more than one frame is refreshed, it doesn't matter which one | 
|  | // we pick, so pick the first. | 
|  | if (cpi->refresh_frame_mask & (1 << i)) { | 
|  | updated_fb = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(updated_fb >= 0); | 
|  | cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; | 
|  | if (cm->intra_only) { | 
|  | aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | assert(av1_superres_unscaled(cm) || | 
|  | !(cm->allow_intrabc && NO_FILTER_FOR_IBC)); | 
|  | if (cm->allow_screen_content_tools && | 
|  | (av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC)) | 
|  | aom_wb_write_bit(wb, cm->allow_intrabc); | 
|  | } | 
|  | } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { | 
|  | MV_REFERENCE_FRAME ref_frame; | 
|  |  | 
|  | cpi->refresh_frame_mask = get_refresh_mask(cpi); | 
|  | if (cm->frame_type == INTER_FRAME) { | 
|  | aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); | 
|  | } else { | 
|  | assert(frame_is_sframe(cm) && cpi->refresh_frame_mask == 0xFF); | 
|  | } | 
|  |  | 
|  | int updated_fb = -1; | 
|  | for (int i = 0; i < REF_FRAMES; i++) { | 
|  | // If more than one frame is refreshed, it doesn't matter which one | 
|  | // we pick, so pick the first. | 
|  | if (cpi->refresh_frame_mask & (1 << i)) { | 
|  | updated_fb = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // large scale tile sometimes won't refresh any fbs | 
|  | if (updated_fb >= 0) { | 
|  | cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; | 
|  | } | 
|  |  | 
|  | if (!cpi->refresh_frame_mask) { | 
|  | // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame | 
|  | //       will not be used as a reference | 
|  | cm->is_reference_frame = 0; | 
|  | } | 
|  |  | 
|  | assert(cm->frame_refs_short_signaling == 0); | 
|  | // NOTE: Error resilient mode turns off frame_refs_short_signaling | 
|  | //       automatically. | 
|  | if (cm->seq_params.enable_order_hint) | 
|  | aom_wb_write_bit(wb, cm->frame_refs_short_signaling); | 
|  | else | 
|  | assert(cm->frame_refs_short_signaling == 0); | 
|  |  | 
|  | if (cm->frame_refs_short_signaling) { | 
|  | assert(get_ref_frame_map_idx(cpi, LAST_FRAME) != INVALID_IDX); | 
|  | aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, LAST_FRAME), | 
|  | REF_FRAMES_LOG2); | 
|  | assert(get_ref_frame_map_idx(cpi, GOLDEN_FRAME) != INVALID_IDX); | 
|  | aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, GOLDEN_FRAME), | 
|  | REF_FRAMES_LOG2); | 
|  | } | 
|  |  | 
|  | for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { | 
|  | assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); | 
|  | if (!cm->frame_refs_short_signaling) | 
|  | aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), | 
|  | REF_FRAMES_LOG2); | 
|  | if (frame_is_sframe(cm)) { | 
|  | assert(cm->ref_frame_sign_bias[ref_frame] == 0); | 
|  | } | 
|  |  | 
|  | if (cm->seq_params.frame_id_numbers_present_flag) { | 
|  | int i = get_ref_frame_map_idx(cpi, ref_frame); | 
|  | int frame_id_len = cm->seq_params.frame_id_length; | 
|  | int diff_len = cm->seq_params.delta_frame_id_length; | 
|  | int delta_frame_id_minus1 = | 
|  | ((cm->current_frame_id - cm->ref_frame_id[i] + | 
|  | (1 << frame_id_len)) % | 
|  | (1 << frame_id_len)) - | 
|  | 1; | 
|  | if (delta_frame_id_minus1 < 0 || | 
|  | delta_frame_id_minus1 >= (1 << diff_len)) | 
|  | cm->invalid_delta_frame_id_minus1 = 1; | 
|  | aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!cm->error_resilient_mode && frame_size_override_flag) { | 
|  | write_frame_size_with_refs(cpi, wb); | 
|  | } else { | 
|  | write_frame_size(cm, frame_size_override_flag, wb); | 
|  | } | 
|  |  | 
|  | #if CONFIG_AMVR | 
|  | if (cm->cur_frame_force_integer_mv) { | 
|  | cm->allow_high_precision_mv = 0; | 
|  | } else { | 
|  | aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
|  | } | 
|  | #else | 
|  | aom_wb_write_bit(wb, cm->allow_high_precision_mv); | 
|  | #endif | 
|  | fix_interp_filter(cm, cpi->td.counts); | 
|  | write_frame_interp_filter(cm->interp_filter, wb); | 
|  | aom_wb_write_bit(wb, cm->switchable_motion_mode); | 
|  | if (frame_might_allow_ref_frame_mvs(cm)) { | 
|  | aom_wb_write_bit(wb, cm->allow_ref_frame_mvs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cm->seq_params.frame_id_numbers_present_flag) | 
|  | cm->refresh_mask = get_refresh_mask(cpi); | 
|  |  | 
|  | const int might_bwd_adapt = | 
|  | !(cm->large_scale_tile) && !(cm->disable_cdf_update); | 
|  |  | 
|  | if (might_bwd_adapt) { | 
|  | aom_wb_write_bit( | 
|  | wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); | 
|  | } | 
|  |  | 
|  | write_tile_info(cm, saved_wb, wb); | 
|  | encode_quantization(cm, wb); | 
|  | encode_segmentation(cm, xd, wb); | 
|  | { | 
|  | int delta_q_allowed = 1; | 
|  |  | 
|  | if (cm->delta_q_present_flag) | 
|  | assert(delta_q_allowed == 1 && cm->base_qindex > 0); | 
|  | if (delta_q_allowed == 1 && cm->base_qindex > 0) { | 
|  | aom_wb_write_bit(wb, cm->delta_q_present_flag); | 
|  | if (cm->delta_q_present_flag) { | 
|  | aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2); | 
|  | xd->prev_qindex = cm->base_qindex; | 
|  | if (cm->allow_intrabc && NO_FILTER_FOR_IBC) | 
|  | assert(cm->delta_lf_present_flag == 0); | 
|  | else | 
|  | aom_wb_write_bit(wb, cm->delta_lf_present_flag); | 
|  | if (cm->delta_lf_present_flag) { | 
|  | aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_lf_res) - 1, 2); | 
|  | xd->prev_delta_lf_from_base = 0; | 
|  | aom_wb_write_bit(wb, cm->delta_lf_multi); | 
|  | const int frame_lf_count = | 
|  | av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; | 
|  | for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) | 
|  | xd->prev_delta_lf[lf_id] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (cm->all_lossless) { | 
|  | assert(av1_superres_unscaled(cm)); | 
|  | } else { | 
|  | if (!cm->coded_lossless) { | 
|  | encode_loopfilter(cm, wb); | 
|  | encode_cdef(cm, wb); | 
|  | } | 
|  | encode_restoration_mode(cm, wb); | 
|  | } | 
|  |  | 
|  | write_tx_mode(cm, &cm->tx_mode, wb); | 
|  |  | 
|  | if (cpi->allow_comp_inter_inter) { | 
|  | const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; | 
|  |  | 
|  | aom_wb_write_bit(wb, use_hybrid_pred); | 
|  | } | 
|  |  | 
|  | if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); | 
|  |  | 
|  | if (frame_might_allow_warped_motion(cm)) | 
|  | aom_wb_write_bit(wb, cm->allow_warped_motion); | 
|  | else | 
|  | assert(!cm->allow_warped_motion); | 
|  |  | 
|  | aom_wb_write_bit(wb, cm->reduced_tx_set_used); | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); | 
|  |  | 
|  | #if CONFIG_FILM_GRAIN | 
|  | #if CONFIG_FILM_GRAIN_SHOWEX | 
|  | if (cm->film_grain_params_present && (cm->show_frame || cm->showable_frame)) { | 
|  | #else | 
|  | if (cm->film_grain_params_present && cm->show_frame) { | 
|  | #endif | 
|  | int flip_back_update_parameters_flag = 0; | 
|  | if (cm->frame_type != INTER_FRAME && | 
|  | cm->film_grain_params.update_parameters == 0) { | 
|  | cm->film_grain_params.update_parameters = 1; | 
|  | flip_back_update_parameters_flag = 1; | 
|  | } | 
|  | write_film_grain_params(cpi, wb); | 
|  |  | 
|  | if (flip_back_update_parameters_flag) | 
|  | cm->film_grain_params.update_parameters = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int choose_size_bytes(uint32_t size, int spare_msbs) { | 
|  | // Choose the number of bytes required to represent size, without | 
|  | // using the 'spare_msbs' number of most significant bits. | 
|  |  | 
|  | // Make sure we will fit in 4 bytes to start with.. | 
|  | if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; | 
|  |  | 
|  | // Normalise to 32 bits | 
|  | size <<= spare_msbs; | 
|  |  | 
|  | if (size >> 24 != 0) | 
|  | return 4; | 
|  | else if (size >> 16 != 0) | 
|  | return 3; | 
|  | else if (size >> 8 != 0) | 
|  | return 2; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { | 
|  | switch (sz) { | 
|  | case 1: dst[0] = (uint8_t)(val & 0xff); break; | 
|  | case 2: mem_put_le16(dst, val); break; | 
|  | case 3: mem_put_le24(dst, val); break; | 
|  | case 4: mem_put_le32(dst, val); break; | 
|  | default: assert(0 && "Invalid size"); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, | 
|  | const uint32_t data_size, const uint32_t max_tile_size, | 
|  | const uint32_t max_tile_col_size, | 
|  | int *const tile_size_bytes, | 
|  | int *const tile_col_size_bytes) { | 
|  | // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) | 
|  | int tsb; | 
|  | int tcsb; | 
|  |  | 
|  | if (cm->large_scale_tile) { | 
|  | // The top bit in the tile size field indicates tile copy mode, so we | 
|  | // have 1 less bit to code the tile size | 
|  | tsb = choose_size_bytes(max_tile_size, 1); | 
|  | tcsb = choose_size_bytes(max_tile_col_size, 0); | 
|  | } else { | 
|  | tsb = choose_size_bytes(max_tile_size, 0); | 
|  | tcsb = 4;  // This is ignored | 
|  | (void)max_tile_col_size; | 
|  | } | 
|  |  | 
|  | assert(tsb > 0); | 
|  | assert(tcsb > 0); | 
|  |  | 
|  | *tile_size_bytes = tsb; | 
|  | *tile_col_size_bytes = tcsb; | 
|  | if (tsb == 4 && tcsb == 4) return data_size; | 
|  |  | 
|  | uint32_t wpos = 0; | 
|  | uint32_t rpos = 0; | 
|  |  | 
|  | if (cm->large_scale_tile) { | 
|  | int tile_row; | 
|  | int tile_col; | 
|  |  | 
|  | for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { | 
|  | // All but the last column has a column header | 
|  | if (tile_col < cm->tile_cols - 1) { | 
|  | uint32_t tile_col_size = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  |  | 
|  | // Adjust the tile column size by the number of bytes removed | 
|  | // from the tile size fields. | 
|  | tile_col_size -= (4 - tsb) * cm->tile_rows; | 
|  |  | 
|  | mem_put_varsize(dst + wpos, tcsb, tile_col_size); | 
|  | wpos += tcsb; | 
|  | } | 
|  |  | 
|  | for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { | 
|  | // All, including the last row has a header | 
|  | uint32_t tile_header = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  |  | 
|  | // If this is a copy tile, we need to shift the MSB to the | 
|  | // top bit of the new width, and there is no data to copy. | 
|  | if (tile_header >> 31 != 0) { | 
|  | if (tsb < 4) tile_header >>= 32 - 8 * tsb; | 
|  | mem_put_varsize(dst + wpos, tsb, tile_header); | 
|  | wpos += tsb; | 
|  | } else { | 
|  | mem_put_varsize(dst + wpos, tsb, tile_header); | 
|  | wpos += tsb; | 
|  |  | 
|  | tile_header += AV1_MIN_TILE_SIZE_BYTES; | 
|  | memmove(dst + wpos, dst + rpos, tile_header); | 
|  | rpos += tile_header; | 
|  | wpos += tile_header; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(rpos > wpos); | 
|  | assert(rpos == data_size); | 
|  |  | 
|  | return wpos; | 
|  | } | 
|  | const int n_tiles = cm->tile_cols * cm->tile_rows; | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < n_tiles; n++) { | 
|  | int tile_size; | 
|  |  | 
|  | if (n == n_tiles - 1) { | 
|  | tile_size = data_size - rpos; | 
|  | } else { | 
|  | tile_size = mem_get_le32(dst + rpos); | 
|  | rpos += 4; | 
|  | mem_put_varsize(dst + wpos, tsb, tile_size); | 
|  | tile_size += AV1_MIN_TILE_SIZE_BYTES; | 
|  | wpos += tsb; | 
|  | } | 
|  |  | 
|  | memmove(dst + wpos, dst + rpos, tile_size); | 
|  |  | 
|  | rpos += tile_size; | 
|  | wpos += tile_size; | 
|  | } | 
|  |  | 
|  | assert(rpos > wpos); | 
|  | assert(rpos == data_size); | 
|  |  | 
|  | return wpos; | 
|  | } | 
|  |  | 
|  | uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, | 
|  | uint8_t *const dst) { | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | aom_wb_write_literal(&wb, 0, 1);  // forbidden bit. | 
|  | aom_wb_write_literal(&wb, (int)obu_type, 4); | 
|  | aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); | 
|  | aom_wb_write_literal(&wb, 1, 1);  // obu_has_payload_length_field | 
|  | aom_wb_write_literal(&wb, 0, 1);  // reserved | 
|  |  | 
|  | if (obu_extension) { | 
|  | aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); | 
|  | } | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size, | 
|  | uint8_t *dest) { | 
|  | const uint32_t obu_size = obu_payload_size; | 
|  | const uint32_t offset = obu_header_size; | 
|  | size_t coded_obu_size = 0; | 
|  |  | 
|  | if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, | 
|  | &coded_obu_size) != 0) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | return AOM_CODEC_OK; | 
|  | } | 
|  |  | 
|  | static size_t obu_memmove(uint32_t obu_header_size, uint32_t obu_payload_size, | 
|  | uint8_t *data) { | 
|  | const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); | 
|  | const uint32_t move_dst_offset = | 
|  | (uint32_t)length_field_size + obu_header_size; | 
|  | const uint32_t move_src_offset = obu_header_size; | 
|  | const uint32_t move_size = obu_payload_size; | 
|  | memmove(data + move_dst_offset, data + move_src_offset, move_size); | 
|  | return length_field_size; | 
|  | } | 
|  |  | 
|  | #if CONFIG_TRAILING_BITS | 
|  | static void add_trailing_bits(struct aom_write_bit_buffer *wb) { | 
|  | if (aom_wb_is_byte_aligned(wb)) { | 
|  | aom_wb_write_literal(wb, 0x80, 8); | 
|  | } else { | 
|  | // assumes that the other bits are already 0s | 
|  | aom_wb_write_bit(wb, 1); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst, | 
|  | uint8_t enhancement_layers_cnt) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | write_profile(cm->profile, &wb); | 
|  |  | 
|  | #if !CONFIG_OPERATING_POINTS | 
|  | aom_wb_write_literal(&wb, enhancement_layers_cnt, 2); | 
|  | int i; | 
|  | for (i = 0; i <= enhancement_layers_cnt; i++) { | 
|  | aom_wb_write_literal(&wb, 0, 4); | 
|  | } | 
|  | #else   // CONFIG_OPERATING_POINTS | 
|  | uint8_t operating_points_minus1_cnt = enhancement_layers_cnt; | 
|  | aom_wb_write_literal(&wb, operating_points_minus1_cnt, 5); | 
|  | int i; | 
|  | for (i = 0; i < operating_points_minus1_cnt + 1; i++) { | 
|  | aom_wb_write_literal(&wb, 0, 12);  // operating_point_idc[i] | 
|  | aom_wb_write_literal(&wb, 0, 4);   // level[i] | 
|  | aom_wb_write_literal(&wb, 0, 1);   // decoder_rate_model_present_flag[i] | 
|  | } | 
|  | #endif  // CONFIG_OPERATING_POINTS | 
|  |  | 
|  | write_sequence_header(cpi, &wb); | 
|  |  | 
|  | // color_config | 
|  | write_bitdepth_colorspace_sampling(cm, &wb); | 
|  |  | 
|  | // timing_info | 
|  | write_timing_info_header(cm, &wb); | 
|  |  | 
|  | #if CONFIG_FILM_GRAIN | 
|  | aom_wb_write_bit(&wb, cm->film_grain_params_present); | 
|  | #endif | 
|  |  | 
|  | #if CONFIG_TRAILING_BITS | 
|  | add_trailing_bits(&wb); | 
|  | #endif | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static uint32_t write_frame_header_obu(AV1_COMP *cpi, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | uint8_t *const dst) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t total_size = 0; | 
|  | uint32_t uncompressed_hdr_size; | 
|  |  | 
|  | write_uncompressed_header_obu(cpi, saved_wb, &wb); | 
|  |  | 
|  | #if CONFIG_TRAILING_BITS | 
|  | add_trailing_bits(&wb); | 
|  | #endif | 
|  |  | 
|  | if (cm->show_existing_frame) { | 
|  | total_size = aom_wb_bytes_written(&wb); | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | uncompressed_hdr_size = aom_wb_bytes_written(&wb); | 
|  | total_size = uncompressed_hdr_size; | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | static uint32_t write_tile_group_header(uint8_t *const dst, int startTile, | 
|  | int endTile, int tiles_log2, | 
|  | int tile_start_and_end_present_flag) { | 
|  | struct aom_write_bit_buffer wb = { dst, 0 }; | 
|  | uint32_t size = 0; | 
|  |  | 
|  | if (!tiles_log2) return size; | 
|  |  | 
|  | aom_wb_write_bit(&wb, tile_start_and_end_present_flag); | 
|  |  | 
|  | if (tile_start_and_end_present_flag) { | 
|  | aom_wb_write_literal(&wb, startTile, tiles_log2); | 
|  | aom_wb_write_literal(&wb, endTile, tiles_log2); | 
|  | } | 
|  |  | 
|  | size = aom_wb_bytes_written(&wb); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | uint8_t *frame_header; | 
|  | size_t obu_header_byte_offset; | 
|  | size_t total_length; | 
|  | } FrameHeaderInfo; | 
|  |  | 
|  | static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, | 
|  | struct aom_write_bit_buffer *saved_wb, | 
|  | uint8_t obu_extension_header, | 
|  | const FrameHeaderInfo *fh_info) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | aom_writer mode_bc; | 
|  | int tile_row, tile_col; | 
|  | TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; | 
|  | TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; | 
|  | uint32_t total_size = 0; | 
|  | const int tile_cols = cm->tile_cols; | 
|  | const int tile_rows = cm->tile_rows; | 
|  | unsigned int tile_size = 0; | 
|  | unsigned int max_tile_size = 0; | 
|  | unsigned int max_tile_col_size = 0; | 
|  | const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; | 
|  | // Fixed size tile groups for the moment | 
|  | const int num_tg_hdrs = cm->num_tg; | 
|  | const int tg_size = | 
|  | (cm->large_scale_tile) | 
|  | ? 1 | 
|  | : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; | 
|  | int tile_count = 0; | 
|  | int curr_tg_data_size = 0; | 
|  | uint8_t *data = dst; | 
|  | int new_tg = 1; | 
|  | const int have_tiles = tile_cols * tile_rows > 1; | 
|  | int first_tg = 1; | 
|  |  | 
|  | cm->largest_tile_id = 0; | 
|  |  | 
|  | if (cm->large_scale_tile) { | 
|  | // For large_scale_tile case, we always have only one tile group, so it can | 
|  | // be written as an OBU_FRAME. | 
|  | const OBU_TYPE obu_type = OBU_FRAME; | 
|  | const uint32_t tg_hdr_size = write_obu_header(obu_type, 0, data); | 
|  | data += tg_hdr_size; | 
|  |  | 
|  | const uint32_t frame_header_size = | 
|  | write_frame_header_obu(cpi, saved_wb, data); | 
|  | data += frame_header_size; | 
|  | total_size += frame_header_size; | 
|  |  | 
|  | int tile_size_bytes = 0; | 
|  | int tile_col_size_bytes = 0; | 
|  |  | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | TileInfo tile_info; | 
|  | const int is_last_col = (tile_col == tile_cols - 1); | 
|  | const uint32_t col_offset = total_size; | 
|  |  | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  |  | 
|  | // The last column does not have a column header | 
|  | if (!is_last_col) total_size += 4; | 
|  |  | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
|  | const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
|  | const int data_offset = have_tiles ? 4 : 0; | 
|  | const int tile_idx = tile_row * tile_cols + tile_col; | 
|  | TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  |  | 
|  | buf->data = dst + total_size + tg_hdr_size; | 
|  |  | 
|  | // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, | 
|  | // even for the last one, unless no tiling is used at all. | 
|  | total_size += data_offset; | 
|  | // Initialise tile context from the frame context | 
|  | this_tile->tctx = *cm->fc; | 
|  | cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | mode_bc.allow_update_cdf = !cm->large_scale_tile; | 
|  | mode_bc.allow_update_cdf = | 
|  | mode_bc.allow_update_cdf && !cm->disable_cdf_update; | 
|  | aom_start_encode(&mode_bc, buf->data + data_offset); | 
|  | write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
|  | assert(tok == tok_end); | 
|  | aom_stop_encode(&mode_bc); | 
|  | tile_size = mode_bc.pos; | 
|  | buf->size = tile_size; | 
|  |  | 
|  | // Record the maximum tile size we see, so we can compact headers later. | 
|  | if (tile_size > max_tile_size) { | 
|  | max_tile_size = tile_size; | 
|  | cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
|  | } | 
|  |  | 
|  | if (have_tiles) { | 
|  | // tile header: size of this tile, or copy offset | 
|  | uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; | 
|  | const int tile_copy_mode = | 
|  | ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) | 
|  | ? 1 | 
|  | : 0; | 
|  |  | 
|  | // If tile_copy_mode = 1, check if this tile is a copy tile. | 
|  | // Very low chances to have copy tiles on the key frames, so don't | 
|  | // search on key frames to reduce unnecessary search. | 
|  | if (cm->frame_type != KEY_FRAME && tile_copy_mode) { | 
|  | const int identical_tile_offset = | 
|  | find_identical_tile(tile_row, tile_col, tile_buffers); | 
|  |  | 
|  | if (identical_tile_offset > 0) { | 
|  | tile_size = 0; | 
|  | tile_header = identical_tile_offset | 0x80; | 
|  | tile_header <<= 24; | 
|  | } | 
|  | } | 
|  |  | 
|  | mem_put_le32(buf->data, tile_header); | 
|  | } | 
|  |  | 
|  | total_size += tile_size; | 
|  | } | 
|  |  | 
|  | if (!is_last_col) { | 
|  | uint32_t col_size = total_size - col_offset - 4; | 
|  | mem_put_le32(dst + col_offset + tg_hdr_size, col_size); | 
|  |  | 
|  | // Record the maximum tile column size we see. | 
|  | max_tile_col_size = AOMMAX(max_tile_col_size, col_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_tiles) { | 
|  | total_size = remux_tiles(cm, data, total_size - frame_header_size, | 
|  | max_tile_size, max_tile_col_size, | 
|  | &tile_size_bytes, &tile_col_size_bytes); | 
|  | total_size += frame_header_size; | 
|  | } | 
|  |  | 
|  | // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write | 
|  | // current tile group size before tile data(include tile column header). | 
|  | // Tile group size doesn't include the bytes storing tg size. | 
|  | total_size += tg_hdr_size; | 
|  | const uint32_t obu_payload_size = total_size - tg_hdr_size; | 
|  | const size_t length_field_size = | 
|  | obu_memmove(tg_hdr_size, obu_payload_size, dst); | 
|  | if (write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != | 
|  | AOM_CODEC_OK) { | 
|  | assert(0); | 
|  | } | 
|  | total_size += (uint32_t)length_field_size; | 
|  | saved_wb->bit_buffer += length_field_size; | 
|  |  | 
|  | // Now fill in the gaps in the uncompressed header. | 
|  | if (have_tiles) { | 
|  | assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); | 
|  | aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); | 
|  |  | 
|  | assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
|  | aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); | 
|  | } | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | uint32_t obu_header_size = 0; | 
|  | uint8_t *tile_data_start = dst + total_size; | 
|  | for (tile_row = 0; tile_row < tile_rows; tile_row++) { | 
|  | TileInfo tile_info; | 
|  | av1_tile_set_row(&tile_info, cm, tile_row); | 
|  |  | 
|  | for (tile_col = 0; tile_col < tile_cols; tile_col++) { | 
|  | const int tile_idx = tile_row * tile_cols + tile_col; | 
|  | TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; | 
|  | TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; | 
|  | const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; | 
|  | const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; | 
|  | int is_last_tile_in_tg = 0; | 
|  |  | 
|  | if (new_tg) { | 
|  | data = dst + total_size; | 
|  |  | 
|  | // A new tile group begins at this tile.  Write the obu header and | 
|  | // tile group header | 
|  | const OBU_TYPE obu_type = | 
|  | (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; | 
|  | curr_tg_data_size = | 
|  | write_obu_header(obu_type, obu_extension_header, data); | 
|  | obu_header_size = curr_tg_data_size; | 
|  |  | 
|  | if (num_tg_hdrs == 1) { | 
|  | curr_tg_data_size += | 
|  | write_frame_header_obu(cpi, saved_wb, data + curr_tg_data_size); | 
|  | } | 
|  | curr_tg_data_size += write_tile_group_header( | 
|  | data + curr_tg_data_size, tile_idx, | 
|  | AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), | 
|  | n_log2_tiles, cm->num_tg > 1); | 
|  | total_size += curr_tg_data_size; | 
|  | tile_data_start += curr_tg_data_size; | 
|  | new_tg = 0; | 
|  | tile_count = 0; | 
|  | } | 
|  | tile_count++; | 
|  | av1_tile_set_col(&tile_info, cm, tile_col); | 
|  |  | 
|  | if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { | 
|  | is_last_tile_in_tg = 1; | 
|  | new_tg = 1; | 
|  | } else { | 
|  | is_last_tile_in_tg = 0; | 
|  | } | 
|  |  | 
|  | buf->data = dst + total_size; | 
|  |  | 
|  | // The last tile of the tile group does not have a header. | 
|  | if (!is_last_tile_in_tg) total_size += 4; | 
|  |  | 
|  | // Initialise tile context from the frame context | 
|  | this_tile->tctx = *cm->fc; | 
|  | cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; | 
|  | mode_bc.allow_update_cdf = 1; | 
|  | mode_bc.allow_update_cdf = | 
|  | mode_bc.allow_update_cdf && !cm->disable_cdf_update; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); | 
|  |  | 
|  | aom_start_encode(&mode_bc, dst + total_size); | 
|  | write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); | 
|  | aom_stop_encode(&mode_bc); | 
|  | tile_size = mode_bc.pos; | 
|  | assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); | 
|  |  | 
|  | curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); | 
|  | buf->size = tile_size; | 
|  | if (tile_size > max_tile_size) { | 
|  | cm->largest_tile_id = tile_cols * tile_row + tile_col; | 
|  | max_tile_size = tile_size; | 
|  | } | 
|  |  | 
|  | if (!is_last_tile_in_tg) { | 
|  | // size of this tile | 
|  | mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); | 
|  | } else { | 
|  | // write current tile group size | 
|  | const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; | 
|  | const size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | assert(0); | 
|  | } | 
|  | curr_tg_data_size += (int)length_field_size; | 
|  | total_size += (uint32_t)length_field_size; | 
|  | tile_data_start += length_field_size; | 
|  | saved_wb->bit_buffer += length_field_size; | 
|  |  | 
|  | if (!first_tg && cm->error_resilient_mode) { | 
|  | // Make room for a duplicate Frame Header OBU. | 
|  | memmove(data + fh_info->total_length, data, curr_tg_data_size); | 
|  |  | 
|  | // Insert a copy of the Frame Header OBU. | 
|  | memcpy(data, fh_info->frame_header, fh_info->total_length); | 
|  |  | 
|  | // Rewrite the OBU header to change the OBU type to Redundant Frame | 
|  | // Header. | 
|  | write_obu_header(OBU_REDUNDANT_FRAME_HEADER, obu_extension_header, | 
|  | &data[fh_info->obu_header_byte_offset]); | 
|  |  | 
|  | data += fh_info->total_length; | 
|  |  | 
|  | curr_tg_data_size += (int)(fh_info->total_length); | 
|  | total_size += (uint32_t)(fh_info->total_length); | 
|  | } | 
|  | first_tg = 0; | 
|  | } | 
|  |  | 
|  | total_size += tile_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_tiles && num_tg_hdrs == 1) { | 
|  | int tile_size_bytes = 4, unused; | 
|  | const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); | 
|  | const uint32_t tile_data_size = total_size - tile_data_offset; | 
|  |  | 
|  | total_size = remux_tiles(cm, tile_data_start, tile_data_size, max_tile_size, | 
|  | max_tile_col_size, &tile_size_bytes, &unused); | 
|  | total_size += tile_data_offset; | 
|  | assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); | 
|  | aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); | 
|  |  | 
|  | // Update the OBU length if remux_tiles() reduced the size. | 
|  | uint64_t payload_size; | 
|  | size_t length_field_size; | 
|  | int res = | 
|  | aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, | 
|  | &payload_size, &length_field_size); | 
|  | assert(res == 0); | 
|  | (void)res; | 
|  |  | 
|  | const uint64_t new_payload_size = | 
|  | total_size - obu_header_size - length_field_size; | 
|  | if (new_payload_size != payload_size) { | 
|  | size_t new_length_field_size; | 
|  | res = aom_uleb_encode(new_payload_size, length_field_size, | 
|  | dst + obu_header_size, &new_length_field_size); | 
|  | assert(res == 0); | 
|  | if (new_length_field_size < length_field_size) { | 
|  | const size_t src_offset = obu_header_size + length_field_size; | 
|  | const size_t dst_offset = obu_header_size + new_length_field_size; | 
|  | memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); | 
|  | total_size -= (int)(length_field_size - new_length_field_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) { | 
|  | uint8_t *data = dst; | 
|  | uint32_t data_size; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | uint32_t obu_header_size = 0; | 
|  | uint32_t obu_payload_size = 0; | 
|  | FrameHeaderInfo fh_info = { NULL, 0, 0 }; | 
|  | const uint8_t enhancement_layers_cnt = cm->enhancement_layers_cnt; | 
|  | const uint8_t obu_extension_header = | 
|  | cm->temporal_layer_id << 5 | cm->enhancement_layer_id << 3 | 0; | 
|  |  | 
|  | #if CONFIG_BITSTREAM_DEBUG | 
|  | bitstream_queue_reset_write(); | 
|  | #endif | 
|  |  | 
|  | // The TD is now written outside the frame encode loop | 
|  |  | 
|  | // write sequence header obu if KEY_FRAME, preceded by 4-byte size | 
|  | if (cm->frame_type == KEY_FRAME) { | 
|  | obu_header_size = write_obu_header(OBU_SEQUENCE_HEADER, 0, data); | 
|  |  | 
|  | obu_payload_size = write_sequence_header_obu(cpi, data + obu_header_size, | 
|  | enhancement_layers_cnt); | 
|  | const size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | data += obu_header_size + obu_payload_size + length_field_size; | 
|  | } | 
|  |  | 
|  | const int write_frame_header = (cm->num_tg > 1 || cm->show_existing_frame); | 
|  |  | 
|  | struct aom_write_bit_buffer saved_wb; | 
|  | if (write_frame_header) { | 
|  | // Write Frame Header OBU. | 
|  | fh_info.frame_header = data; | 
|  | obu_header_size = | 
|  | write_obu_header(OBU_FRAME_HEADER, obu_extension_header, data); | 
|  | obu_payload_size = | 
|  | write_frame_header_obu(cpi, &saved_wb, data + obu_header_size); | 
|  |  | 
|  | const size_t length_field_size = | 
|  | obu_memmove(obu_header_size, obu_payload_size, data); | 
|  | if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != | 
|  | AOM_CODEC_OK) { | 
|  | return AOM_CODEC_ERROR; | 
|  | } | 
|  |  | 
|  | fh_info.obu_header_byte_offset = 0; | 
|  | fh_info.total_length = | 
|  | obu_header_size + obu_payload_size + length_field_size; | 
|  | data += fh_info.total_length; | 
|  |  | 
|  | // Since length_field_size is determined adaptively after frame header | 
|  | // encoding, saved_wb must be adjusted accordingly. | 
|  | saved_wb.bit_buffer += length_field_size; | 
|  | } | 
|  |  | 
|  | #define EXT_TILE_DEBUG 0 | 
|  | #if EXT_TILE_DEBUG | 
|  | { | 
|  | char fn[20] = "./fh"; | 
|  | fn[4] = cm->current_video_frame / 100 + '0'; | 
|  | fn[5] = (cm->current_video_frame % 100) / 10 + '0'; | 
|  | fn[6] = (cm->current_video_frame % 10) + '0'; | 
|  | fn[7] = '\0'; | 
|  | av1_print_uncompressed_frame_header(data - obu_size, obu_size, fn); | 
|  | } | 
|  | #endif  // EXT_TILE_DEBUG | 
|  | #undef EXT_TILE_DEBUG | 
|  |  | 
|  | if (cm->show_existing_frame) { | 
|  | data_size = 0; | 
|  | } else { | 
|  | //  Each tile group obu will be preceded by 4-byte size of the tile group | 
|  | //  obu | 
|  | data_size = write_tiles_in_tg_obus(cpi, data, &saved_wb, | 
|  | obu_extension_header, &fh_info); | 
|  | } | 
|  | data += data_size; | 
|  | *size = data - dst; | 
|  | return AOM_CODEC_OK; | 
|  | } |