|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  | #include <memory.h> | 
|  | #include <math.h> | 
|  | #include <time.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "av1/encoder/ransac.h" | 
|  | #include "av1/encoder/mathutils.h" | 
|  | #include "av1/encoder/random.h" | 
|  |  | 
|  | #define MAX_MINPTS 4 | 
|  | #define MAX_DEGENERATE_ITER 10 | 
|  | #define MINPTS_MULTIPLIER 5 | 
|  |  | 
|  | #define INLIER_THRESHOLD 1.0 | 
|  | #define MIN_TRIALS 20 | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | // ransac | 
|  | typedef int (*IsDegenerateFunc)(double *p); | 
|  | typedef void (*NormalizeFunc)(double *p, int np, double *T); | 
|  | typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2); | 
|  | typedef int (*FindTransformationFunc)(int points, double *points1, | 
|  | double *points2, double *params); | 
|  | typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points, | 
|  | double *proj, const int n, | 
|  | const int stride_points, | 
|  | const int stride_proj); | 
|  |  | 
|  | static void project_points_double_translation(double *mat, double *points, | 
|  | double *proj, const int n, | 
|  | const int stride_points, | 
|  | const int stride_proj) { | 
|  | int i; | 
|  | for (i = 0; i < n; ++i) { | 
|  | const double x = *(points++), y = *(points++); | 
|  | *(proj++) = x + mat[0]; | 
|  | *(proj++) = y + mat[1]; | 
|  | points += stride_points - 2; | 
|  | proj += stride_proj - 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void project_points_double_rotzoom(double *mat, double *points, | 
|  | double *proj, const int n, | 
|  | const int stride_points, | 
|  | const int stride_proj) { | 
|  | int i; | 
|  | for (i = 0; i < n; ++i) { | 
|  | const double x = *(points++), y = *(points++); | 
|  | *(proj++) = mat[2] * x + mat[3] * y + mat[0]; | 
|  | *(proj++) = -mat[3] * x + mat[2] * y + mat[1]; | 
|  | points += stride_points - 2; | 
|  | proj += stride_proj - 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void project_points_double_affine(double *mat, double *points, | 
|  | double *proj, const int n, | 
|  | const int stride_points, | 
|  | const int stride_proj) { | 
|  | int i; | 
|  | for (i = 0; i < n; ++i) { | 
|  | const double x = *(points++), y = *(points++); | 
|  | *(proj++) = mat[2] * x + mat[3] * y + mat[0]; | 
|  | *(proj++) = mat[4] * x + mat[5] * y + mat[1]; | 
|  | points += stride_points - 2; | 
|  | proj += stride_proj - 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void normalize_homography(double *pts, int n, double *T) { | 
|  | double *p = pts; | 
|  | double mean[2] = { 0, 0 }; | 
|  | double msqe = 0; | 
|  | double scale; | 
|  | int i; | 
|  |  | 
|  | assert(n > 0); | 
|  | for (i = 0; i < n; ++i, p += 2) { | 
|  | mean[0] += p[0]; | 
|  | mean[1] += p[1]; | 
|  | } | 
|  | mean[0] /= n; | 
|  | mean[1] /= n; | 
|  | for (p = pts, i = 0; i < n; ++i, p += 2) { | 
|  | p[0] -= mean[0]; | 
|  | p[1] -= mean[1]; | 
|  | msqe += sqrt(p[0] * p[0] + p[1] * p[1]); | 
|  | } | 
|  | msqe /= n; | 
|  | scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe); | 
|  | T[0] = scale; | 
|  | T[1] = 0; | 
|  | T[2] = -scale * mean[0]; | 
|  | T[3] = 0; | 
|  | T[4] = scale; | 
|  | T[5] = -scale * mean[1]; | 
|  | T[6] = 0; | 
|  | T[7] = 0; | 
|  | T[8] = 1; | 
|  | for (p = pts, i = 0; i < n; ++i, p += 2) { | 
|  | p[0] *= scale; | 
|  | p[1] *= scale; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void invnormalize_mat(double *T, double *iT) { | 
|  | double is = 1.0 / T[0]; | 
|  | double m0 = -T[2] * is; | 
|  | double m1 = -T[5] * is; | 
|  | iT[0] = is; | 
|  | iT[1] = 0; | 
|  | iT[2] = m0; | 
|  | iT[3] = 0; | 
|  | iT[4] = is; | 
|  | iT[5] = m1; | 
|  | iT[6] = 0; | 
|  | iT[7] = 0; | 
|  | iT[8] = 1; | 
|  | } | 
|  |  | 
|  | static void denormalize_homography(double *params, double *T1, double *T2) { | 
|  | double iT2[9]; | 
|  | double params2[9]; | 
|  | invnormalize_mat(T2, iT2); | 
|  | multiply_mat(params, T1, params2, 3, 3, 3); | 
|  | multiply_mat(iT2, params2, params, 3, 3, 3); | 
|  | } | 
|  |  | 
|  | static void denormalize_affine_reorder(double *params, double *T1, double *T2) { | 
|  | double params_denorm[MAX_PARAMDIM]; | 
|  | params_denorm[0] = params[0]; | 
|  | params_denorm[1] = params[1]; | 
|  | params_denorm[2] = params[4]; | 
|  | params_denorm[3] = params[2]; | 
|  | params_denorm[4] = params[3]; | 
|  | params_denorm[5] = params[5]; | 
|  | params_denorm[6] = params_denorm[7] = 0; | 
|  | params_denorm[8] = 1; | 
|  | denormalize_homography(params_denorm, T1, T2); | 
|  | params[0] = params_denorm[2]; | 
|  | params[1] = params_denorm[5]; | 
|  | params[2] = params_denorm[0]; | 
|  | params[3] = params_denorm[1]; | 
|  | params[4] = params_denorm[3]; | 
|  | params[5] = params_denorm[4]; | 
|  | params[6] = params[7] = 0; | 
|  | } | 
|  |  | 
|  | static void denormalize_rotzoom_reorder(double *params, double *T1, | 
|  | double *T2) { | 
|  | double params_denorm[MAX_PARAMDIM]; | 
|  | params_denorm[0] = params[0]; | 
|  | params_denorm[1] = params[1]; | 
|  | params_denorm[2] = params[2]; | 
|  | params_denorm[3] = -params[1]; | 
|  | params_denorm[4] = params[0]; | 
|  | params_denorm[5] = params[3]; | 
|  | params_denorm[6] = params_denorm[7] = 0; | 
|  | params_denorm[8] = 1; | 
|  | denormalize_homography(params_denorm, T1, T2); | 
|  | params[0] = params_denorm[2]; | 
|  | params[1] = params_denorm[5]; | 
|  | params[2] = params_denorm[0]; | 
|  | params[3] = params_denorm[1]; | 
|  | params[4] = -params[3]; | 
|  | params[5] = params[2]; | 
|  | params[6] = params[7] = 0; | 
|  | } | 
|  |  | 
|  | static void denormalize_translation_reorder(double *params, double *T1, | 
|  | double *T2) { | 
|  | double params_denorm[MAX_PARAMDIM]; | 
|  | params_denorm[0] = 1; | 
|  | params_denorm[1] = 0; | 
|  | params_denorm[2] = params[0]; | 
|  | params_denorm[3] = 0; | 
|  | params_denorm[4] = 1; | 
|  | params_denorm[5] = params[1]; | 
|  | params_denorm[6] = params_denorm[7] = 0; | 
|  | params_denorm[8] = 1; | 
|  | denormalize_homography(params_denorm, T1, T2); | 
|  | params[0] = params_denorm[2]; | 
|  | params[1] = params_denorm[5]; | 
|  | params[2] = params[5] = 1; | 
|  | params[3] = params[4] = 0; | 
|  | params[6] = params[7] = 0; | 
|  | } | 
|  |  | 
|  | static int find_translation(int np, double *pts1, double *pts2, double *mat) { | 
|  | int i; | 
|  | double sx, sy, dx, dy; | 
|  | double sumx, sumy; | 
|  |  | 
|  | double T1[9], T2[9]; | 
|  | normalize_homography(pts1, np, T1); | 
|  | normalize_homography(pts2, np, T2); | 
|  |  | 
|  | sumx = 0; | 
|  | sumy = 0; | 
|  | for (i = 0; i < np; ++i) { | 
|  | dx = *(pts2++); | 
|  | dy = *(pts2++); | 
|  | sx = *(pts1++); | 
|  | sy = *(pts1++); | 
|  |  | 
|  | sumx += dx - sx; | 
|  | sumy += dy - sy; | 
|  | } | 
|  | mat[0] = sumx / np; | 
|  | mat[1] = sumy / np; | 
|  | denormalize_translation_reorder(mat, T1, T2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) { | 
|  | const int np2 = np * 2; | 
|  | double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20)); | 
|  | double *b = a + np2 * 4; | 
|  | double *temp = b + np2; | 
|  | int i; | 
|  | double sx, sy, dx, dy; | 
|  |  | 
|  | double T1[9], T2[9]; | 
|  | normalize_homography(pts1, np, T1); | 
|  | normalize_homography(pts2, np, T2); | 
|  |  | 
|  | for (i = 0; i < np; ++i) { | 
|  | dx = *(pts2++); | 
|  | dy = *(pts2++); | 
|  | sx = *(pts1++); | 
|  | sy = *(pts1++); | 
|  |  | 
|  | a[i * 2 * 4 + 0] = sx; | 
|  | a[i * 2 * 4 + 1] = sy; | 
|  | a[i * 2 * 4 + 2] = 1; | 
|  | a[i * 2 * 4 + 3] = 0; | 
|  | a[(i * 2 + 1) * 4 + 0] = sy; | 
|  | a[(i * 2 + 1) * 4 + 1] = -sx; | 
|  | a[(i * 2 + 1) * 4 + 2] = 0; | 
|  | a[(i * 2 + 1) * 4 + 3] = 1; | 
|  |  | 
|  | b[2 * i] = dx; | 
|  | b[2 * i + 1] = dy; | 
|  | } | 
|  | if (!least_squares(4, a, np2, 4, b, temp, mat)) { | 
|  | aom_free(a); | 
|  | return 1; | 
|  | } | 
|  | denormalize_rotzoom_reorder(mat, T1, T2); | 
|  | aom_free(a); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_affine(int np, double *pts1, double *pts2, double *mat) { | 
|  | const int np2 = np * 2; | 
|  | double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42)); | 
|  | double *b = a + np2 * 6; | 
|  | double *temp = b + np2; | 
|  | int i; | 
|  | double sx, sy, dx, dy; | 
|  |  | 
|  | double T1[9], T2[9]; | 
|  | normalize_homography(pts1, np, T1); | 
|  | normalize_homography(pts2, np, T2); | 
|  |  | 
|  | for (i = 0; i < np; ++i) { | 
|  | dx = *(pts2++); | 
|  | dy = *(pts2++); | 
|  | sx = *(pts1++); | 
|  | sy = *(pts1++); | 
|  |  | 
|  | a[i * 2 * 6 + 0] = sx; | 
|  | a[i * 2 * 6 + 1] = sy; | 
|  | a[i * 2 * 6 + 2] = 0; | 
|  | a[i * 2 * 6 + 3] = 0; | 
|  | a[i * 2 * 6 + 4] = 1; | 
|  | a[i * 2 * 6 + 5] = 0; | 
|  | a[(i * 2 + 1) * 6 + 0] = 0; | 
|  | a[(i * 2 + 1) * 6 + 1] = 0; | 
|  | a[(i * 2 + 1) * 6 + 2] = sx; | 
|  | a[(i * 2 + 1) * 6 + 3] = sy; | 
|  | a[(i * 2 + 1) * 6 + 4] = 0; | 
|  | a[(i * 2 + 1) * 6 + 5] = 1; | 
|  |  | 
|  | b[2 * i] = dx; | 
|  | b[2 * i + 1] = dy; | 
|  | } | 
|  | if (!least_squares(6, a, np2, 6, b, temp, mat)) { | 
|  | aom_free(a); | 
|  | return 1; | 
|  | } | 
|  | denormalize_affine_reorder(mat, T1, T2); | 
|  | aom_free(a); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_rand_indices(int npoints, int minpts, int *indices, | 
|  | unsigned int *seed) { | 
|  | int i, j; | 
|  | int ptr = lcg_rand16(seed) % npoints; | 
|  | if (minpts > npoints) return 0; | 
|  | indices[0] = ptr; | 
|  | ptr = (ptr == npoints - 1 ? 0 : ptr + 1); | 
|  | i = 1; | 
|  | while (i < minpts) { | 
|  | int index = lcg_rand16(seed) % npoints; | 
|  | while (index) { | 
|  | ptr = (ptr == npoints - 1 ? 0 : ptr + 1); | 
|  | for (j = 0; j < i; ++j) { | 
|  | if (indices[j] == ptr) break; | 
|  | } | 
|  | if (j == i) index--; | 
|  | } | 
|  | indices[i++] = ptr; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | int num_inliers; | 
|  | double variance; | 
|  | int *inlier_indices; | 
|  | } RANSAC_MOTION; | 
|  |  | 
|  | // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. | 
|  | static int compare_motions(const void *arg_a, const void *arg_b) { | 
|  | const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; | 
|  | const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; | 
|  |  | 
|  | if (motion_a->num_inliers > motion_b->num_inliers) return -1; | 
|  | if (motion_a->num_inliers < motion_b->num_inliers) return 1; | 
|  | if (motion_a->variance < motion_b->variance) return -1; | 
|  | if (motion_a->variance > motion_b->variance) return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int is_better_motion(const RANSAC_MOTION *motion_a, | 
|  | const RANSAC_MOTION *motion_b) { | 
|  | return compare_motions(motion_a, motion_b) < 0; | 
|  | } | 
|  |  | 
|  | static void copy_points_at_indices(double *dest, const double *src, | 
|  | const int *indices, int num_points) { | 
|  | for (int i = 0; i < num_points; ++i) { | 
|  | const int index = indices[i]; | 
|  | dest[i * 2] = src[index * 2]; | 
|  | dest[i * 2 + 1] = src[index * 2 + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const double kInfiniteVariance = 1e12; | 
|  |  | 
|  | static void clear_motion(RANSAC_MOTION *motion, int num_points) { | 
|  | motion->num_inliers = 0; | 
|  | motion->variance = kInfiniteVariance; | 
|  | memset(motion->inlier_indices, 0, | 
|  | sizeof(*motion->inlier_indices * num_points)); | 
|  | } | 
|  |  | 
|  | static int ransac(const int *matched_points, int npoints, | 
|  | int *num_inliers_by_motion, double *params_by_motion, | 
|  | int num_desired_motions, const int minpts, | 
|  | IsDegenerateFunc is_degenerate, | 
|  | FindTransformationFunc find_transformation, | 
|  | ProjectPointsDoubleFunc projectpoints) { | 
|  | static const double PROBABILITY_REQUIRED = 0.9; | 
|  | static const double EPS = 1e-12; | 
|  |  | 
|  | int N = 10000, trial_count = 0; | 
|  | int i = 0; | 
|  | int ret_val = 0; | 
|  |  | 
|  | unsigned int seed = (unsigned int)npoints; | 
|  |  | 
|  | int indices[MAX_MINPTS] = { 0 }; | 
|  |  | 
|  | double *points1, *points2; | 
|  | double *corners1, *corners2; | 
|  | double *image1_coord; | 
|  |  | 
|  | // Store information for the num_desired_motions best transformations found | 
|  | // and the worst motion among them, as well as the motion currently under | 
|  | // consideration. | 
|  | RANSAC_MOTION *motions, *worst_kept_motion = NULL; | 
|  | RANSAC_MOTION current_motion; | 
|  |  | 
|  | // Store the parameters and the indices of the inlier points for the motion | 
|  | // currently under consideration. | 
|  | double params_this_motion[MAX_PARAMDIM]; | 
|  |  | 
|  | double *cnp1, *cnp2; | 
|  |  | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | num_inliers_by_motion[i] = 0; | 
|  | } | 
|  | if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2); | 
|  | points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2); | 
|  | corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2); | 
|  | corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2); | 
|  | image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2); | 
|  |  | 
|  | motions = | 
|  | (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions); | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | motions[i].inlier_indices = | 
|  | (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints); | 
|  | clear_motion(motions + i, npoints); | 
|  | } | 
|  | current_motion.inlier_indices = | 
|  | (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints); | 
|  | clear_motion(¤t_motion, npoints); | 
|  |  | 
|  | worst_kept_motion = motions; | 
|  |  | 
|  | if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions && | 
|  | current_motion.inlier_indices)) { | 
|  | ret_val = 1; | 
|  | goto finish_ransac; | 
|  | } | 
|  |  | 
|  | cnp1 = corners1; | 
|  | cnp2 = corners2; | 
|  | for (i = 0; i < npoints; ++i) { | 
|  | *(cnp1++) = *(matched_points++); | 
|  | *(cnp1++) = *(matched_points++); | 
|  | *(cnp2++) = *(matched_points++); | 
|  | *(cnp2++) = *(matched_points++); | 
|  | } | 
|  |  | 
|  | while (N > trial_count) { | 
|  | double sum_distance = 0.0; | 
|  | double sum_distance_squared = 0.0; | 
|  |  | 
|  | clear_motion(¤t_motion, npoints); | 
|  |  | 
|  | int degenerate = 1; | 
|  | int num_degenerate_iter = 0; | 
|  |  | 
|  | while (degenerate) { | 
|  | num_degenerate_iter++; | 
|  | if (!get_rand_indices(npoints, minpts, indices, &seed)) { | 
|  | ret_val = 1; | 
|  | goto finish_ransac; | 
|  | } | 
|  |  | 
|  | copy_points_at_indices(points1, corners1, indices, minpts); | 
|  | copy_points_at_indices(points2, corners2, indices, minpts); | 
|  |  | 
|  | degenerate = is_degenerate(points1); | 
|  | if (num_degenerate_iter > MAX_DEGENERATE_ITER) { | 
|  | ret_val = 1; | 
|  | goto finish_ransac; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (find_transformation(minpts, points1, points2, params_this_motion)) { | 
|  | trial_count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2); | 
|  |  | 
|  | for (i = 0; i < npoints; ++i) { | 
|  | double dx = image1_coord[i * 2] - corners2[i * 2]; | 
|  | double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1]; | 
|  | double distance = sqrt(dx * dx + dy * dy); | 
|  |  | 
|  | if (distance < INLIER_THRESHOLD) { | 
|  | current_motion.inlier_indices[current_motion.num_inliers++] = i; | 
|  | sum_distance += distance; | 
|  | sum_distance_squared += distance * distance; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current_motion.num_inliers >= worst_kept_motion->num_inliers && | 
|  | current_motion.num_inliers > 1) { | 
|  | int temp; | 
|  | double fracinliers, pNoOutliers, mean_distance, dtemp; | 
|  | mean_distance = sum_distance / ((double)current_motion.num_inliers); | 
|  | current_motion.variance = | 
|  | sum_distance_squared / ((double)current_motion.num_inliers - 1.0) - | 
|  | mean_distance * mean_distance * ((double)current_motion.num_inliers) / | 
|  | ((double)current_motion.num_inliers - 1.0); | 
|  | if (is_better_motion(¤t_motion, worst_kept_motion)) { | 
|  | // This motion is better than the worst currently kept motion. Remember | 
|  | // the inlier points and variance. The parameters for each kept motion | 
|  | // will be recomputed later using only the inliers. | 
|  | worst_kept_motion->num_inliers = current_motion.num_inliers; | 
|  | worst_kept_motion->variance = current_motion.variance; | 
|  | memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices, | 
|  | sizeof(*current_motion.inlier_indices) * npoints); | 
|  |  | 
|  | assert(npoints > 0); | 
|  | fracinliers = (double)current_motion.num_inliers / (double)npoints; | 
|  | pNoOutliers = 1 - pow(fracinliers, minpts); | 
|  | pNoOutliers = fmax(EPS, pNoOutliers); | 
|  | pNoOutliers = fmin(1 - EPS, pNoOutliers); | 
|  | dtemp = log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers); | 
|  | temp = (dtemp > (double)INT32_MAX) | 
|  | ? INT32_MAX | 
|  | : dtemp < (double)INT32_MIN ? INT32_MIN : (int)dtemp; | 
|  |  | 
|  | if (temp > 0 && temp < N) { | 
|  | N = AOMMAX(temp, MIN_TRIALS); | 
|  | } | 
|  |  | 
|  | // Determine the new worst kept motion and its num_inliers and variance. | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | if (is_better_motion(worst_kept_motion, &motions[i])) { | 
|  | worst_kept_motion = &motions[i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | trial_count++; | 
|  | } | 
|  |  | 
|  | // Sort the motions, best first. | 
|  | qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); | 
|  |  | 
|  | // Recompute the motions using only the inliers. | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | if (motions[i].num_inliers >= minpts) { | 
|  | copy_points_at_indices(points1, corners1, motions[i].inlier_indices, | 
|  | motions[i].num_inliers); | 
|  | copy_points_at_indices(points2, corners2, motions[i].inlier_indices, | 
|  | motions[i].num_inliers); | 
|  |  | 
|  | find_transformation(motions[i].num_inliers, points1, points2, | 
|  | params_by_motion + (MAX_PARAMDIM - 1) * i); | 
|  | } | 
|  | num_inliers_by_motion[i] = motions[i].num_inliers; | 
|  | } | 
|  |  | 
|  | finish_ransac: | 
|  | aom_free(points1); | 
|  | aom_free(points2); | 
|  | aom_free(corners1); | 
|  | aom_free(corners2); | 
|  | aom_free(image1_coord); | 
|  | aom_free(current_motion.inlier_indices); | 
|  | for (i = 0; i < num_desired_motions; ++i) { | 
|  | aom_free(motions[i].inlier_indices); | 
|  | } | 
|  | aom_free(motions); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int is_collinear3(double *p1, double *p2, double *p3) { | 
|  | static const double collinear_eps = 1e-3; | 
|  | const double v = | 
|  | (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]); | 
|  | return fabs(v) < collinear_eps; | 
|  | } | 
|  |  | 
|  | static int is_degenerate_translation(double *p) { | 
|  | return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2; | 
|  | } | 
|  |  | 
|  | static int is_degenerate_affine(double *p) { | 
|  | return is_collinear3(p, p + 2, p + 4); | 
|  | } | 
|  |  | 
|  | int ransac_translation(int *matched_points, int npoints, | 
|  | int *num_inliers_by_motion, double *params_by_motion, | 
|  | int num_desired_motions) { | 
|  | return ransac(matched_points, npoints, num_inliers_by_motion, | 
|  | params_by_motion, num_desired_motions, 3, | 
|  | is_degenerate_translation, find_translation, | 
|  | project_points_double_translation); | 
|  | } | 
|  |  | 
|  | int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion, | 
|  | double *params_by_motion, int num_desired_motions) { | 
|  | return ransac(matched_points, npoints, num_inliers_by_motion, | 
|  | params_by_motion, num_desired_motions, 3, is_degenerate_affine, | 
|  | find_rotzoom, project_points_double_rotzoom); | 
|  | } | 
|  |  | 
|  | int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion, | 
|  | double *params_by_motion, int num_desired_motions) { | 
|  | return ransac(matched_points, npoints, num_inliers_by_motion, | 
|  | params_by_motion, num_desired_motions, 3, is_degenerate_affine, | 
|  | find_affine, project_points_double_affine); | 
|  | } |