|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/cfl.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/encoder/block.h" | 
|  | #include "av1/encoder/hybrid_fwd_txfm.h" | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/encoder/model_rd.h" | 
|  | #include "av1/encoder/random.h" | 
|  | #include "av1/encoder/rdopt_utils.h" | 
|  | #include "av1/encoder/tx_prune_model_weights.h" | 
|  | #include "av1/encoder/tx_search.h" | 
|  | #include "av1/encoder/txb_rdopt.h" | 
|  |  | 
|  | struct rdcost_block_args { | 
|  | const AV1_COMP *cpi; | 
|  | MACROBLOCK *x; | 
|  | ENTROPY_CONTEXT t_above[MAX_MIB_SIZE]; | 
|  | ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]; | 
|  | RD_STATS rd_stats; | 
|  | int64_t current_rd; | 
|  | int64_t best_rd; | 
|  | int exit_early; | 
|  | int incomplete_exit; | 
|  | FAST_TX_SEARCH_MODE ftxs_mode; | 
|  | int skip_trellis; | 
|  | }; | 
|  |  | 
|  | typedef struct { | 
|  | int64_t rd; | 
|  | int txb_entropy_ctx; | 
|  | TX_TYPE tx_type; | 
|  | } TxCandidateInfo; | 
|  |  | 
|  | typedef struct { | 
|  | int leaf; | 
|  | int8_t children[4]; | 
|  | } RD_RECORD_IDX_NODE; | 
|  |  | 
|  | typedef struct tx_size_rd_info_node { | 
|  | TXB_RD_INFO *rd_info_array;  // Points to array of size TX_TYPES. | 
|  | struct tx_size_rd_info_node *children[4]; | 
|  | } TXB_RD_INFO_NODE; | 
|  |  | 
|  | // origin_threshold * 128 / 100 | 
|  | static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { | 
|  | { | 
|  | 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68, | 
|  | 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68, | 
|  | }, | 
|  | { | 
|  | 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68, | 
|  | 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68, | 
|  | }, | 
|  | { | 
|  | 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74, | 
|  | 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | // lookup table for predict_skip_txfm | 
|  | // int max_tx_size = max_txsize_rect_lookup[bsize]; | 
|  | // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) | 
|  | //   max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); | 
|  | static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = { | 
|  | TX_4X4,   TX_4X8,   TX_8X4,   TX_8X8,   TX_8X16,  TX_16X8, | 
|  | TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, | 
|  | TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16,  TX_16X4, | 
|  | TX_8X8,   TX_8X8,   TX_16X16, TX_16X16, | 
|  | }; | 
|  |  | 
|  | // look-up table for sqrt of number of pixels in a transform block | 
|  | // rounded up to the nearest integer. | 
|  | static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4,  8,  16, 32, 32, 6,  6, | 
|  | 12, 12, 23, 23, 32, 32, 8, | 
|  | 8,  16, 16, 23, 23 }; | 
|  |  | 
|  | static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, | 
|  | const uint32_t hash) { | 
|  | // Linear search through the circular buffer to find matching hash. | 
|  | for (int i = cur_record->index_start - 1; i >= 0; i--) { | 
|  | if (cur_record->hash_vals[i] == hash) return i; | 
|  | } | 
|  | for (int i = cur_record->num - 1; i >= cur_record->index_start; i--) { | 
|  | if (cur_record->hash_vals[i] == hash) return i; | 
|  | } | 
|  | int index; | 
|  | // If not found - add new RD info into the buffer and return its index | 
|  | if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) { | 
|  | index = (cur_record->index_start + cur_record->num) % | 
|  | TX_SIZE_RD_RECORD_BUFFER_LEN; | 
|  | cur_record->num++; | 
|  | } else { | 
|  | index = cur_record->index_start; | 
|  | cur_record->index_start = | 
|  | (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN; | 
|  | } | 
|  |  | 
|  | cur_record->hash_vals[index] = hash; | 
|  | av1_zero(cur_record->tx_rd_info[index]); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_8x8[] = { | 
|  | { 1, { 0 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_8x16[] = { | 
|  | { 0, { 1, 2, -1, -1 } }, | 
|  | { 1, { 0, 0, 0, 0 } }, | 
|  | { 1, { 0, 0, 0, 0 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_16x8[] = { | 
|  | { 0, { 1, 2, -1, -1 } }, | 
|  | { 1, { 0 } }, | 
|  | { 1, { 0 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_16x16[] = { | 
|  | { 0, { 1, 2, 3, 4 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_1_2[] = { | 
|  | { 0, { 1, 2, -1, -1 } }, | 
|  | { 0, { 3, 4, 5, 6 } }, | 
|  | { 0, { 7, 8, 9, 10 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_2_1[] = { | 
|  | { 0, { 1, 2, -1, -1 } }, | 
|  | { 0, { 3, 4, 7, 8 } }, | 
|  | { 0, { 5, 6, 9, 10 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_sqr[] = { | 
|  | { 0, { 1, 2, 3, 4 } },     { 0, { 5, 6, 9, 10 } },    { 0, { 7, 8, 11, 12 } }, | 
|  | { 0, { 13, 14, 17, 18 } }, { 0, { 15, 16, 19, 20 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_64x128[] = { | 
|  | { 0, { 2, 3, 4, 5 } },     { 0, { 6, 7, 8, 9 } }, | 
|  | { 0, { 10, 11, 14, 15 } }, { 0, { 12, 13, 16, 17 } }, | 
|  | { 0, { 18, 19, 22, 23 } }, { 0, { 20, 21, 24, 25 } }, | 
|  | { 0, { 26, 27, 30, 31 } }, { 0, { 28, 29, 32, 33 } }, | 
|  | { 0, { 34, 35, 38, 39 } }, { 0, { 36, 37, 40, 41 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_128x64[] = { | 
|  | { 0, { 2, 3, 6, 7 } },     { 0, { 4, 5, 8, 9 } }, | 
|  | { 0, { 10, 11, 18, 19 } }, { 0, { 12, 13, 20, 21 } }, | 
|  | { 0, { 14, 15, 22, 23 } }, { 0, { 16, 17, 24, 25 } }, | 
|  | { 0, { 26, 27, 34, 35 } }, { 0, { 28, 29, 36, 37 } }, | 
|  | { 0, { 30, 31, 38, 39 } }, { 0, { 32, 33, 40, 41 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_128x128[] = { | 
|  | { 0, { 4, 5, 8, 9 } },     { 0, { 6, 7, 10, 11 } }, | 
|  | { 0, { 12, 13, 16, 17 } }, { 0, { 14, 15, 18, 19 } }, | 
|  | { 0, { 20, 21, 28, 29 } }, { 0, { 22, 23, 30, 31 } }, | 
|  | { 0, { 24, 25, 32, 33 } }, { 0, { 26, 27, 34, 35 } }, | 
|  | { 0, { 36, 37, 44, 45 } }, { 0, { 38, 39, 46, 47 } }, | 
|  | { 0, { 40, 41, 48, 49 } }, { 0, { 42, 43, 50, 51 } }, | 
|  | { 0, { 52, 53, 60, 61 } }, { 0, { 54, 55, 62, 63 } }, | 
|  | { 0, { 56, 57, 64, 65 } }, { 0, { 58, 59, 66, 67 } }, | 
|  | { 0, { 68, 69, 76, 77 } }, { 0, { 70, 71, 78, 79 } }, | 
|  | { 0, { 72, 73, 80, 81 } }, { 0, { 74, 75, 82, 83 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_1_4[] = { | 
|  | { 0, { 1, -1, 2, -1 } }, | 
|  | { 0, { 3, 4, -1, -1 } }, | 
|  | { 0, { 5, 6, -1, -1 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE rd_record_tree_4_1[] = { | 
|  | { 0, { 1, 2, -1, -1 } }, | 
|  | { 0, { 3, 4, -1, -1 } }, | 
|  | { 0, { 5, 6, -1, -1 } }, | 
|  | }; | 
|  |  | 
|  | static const RD_RECORD_IDX_NODE *rd_record_tree[BLOCK_SIZES_ALL] = { | 
|  | NULL,                    // BLOCK_4X4 | 
|  | NULL,                    // BLOCK_4X8 | 
|  | NULL,                    // BLOCK_8X4 | 
|  | rd_record_tree_8x8,      // BLOCK_8X8 | 
|  | rd_record_tree_8x16,     // BLOCK_8X16 | 
|  | rd_record_tree_16x8,     // BLOCK_16X8 | 
|  | rd_record_tree_16x16,    // BLOCK_16X16 | 
|  | rd_record_tree_1_2,      // BLOCK_16X32 | 
|  | rd_record_tree_2_1,      // BLOCK_32X16 | 
|  | rd_record_tree_sqr,      // BLOCK_32X32 | 
|  | rd_record_tree_1_2,      // BLOCK_32X64 | 
|  | rd_record_tree_2_1,      // BLOCK_64X32 | 
|  | rd_record_tree_sqr,      // BLOCK_64X64 | 
|  | rd_record_tree_64x128,   // BLOCK_64X128 | 
|  | rd_record_tree_128x64,   // BLOCK_128X64 | 
|  | rd_record_tree_128x128,  // BLOCK_128X128 | 
|  | NULL,                    // BLOCK_4X16 | 
|  | NULL,                    // BLOCK_16X4 | 
|  | rd_record_tree_1_4,      // BLOCK_8X32 | 
|  | rd_record_tree_4_1,      // BLOCK_32X8 | 
|  | rd_record_tree_1_4,      // BLOCK_16X64 | 
|  | rd_record_tree_4_1,      // BLOCK_64X16 | 
|  | }; | 
|  |  | 
|  | static const int rd_record_tree_size[BLOCK_SIZES_ALL] = { | 
|  | 0,                                                            // BLOCK_4X4 | 
|  | 0,                                                            // BLOCK_4X8 | 
|  | 0,                                                            // BLOCK_8X4 | 
|  | sizeof(rd_record_tree_8x8) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_8X8 | 
|  | sizeof(rd_record_tree_8x16) / sizeof(RD_RECORD_IDX_NODE),     // BLOCK_8X16 | 
|  | sizeof(rd_record_tree_16x8) / sizeof(RD_RECORD_IDX_NODE),     // BLOCK_16X8 | 
|  | sizeof(rd_record_tree_16x16) / sizeof(RD_RECORD_IDX_NODE),    // BLOCK_16X16 | 
|  | sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_16X32 | 
|  | sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_32X16 | 
|  | sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_32X32 | 
|  | sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_32X64 | 
|  | sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_64X32 | 
|  | sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_64X64 | 
|  | sizeof(rd_record_tree_64x128) / sizeof(RD_RECORD_IDX_NODE),   // BLOCK_64X128 | 
|  | sizeof(rd_record_tree_128x64) / sizeof(RD_RECORD_IDX_NODE),   // BLOCK_128X64 | 
|  | sizeof(rd_record_tree_128x128) / sizeof(RD_RECORD_IDX_NODE),  // BLOCK_128X128 | 
|  | 0,                                                            // BLOCK_4X16 | 
|  | 0,                                                            // BLOCK_16X4 | 
|  | sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_8X32 | 
|  | sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_32X8 | 
|  | sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_16X64 | 
|  | sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE),      // BLOCK_64X16 | 
|  | }; | 
|  |  | 
|  | static INLINE void init_rd_record_tree(TXB_RD_INFO_NODE *tree, | 
|  | BLOCK_SIZE bsize) { | 
|  | const RD_RECORD_IDX_NODE *rd_record = rd_record_tree[bsize]; | 
|  | const int size = rd_record_tree_size[bsize]; | 
|  | for (int i = 0; i < size; ++i) { | 
|  | if (rd_record[i].leaf) { | 
|  | av1_zero(tree[i].children); | 
|  | } else { | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | const int8_t idx = rd_record[i].children[j]; | 
|  | tree[i].children[j] = idx > 0 ? &tree[idx] : NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Go through all TX blocks that could be used in TX size search, compute | 
|  | // residual hash values for them and find matching RD info that stores previous | 
|  | // RD search results for these TX blocks. The idea is to prevent repeated | 
|  | // rate/distortion computations that happen because of the combination of | 
|  | // partition and TX size search. The resulting RD info records are returned in | 
|  | // the form of a quadtree for easier access in actual TX size search. | 
|  | static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | TXB_RD_INFO_NODE *dst_rd_info) { | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | TXB_RD_RECORD *rd_records_table[4] = { | 
|  | txfm_info->txb_rd_records->txb_rd_record_8X8, | 
|  | txfm_info->txb_rd_records->txb_rd_record_16X16, | 
|  | txfm_info->txb_rd_records->txb_rd_record_32X32, | 
|  | txfm_info->txb_rd_records->txb_rd_record_64X64 | 
|  | }; | 
|  | const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize]; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  |  | 
|  | // Hashing is performed only for square TX sizes larger than TX_4X4 | 
|  | if (max_square_tx_size < TX_8X8) return 0; | 
|  | const int diff_stride = bw; | 
|  | const struct macroblock_plane *const p = &x->plane[0]; | 
|  | const int16_t *diff = &p->src_diff[0]; | 
|  | init_rd_record_tree(dst_rd_info, bsize); | 
|  | // Coordinates of the top-left corner of current block within the superblock | 
|  | // measured in pixels: | 
|  | const int mi_row = x->e_mbd.mi_row; | 
|  | const int mi_col = x->e_mbd.mi_col; | 
|  | const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2; | 
|  | const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2; | 
|  | int cur_rd_info_idx = 0; | 
|  | int cur_tx_depth = 0; | 
|  | TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize]; | 
|  | while (cur_tx_depth <= MAX_VARTX_DEPTH) { | 
|  | const int cur_tx_bw = tx_size_wide[cur_tx_size]; | 
|  | const int cur_tx_bh = tx_size_high[cur_tx_size]; | 
|  | if (cur_tx_bw < 8 || cur_tx_bh < 8) break; | 
|  | const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size]; | 
|  | const int tx_size_idx = cur_tx_size - TX_8X8; | 
|  | for (int row = 0; row < bh; row += cur_tx_bh) { | 
|  | for (int col = 0; col < bw; col += cur_tx_bw) { | 
|  | if (cur_tx_bw != cur_tx_bh) { | 
|  | // Use dummy nodes for all rectangular transforms within the | 
|  | // TX size search tree. | 
|  | dst_rd_info[cur_rd_info_idx].rd_info_array = NULL; | 
|  | } else { | 
|  | // Get spatial location of this TX block within the superblock | 
|  | // (measured in cur_tx_bsize units). | 
|  | const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh; | 
|  | const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw; | 
|  |  | 
|  | int16_t hash_data[MAX_SB_SQUARE]; | 
|  | int16_t *cur_hash_row = hash_data; | 
|  | const int16_t *cur_diff_row = diff + row * diff_stride + col; | 
|  | for (int i = 0; i < cur_tx_bh; i++) { | 
|  | memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw); | 
|  | cur_hash_row += cur_tx_bw; | 
|  | cur_diff_row += diff_stride; | 
|  | } | 
|  | const int hash = av1_get_crc32c_value( | 
|  | &txfm_info->txb_rd_records->mb_rd_record.crc_calculator, | 
|  | (uint8_t *)hash_data, 2 * cur_tx_bw * cur_tx_bh); | 
|  | // Find corresponding RD info based on the hash value. | 
|  | const int record_idx = | 
|  | row_in_sb * (MAX_MIB_SIZE >> (tx_size_idx + 1)) + col_in_sb; | 
|  | TXB_RD_RECORD *records = &rd_records_table[tx_size_idx][record_idx]; | 
|  | int idx = find_tx_size_rd_info(records, hash); | 
|  | dst_rd_info[cur_rd_info_idx].rd_info_array = | 
|  | &records->tx_rd_info[idx]; | 
|  | } | 
|  | ++cur_rd_info_idx; | 
|  | } | 
|  | } | 
|  | cur_tx_size = next_tx_size; | 
|  | ++cur_tx_depth; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { | 
|  | const int rows = block_size_high[bsize]; | 
|  | const int cols = block_size_wide[bsize]; | 
|  | const int16_t *diff = x->plane[0].src_diff; | 
|  | const uint32_t hash = av1_get_crc32c_value( | 
|  | &x->txfm_search_info.txb_rd_records->mb_rd_record.crc_calculator, | 
|  | (uint8_t *)diff, 2 * rows * cols); | 
|  | return (hash << 5) + bsize; | 
|  | } | 
|  |  | 
|  | static INLINE int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record, | 
|  | const int64_t ref_best_rd, | 
|  | const uint32_t hash) { | 
|  | int32_t match_index = -1; | 
|  | if (ref_best_rd != INT64_MAX) { | 
|  | for (int i = 0; i < mb_rd_record->num; ++i) { | 
|  | const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; | 
|  | // If there is a match in the tx_rd_record, fetch the RD decision and | 
|  | // terminate early. | 
|  | if (mb_rd_record->tx_rd_info[index].hash_value == hash) { | 
|  | match_index = index; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return match_index; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void fetch_tx_rd_info(int n4, | 
|  | const MB_RD_INFO *const tx_rd_info, | 
|  | RD_STATS *const rd_stats, | 
|  | MACROBLOCK *const x) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | mbmi->tx_size = tx_rd_info->tx_size; | 
|  | memcpy(x->txfm_search_info.blk_skip, tx_rd_info->blk_skip, | 
|  | sizeof(tx_rd_info->blk_skip[0]) * n4); | 
|  | av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size); | 
|  | av1_copy_array(xd->tx_type_map, tx_rd_info->tx_type_map, n4); | 
|  | *rd_stats = tx_rd_info->rd_stats; | 
|  | } | 
|  |  | 
|  | // Compute the pixel domain distortion from diff on all visible 4x4s in the | 
|  | // transform block. | 
|  | static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane, | 
|  | int blk_row, int blk_col, | 
|  | const BLOCK_SIZE plane_bsize, | 
|  | const BLOCK_SIZE tx_bsize, | 
|  | unsigned int *block_mse_q8) { | 
|  | int visible_rows, visible_cols; | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, | 
|  | NULL, &visible_cols, &visible_rows); | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | const int16_t *diff = x->plane[plane].src_diff; | 
|  |  | 
|  | diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2); | 
|  | uint64_t sse = | 
|  | aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); | 
|  | if (block_mse_q8 != NULL) { | 
|  | if (visible_cols > 0 && visible_rows > 0) | 
|  | *block_mse_q8 = | 
|  | (unsigned int)((256 * sse) / (visible_cols * visible_rows)); | 
|  | else | 
|  | *block_mse_q8 = UINT_MAX; | 
|  | } | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | // Computes the residual block's SSE and mean on all visible 4x4s in the | 
|  | // transform block | 
|  | static INLINE int64_t pixel_diff_stats( | 
|  | MACROBLOCK *x, int plane, int blk_row, int blk_col, | 
|  | const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize, | 
|  | unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) { | 
|  | int visible_rows, visible_cols; | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, | 
|  | NULL, &visible_cols, &visible_rows); | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | const int16_t *diff = x->plane[plane].src_diff; | 
|  |  | 
|  | diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2); | 
|  | uint64_t sse = 0; | 
|  | int sum = 0; | 
|  | sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum); | 
|  | if (visible_cols > 0 && visible_rows > 0) { | 
|  | aom_clear_system_state(); | 
|  | double norm_factor = 1.0 / (visible_cols * visible_rows); | 
|  | int sign_sum = sum > 0 ? 1 : -1; | 
|  | // Conversion to transform domain | 
|  | *per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7; | 
|  | *per_px_mean = sign_sum * (*per_px_mean); | 
|  | *block_mse_q8 = (unsigned int)(norm_factor * (256 * sse)); | 
|  | *block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum)); | 
|  | } else { | 
|  | *block_mse_q8 = UINT_MAX; | 
|  | } | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | // Uses simple features on top of DCT coefficients to quickly predict | 
|  | // whether optimal RD decision is to skip encoding the residual. | 
|  | // The sse value is stored in dist. | 
|  | static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, | 
|  | int reduced_tx_set) { | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd); | 
|  |  | 
|  | *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL); | 
|  |  | 
|  | const int64_t mse = *dist / bw / bh; | 
|  | // Normalized quantizer takes the transform upscaling factor (8 for tx size | 
|  | // smaller than 32) into account. | 
|  | const int16_t normalized_dc_q = dc_q >> 3; | 
|  | const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; | 
|  | // For faster early skip decision, use dist to compare against threshold so | 
|  | // that quality risk is less for the skip=1 decision. Otherwise, use mse | 
|  | // since the fwd_txfm coeff checks will take care of quality | 
|  | // TODO(any): Use dist to return 0 when skip_txfm_level is 1 | 
|  | int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse; | 
|  | // Predict not to skip when error is larger than threshold. | 
|  | if (pred_err > mse_thresh) return 0; | 
|  | // Return as skip otherwise for aggressive early skip | 
|  | else if (txfm_params->skip_txfm_level >= 2) | 
|  | return 1; | 
|  |  | 
|  | const int max_tx_size = max_predict_sf_tx_size[bsize]; | 
|  | const int tx_h = tx_size_high[max_tx_size]; | 
|  | const int tx_w = tx_size_wide[max_tx_size]; | 
|  | DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]); | 
|  | TxfmParam param; | 
|  | param.tx_type = DCT_DCT; | 
|  | param.tx_size = max_tx_size; | 
|  | param.bd = xd->bd; | 
|  | param.is_hbd = is_cur_buf_hbd(xd); | 
|  | param.lossless = 0; | 
|  | param.tx_set_type = av1_get_ext_tx_set_type( | 
|  | param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set); | 
|  | const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); | 
|  | const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; | 
|  | const int16_t *src_diff = x->plane[0].src_diff; | 
|  | const int n_coeff = tx_w * tx_h; | 
|  | const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); | 
|  | const uint32_t dc_thresh = max_qcoef_thresh * dc_q; | 
|  | const uint32_t ac_thresh = max_qcoef_thresh * ac_q; | 
|  | for (int row = 0; row < bh; row += tx_h) { | 
|  | for (int col = 0; col < bw; col += tx_w) { | 
|  | av1_fwd_txfm(src_diff + col, coefs, bw, ¶m); | 
|  | // Operating on TX domain, not pixels; we want the QTX quantizers | 
|  | const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7); | 
|  | if (dc_coef >= dc_thresh) return 0; | 
|  | for (int i = 1; i < n_coeff; ++i) { | 
|  | const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7); | 
|  | if (ac_coef >= ac_thresh) return 0; | 
|  | } | 
|  | } | 
|  | src_diff += tx_h * bw; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Used to set proper context for early termination with skip = 1. | 
|  | static AOM_INLINE void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats, | 
|  | int bsize, int64_t dist) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int n4 = bsize_to_num_blk(bsize); | 
|  | const TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; | 
|  | memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4); | 
|  | memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); | 
|  | mbmi->tx_size = tx_size; | 
|  | for (int i = 0; i < n4; ++i) | 
|  | set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1); | 
|  | rd_stats->skip_txfm = 1; | 
|  | if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); | 
|  | rd_stats->dist = rd_stats->sse = (dist << 4); | 
|  | // Though decision is to make the block as skip based on luma stats, | 
|  | // it is possible that block becomes non skip after chroma rd. In addition | 
|  | // intermediate non skip costs calculated by caller function will be | 
|  | // incorrect, if rate is set as  zero (i.e., if zero_blk_rate is not | 
|  | // accounted). Hence intermediate rate is populated to code the luma tx blks | 
|  | // as skip, the caller function based on final rd decision (i.e., skip vs | 
|  | // non-skip) sets the final rate accordingly. Here the rate populated | 
|  | // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx | 
|  | // size possible) in the current block. Eg: For 128*128 block, rate would be | 
|  | // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx | 
|  | // block as 'all zeros' | 
|  | ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; | 
|  | ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; | 
|  | av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl); | 
|  | ENTROPY_CONTEXT *ta = ctxa; | 
|  | ENTROPY_CONTEXT *tl = ctxl; | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  | TXB_CTX txb_ctx; | 
|  | get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx); | 
|  | const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y] | 
|  | .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; | 
|  | rd_stats->rate = zero_blk_rate * | 
|  | (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) * | 
|  | (block_size_high[bsize] >> tx_size_high_log2[tx_size]); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void save_tx_rd_info(int n4, uint32_t hash, | 
|  | const MACROBLOCK *const x, | 
|  | const RD_STATS *const rd_stats, | 
|  | MB_RD_RECORD *tx_rd_record) { | 
|  | int index; | 
|  | if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) { | 
|  | index = | 
|  | (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN; | 
|  | ++tx_rd_record->num; | 
|  | } else { | 
|  | index = tx_rd_record->index_start; | 
|  | tx_rd_record->index_start = | 
|  | (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; | 
|  | } | 
|  | MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index]; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | tx_rd_info->hash_value = hash; | 
|  | tx_rd_info->tx_size = mbmi->tx_size; | 
|  | memcpy(tx_rd_info->blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(tx_rd_info->blk_skip[0]) * n4); | 
|  | av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size); | 
|  | av1_copy_array(tx_rd_info->tx_type_map, xd->tx_type_map, n4); | 
|  | tx_rd_info->rd_stats = *rd_stats; | 
|  | } | 
|  |  | 
|  | static int get_search_init_depth(int mi_width, int mi_height, int is_inter, | 
|  | const SPEED_FEATURES *sf, | 
|  | int tx_size_search_method) { | 
|  | if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; | 
|  |  | 
|  | if (sf->tx_sf.tx_size_search_lgr_block) { | 
|  | if (mi_width > mi_size_wide[BLOCK_64X64] || | 
|  | mi_height > mi_size_high[BLOCK_64X64]) | 
|  | return MAX_VARTX_DEPTH; | 
|  | } | 
|  |  | 
|  | if (is_inter) { | 
|  | return (mi_height != mi_width) | 
|  | ? sf->tx_sf.inter_tx_size_search_init_depth_rect | 
|  | : sf->tx_sf.inter_tx_size_search_init_depth_sqr; | 
|  | } else { | 
|  | return (mi_height != mi_width) | 
|  | ? sf->tx_sf.intra_tx_size_search_init_depth_rect | 
|  | : sf->tx_sf.intra_tx_size_search_init_depth_sqr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void select_tx_block( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, | 
|  | TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, | 
|  | ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, | 
|  | RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd, | 
|  | int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode, | 
|  | TXB_RD_INFO_NODE *rd_info_node); | 
|  |  | 
|  | // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values | 
|  | // 0: Do not collect any RD stats | 
|  | // 1: Collect RD stats for transform units | 
|  | // 2: Collect RD stats for partition units | 
|  | #if CONFIG_COLLECT_RD_STATS | 
|  |  | 
|  | static AOM_INLINE void get_energy_distribution_fine( | 
|  | const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride, | 
|  | const uint8_t *dst, int dst_stride, int need_4th, double *hordist, | 
|  | double *verdist) { | 
|  | const int bw = block_size_wide[bsize]; | 
|  | const int bh = block_size_high[bsize]; | 
|  | unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | 
|  |  | 
|  | if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) { | 
|  | // Special cases: calculate 'esq' values manually, as we don't have 'vf' | 
|  | // functions for the 16 (very small) sub-blocks of this block. | 
|  | const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3; | 
|  | const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3; | 
|  | assert(bw <= 32); | 
|  | assert(bh <= 32); | 
|  | assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15); | 
|  | if (cpi->common.seq_params->use_highbitdepth) { | 
|  | const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); | 
|  | const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); | 
|  | for (int i = 0; i < bh; ++i) | 
|  | for (int j = 0; j < bw; ++j) { | 
|  | const int index = (j >> w_shift) + ((i >> h_shift) << 2); | 
|  | esq[index] += | 
|  | (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * | 
|  | (src16[j + i * src_stride] - dst16[j + i * dst_stride]); | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < bh; ++i) | 
|  | for (int j = 0; j < bw; ++j) { | 
|  | const int index = (j >> w_shift) + ((i >> h_shift) << 2); | 
|  | esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * | 
|  | (src[j + i * src_stride] - dst[j + i * dst_stride]); | 
|  | } | 
|  | } | 
|  | } else {  // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks. | 
|  | const int f_index = | 
|  | (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16; | 
|  | assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL); | 
|  | const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index; | 
|  | assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]); | 
|  | assert(block_size_high[bsize] == 4 * block_size_high[subsize]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, | 
|  | dst_stride, &esq[1]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, | 
|  | dst_stride, &esq[2]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
|  | dst_stride, &esq[3]); | 
|  | src += bh / 4 * src_stride; | 
|  | dst += bh / 4 * dst_stride; | 
|  |  | 
|  | cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, | 
|  | dst_stride, &esq[5]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, | 
|  | dst_stride, &esq[6]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
|  | dst_stride, &esq[7]); | 
|  | src += bh / 4 * src_stride; | 
|  | dst += bh / 4 * dst_stride; | 
|  |  | 
|  | cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, | 
|  | dst_stride, &esq[9]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, | 
|  | dst_stride, &esq[10]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
|  | dst_stride, &esq[11]); | 
|  | src += bh / 4 * src_stride; | 
|  | dst += bh / 4 * dst_stride; | 
|  |  | 
|  | cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, | 
|  | dst_stride, &esq[13]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, | 
|  | dst_stride, &esq[14]); | 
|  | cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, | 
|  | dst_stride, &esq[15]); | 
|  | } | 
|  |  | 
|  | double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + | 
|  | esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + | 
|  | esq[12] + esq[13] + esq[14] + esq[15]; | 
|  | if (total > 0) { | 
|  | const double e_recip = 1.0 / total; | 
|  | hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; | 
|  | hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; | 
|  | hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; | 
|  | if (need_4th) { | 
|  | hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip; | 
|  | } | 
|  | verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; | 
|  | verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; | 
|  | verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; | 
|  | if (need_4th) { | 
|  | verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip; | 
|  | } | 
|  | } else { | 
|  | hordist[0] = verdist[0] = 0.25; | 
|  | hordist[1] = verdist[1] = 0.25; | 
|  | hordist[2] = verdist[2] = 0.25; | 
|  | if (need_4th) { | 
|  | hordist[3] = verdist[3] = 0.25; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static double get_sse_norm(const int16_t *diff, int stride, int w, int h) { | 
|  | double sum = 0.0; | 
|  | for (int j = 0; j < h; ++j) { | 
|  | for (int i = 0; i < w; ++i) { | 
|  | const int err = diff[j * stride + i]; | 
|  | sum += err * err; | 
|  | } | 
|  | } | 
|  | assert(w > 0 && h > 0); | 
|  | return sum / (w * h); | 
|  | } | 
|  |  | 
|  | static double get_sad_norm(const int16_t *diff, int stride, int w, int h) { | 
|  | double sum = 0.0; | 
|  | for (int j = 0; j < h; ++j) { | 
|  | for (int i = 0; i < w; ++i) { | 
|  | sum += abs(diff[j * stride + i]); | 
|  | } | 
|  | } | 
|  | assert(w > 0 && h > 0); | 
|  | return sum / (w * h); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_2x2_normalized_sses_and_sads( | 
|  | const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src, | 
|  | int src_stride, const uint8_t *const dst, int dst_stride, | 
|  | const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr, | 
|  | double *const sad_norm_arr) { | 
|  | const BLOCK_SIZE tx_bsize_half = | 
|  | get_partition_subsize(tx_bsize, PARTITION_SPLIT); | 
|  | if (tx_bsize_half == BLOCK_INVALID) {  // manually calculate stats | 
|  | const int half_width = block_size_wide[tx_bsize] / 2; | 
|  | const int half_height = block_size_high[tx_bsize] / 2; | 
|  | for (int row = 0; row < 2; ++row) { | 
|  | for (int col = 0; col < 2; ++col) { | 
|  | const int16_t *const this_src_diff = | 
|  | src_diff + row * half_height * diff_stride + col * half_width; | 
|  | if (sse_norm_arr) { | 
|  | sse_norm_arr[row * 2 + col] = | 
|  | get_sse_norm(this_src_diff, diff_stride, half_width, half_height); | 
|  | } | 
|  | if (sad_norm_arr) { | 
|  | sad_norm_arr[row * 2 + col] = | 
|  | get_sad_norm(this_src_diff, diff_stride, half_width, half_height); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else {  // use function pointers to calculate stats | 
|  | const int half_width = block_size_wide[tx_bsize_half]; | 
|  | const int half_height = block_size_high[tx_bsize_half]; | 
|  | const int num_samples_half = half_width * half_height; | 
|  | for (int row = 0; row < 2; ++row) { | 
|  | for (int col = 0; col < 2; ++col) { | 
|  | const uint8_t *const this_src = | 
|  | src + row * half_height * src_stride + col * half_width; | 
|  | const uint8_t *const this_dst = | 
|  | dst + row * half_height * dst_stride + col * half_width; | 
|  |  | 
|  | if (sse_norm_arr) { | 
|  | unsigned int this_sse; | 
|  | cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst, | 
|  | dst_stride, &this_sse); | 
|  | sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half; | 
|  | } | 
|  |  | 
|  | if (sad_norm_arr) { | 
|  | const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf( | 
|  | this_src, src_stride, this_dst, dst_stride); | 
|  | sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_RD_STATS == 1 | 
|  | static double get_mean(const int16_t *diff, int stride, int w, int h) { | 
|  | double sum = 0.0; | 
|  | for (int j = 0; j < h; ++j) { | 
|  | for (int i = 0; i < w; ++i) { | 
|  | sum += diff[j * stride + i]; | 
|  | } | 
|  | } | 
|  | assert(w > 0 && h > 0); | 
|  | return sum / (w * h); | 
|  | } | 
|  | static AOM_INLINE void PrintTransformUnitStats( | 
|  | const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats, | 
|  | int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | TX_TYPE tx_type, int64_t rd) { | 
|  | if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; | 
|  |  | 
|  | // Generate small sample to restrict output size. | 
|  | static unsigned int seed = 21743; | 
|  | if (lcg_rand16(&seed) % 256 > 0) return; | 
|  |  | 
|  | const char output_file[] = "tu_stats.txt"; | 
|  | FILE *fout = fopen(output_file, "a"); | 
|  | if (!fout) return; | 
|  |  | 
|  | const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int plane = 0; | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int txw = tx_size_wide[tx_size]; | 
|  | const int txh = tx_size_high[tx_size]; | 
|  | const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; | 
|  | const int q_step = p->dequant_QTX[1] >> dequant_shift; | 
|  | const int num_samples = txw * txh; | 
|  |  | 
|  | const double rate_norm = (double)rd_stats->rate / num_samples; | 
|  | const double dist_norm = (double)rd_stats->dist / num_samples; | 
|  |  | 
|  | fprintf(fout, "%g %g", rate_norm, dist_norm); | 
|  |  | 
|  | const int src_stride = p->src.stride; | 
|  | const uint8_t *const src = | 
|  | &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2]; | 
|  | const int dst_stride = pd->dst.stride; | 
|  | const uint8_t *const dst = | 
|  | &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; | 
|  | unsigned int sse; | 
|  | cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); | 
|  | const double sse_norm = (double)sse / num_samples; | 
|  |  | 
|  | const unsigned int sad = | 
|  | cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride); | 
|  | const double sad_norm = (double)sad / num_samples; | 
|  |  | 
|  | fprintf(fout, " %g %g", sse_norm, sad_norm); | 
|  |  | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | const int16_t *const src_diff = | 
|  | &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2]; | 
|  |  | 
|  | double sse_norm_arr[4], sad_norm_arr[4]; | 
|  | get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst, | 
|  | dst_stride, src_diff, diff_stride, | 
|  | sse_norm_arr, sad_norm_arr); | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | fprintf(fout, " %g", sse_norm_arr[i]); | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | fprintf(fout, " %g", sad_norm_arr[i]); | 
|  | } | 
|  |  | 
|  | const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; | 
|  | const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; | 
|  |  | 
|  | fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size], | 
|  | tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col); | 
|  |  | 
|  | int model_rate; | 
|  | int64_t model_dist; | 
|  | model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples, | 
|  | &model_rate, &model_dist); | 
|  | const double model_rate_norm = (double)model_rate / num_samples; | 
|  | const double model_dist_norm = (double)model_dist / num_samples; | 
|  | fprintf(fout, " %g %g", model_rate_norm, model_dist_norm); | 
|  |  | 
|  | const double mean = get_mean(src_diff, diff_stride, txw, txh); | 
|  | float hor_corr, vert_corr; | 
|  | av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr, | 
|  | &vert_corr); | 
|  | fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); | 
|  |  | 
|  | double hdist[4] = { 0 }, vdist[4] = { 0 }; | 
|  | get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride, | 
|  | 1, hdist, vdist); | 
|  | fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], | 
|  | hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); | 
|  |  | 
|  | fprintf(fout, " %d %" PRId64, x->rdmult, rd); | 
|  |  | 
|  | fprintf(fout, "\n"); | 
|  | fclose(fout); | 
|  | } | 
|  | #endif  // CONFIG_COLLECT_RD_STATS == 1 | 
|  |  | 
|  | #if CONFIG_COLLECT_RD_STATS >= 2 | 
|  | static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | const MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | int64_t total_sse = 0; | 
|  | for (int plane = 0; plane < num_planes; ++plane) { | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE bs = | 
|  | get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); | 
|  | unsigned int sse; | 
|  |  | 
|  | if (x->skip_chroma_rd && plane) continue; | 
|  |  | 
|  | cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, | 
|  | pd->dst.stride, &sse); | 
|  | total_sse += sse; | 
|  | } | 
|  | total_sse <<= 4; | 
|  | return total_sse; | 
|  | } | 
|  |  | 
|  | static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize, | 
|  | int64_t sse, int *est_residue_cost, | 
|  | int64_t *est_dist) { | 
|  | aom_clear_system_state(); | 
|  | const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; | 
|  | if (md->ready) { | 
|  | if (sse < md->dist_mean) { | 
|  | *est_residue_cost = 0; | 
|  | *est_dist = sse; | 
|  | } else { | 
|  | *est_dist = (int64_t)round(md->dist_mean); | 
|  | const double est_ld = md->a * sse + md->b; | 
|  | // Clamp estimated rate cost by INT_MAX / 2. | 
|  | // TODO(angiebird@google.com): find better solution than clamping. | 
|  | if (fabs(est_ld) < 1e-2) { | 
|  | *est_residue_cost = INT_MAX / 2; | 
|  | } else { | 
|  | double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld); | 
|  | if (est_residue_cost_dbl < 0) { | 
|  | *est_residue_cost = 0; | 
|  | } else { | 
|  | *est_residue_cost = | 
|  | (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2); | 
|  | } | 
|  | } | 
|  | if (*est_residue_cost <= 0) { | 
|  | *est_residue_cost = 0; | 
|  | *est_dist = sse; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static double get_highbd_diff_mean(const uint8_t *src8, int src_stride, | 
|  | const uint8_t *dst8, int dst_stride, int w, | 
|  | int h) { | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); | 
|  | double sum = 0.0; | 
|  | for (int j = 0; j < h; ++j) { | 
|  | for (int i = 0; i < w; ++i) { | 
|  | const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; | 
|  | sum += diff; | 
|  | } | 
|  | } | 
|  | assert(w > 0 && h > 0); | 
|  | return sum / (w * h); | 
|  | } | 
|  |  | 
|  | static double get_diff_mean(const uint8_t *src, int src_stride, | 
|  | const uint8_t *dst, int dst_stride, int w, int h) { | 
|  | double sum = 0.0; | 
|  | for (int j = 0; j < h; ++j) { | 
|  | for (int i = 0; i < w; ++i) { | 
|  | const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; | 
|  | sum += diff; | 
|  | } | 
|  | } | 
|  | assert(w > 0 && h > 0); | 
|  | return sum / (w * h); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void PrintPredictionUnitStats(const AV1_COMP *const cpi, | 
|  | const TileDataEnc *tile_data, | 
|  | MACROBLOCK *x, | 
|  | const RD_STATS *const rd_stats, | 
|  | BLOCK_SIZE plane_bsize) { | 
|  | if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; | 
|  |  | 
|  | if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && | 
|  | (tile_data == NULL || | 
|  | !tile_data->inter_mode_rd_models[plane_bsize].ready)) | 
|  | return; | 
|  | (void)tile_data; | 
|  | // Generate small sample to restrict output size. | 
|  | static unsigned int seed = 95014; | 
|  |  | 
|  | if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) != | 
|  | 1) | 
|  | return; | 
|  |  | 
|  | const char output_file[] = "pu_stats.txt"; | 
|  | FILE *fout = fopen(output_file, "a"); | 
|  | if (!fout) return; | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int plane = 0; | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | struct macroblockd_plane *pd = &xd->plane[plane]; | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | int bw, bh; | 
|  | get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, | 
|  | &bh); | 
|  | const int num_samples = bw * bh; | 
|  | const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; | 
|  | const int q_step = p->dequant_QTX[1] >> dequant_shift; | 
|  | const int shift = (xd->bd - 8); | 
|  |  | 
|  | const double rate_norm = (double)rd_stats->rate / num_samples; | 
|  | const double dist_norm = (double)rd_stats->dist / num_samples; | 
|  | const double rdcost_norm = | 
|  | (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples; | 
|  |  | 
|  | fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm); | 
|  |  | 
|  | const int src_stride = p->src.stride; | 
|  | const uint8_t *const src = p->src.buf; | 
|  | const int dst_stride = pd->dst.stride; | 
|  | const uint8_t *const dst = pd->dst.buf; | 
|  | const int16_t *const src_diff = p->src_diff; | 
|  |  | 
|  | int64_t sse = calculate_sse(xd, p, pd, bw, bh); | 
|  | const double sse_norm = (double)sse / num_samples; | 
|  |  | 
|  | const unsigned int sad = | 
|  | cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride); | 
|  | const double sad_norm = | 
|  | (double)sad / (1 << num_pels_log2_lookup[plane_bsize]); | 
|  |  | 
|  | fprintf(fout, " %g %g", sse_norm, sad_norm); | 
|  |  | 
|  | double sse_norm_arr[4], sad_norm_arr[4]; | 
|  | get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, | 
|  | dst_stride, src_diff, diff_stride, | 
|  | sse_norm_arr, sad_norm_arr); | 
|  | if (shift) { | 
|  | for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); | 
|  | for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift); | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | fprintf(fout, " %g", sse_norm_arr[i]); | 
|  | } | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | fprintf(fout, " %g", sad_norm_arr[i]); | 
|  | } | 
|  |  | 
|  | fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh); | 
|  |  | 
|  | int model_rate; | 
|  | int64_t model_dist; | 
|  | model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples, | 
|  | &model_rate, &model_dist); | 
|  | const double model_rdcost_norm = | 
|  | (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples; | 
|  | const double model_rate_norm = (double)model_rate / num_samples; | 
|  | const double model_dist_norm = (double)model_dist / num_samples; | 
|  | fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm, | 
|  | model_rdcost_norm); | 
|  |  | 
|  | double mean; | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, | 
|  | pd->dst.stride, bw, bh); | 
|  | } else { | 
|  | mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, | 
|  | bw, bh); | 
|  | } | 
|  | mean /= (1 << shift); | 
|  | float hor_corr, vert_corr; | 
|  | av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr, | 
|  | &vert_corr); | 
|  | fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); | 
|  |  | 
|  | double hdist[4] = { 0 }, vdist[4] = { 0 }; | 
|  | get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst, | 
|  | dst_stride, 1, hdist, vdist); | 
|  | fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], | 
|  | hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); | 
|  |  | 
|  | if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { | 
|  | assert(tile_data->inter_mode_rd_models[plane_bsize].ready); | 
|  | const int64_t overall_sse = get_sse(cpi, x); | 
|  | int est_residue_cost = 0; | 
|  | int64_t est_dist = 0; | 
|  | get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost, | 
|  | &est_dist); | 
|  | const double est_residue_cost_norm = (double)est_residue_cost / num_samples; | 
|  | const double est_dist_norm = (double)est_dist / num_samples; | 
|  | const double est_rdcost_norm = | 
|  | (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples; | 
|  | fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm, | 
|  | est_rdcost_norm); | 
|  | } | 
|  |  | 
|  | fprintf(fout, "\n"); | 
|  | fclose(fout); | 
|  | } | 
|  | #endif  // CONFIG_COLLECT_RD_STATS >= 2 | 
|  | #endif  // CONFIG_COLLECT_RD_STATS | 
|  |  | 
|  | static AOM_INLINE void inverse_transform_block_facade(MACROBLOCK *const x, | 
|  | int plane, int block, | 
|  | int blk_row, int blk_col, | 
|  | int eob, | 
|  | int reduced_tx_set) { | 
|  | if (!eob) return; | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); | 
|  | const PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | const TX_SIZE tx_size = av1_get_tx_size(plane, xd); | 
|  | const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, | 
|  | tx_size, reduced_tx_set); | 
|  |  | 
|  | struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | const int dst_stride = pd->dst.stride; | 
|  | uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; | 
|  | av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, | 
|  | dst_stride, eob, reduced_tx_set); | 
|  | } | 
|  |  | 
|  | static INLINE void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
|  | int block, int blk_row, int blk_col, | 
|  | BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | const TXB_CTX *const txb_ctx, int skip_trellis, | 
|  | TX_TYPE best_tx_type, int do_quant, | 
|  | int *rate_cost, uint16_t best_eob) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | if (!is_inter && best_eob && | 
|  | (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] || | 
|  | blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) { | 
|  | // if the quantized coefficients are stored in the dqcoeff buffer, we don't | 
|  | // need to do transform and quantization again. | 
|  | if (do_quant) { | 
|  | TxfmParam txfm_param_intra; | 
|  | QUANT_PARAM quant_param_intra; | 
|  | av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra); | 
|  | av1_setup_quant(tx_size, !skip_trellis, | 
|  | skip_trellis | 
|  | ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B | 
|  | : AV1_XFORM_QUANT_FP) | 
|  | : AV1_XFORM_QUANT_FP, | 
|  | cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra); | 
|  | av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type, | 
|  | &quant_param_intra); | 
|  | av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, | 
|  | &txfm_param_intra, &quant_param_intra); | 
|  | if (quant_param_intra.use_optimize_b) { | 
|  | av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, | 
|  | rate_cost); | 
|  | } | 
|  | } | 
|  |  | 
|  | inverse_transform_block_facade(x, plane, block, blk_row, blk_col, | 
|  | x->plane[plane].eobs[block], | 
|  | cm->features.reduced_tx_set_used); | 
|  |  | 
|  | // This may happen because of hash collision. The eob stored in the hash | 
|  | // table is non-zero, but the real eob is zero. We need to make sure tx_type | 
|  | // is DCT_DCT in this case. | 
|  | if (plane == 0 && x->plane[plane].eobs[block] == 0 && | 
|  | best_tx_type != DCT_DCT) { | 
|  | update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned pixel_dist_visible_only( | 
|  | const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, | 
|  | const int src_stride, const uint8_t *dst, const int dst_stride, | 
|  | const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, | 
|  | int visible_cols) { | 
|  | unsigned sse; | 
|  |  | 
|  | if (txb_rows == visible_rows && txb_cols == visible_cols) { | 
|  | cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, | 
|  | visible_cols, visible_rows); | 
|  | return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); | 
|  | } | 
|  | #else | 
|  | (void)x; | 
|  | #endif | 
|  | sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, | 
|  | visible_rows); | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | // Compute the pixel domain distortion from src and dst on all visible 4x4s in | 
|  | // the | 
|  | // transform block. | 
|  | static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, | 
|  | int plane, const uint8_t *src, const int src_stride, | 
|  | const uint8_t *dst, const int dst_stride, | 
|  | int blk_row, int blk_col, | 
|  | const BLOCK_SIZE plane_bsize, | 
|  | const BLOCK_SIZE tx_bsize) { | 
|  | int txb_rows, txb_cols, visible_rows, visible_cols; | 
|  | const MACROBLOCKD *xd = &x->e_mbd; | 
|  |  | 
|  | get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, | 
|  | &txb_cols, &txb_rows, &visible_cols, &visible_rows); | 
|  | assert(visible_rows > 0); | 
|  | assert(visible_cols > 0); | 
|  |  | 
|  | unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, | 
|  | dst_stride, tx_bsize, txb_rows, | 
|  | txb_cols, visible_rows, visible_cols); | 
|  |  | 
|  | return sse; | 
|  | } | 
|  |  | 
|  | static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | int plane, BLOCK_SIZE plane_bsize, | 
|  | int block, int blk_row, int blk_col, | 
|  | TX_SIZE tx_size) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const uint16_t eob = p->eobs[block]; | 
|  | const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; | 
|  | const int bsw = block_size_wide[tx_bsize]; | 
|  | const int bsh = block_size_high[tx_bsize]; | 
|  | const int src_stride = x->plane[plane].src.stride; | 
|  | const int dst_stride = xd->plane[plane].dst.stride; | 
|  | // Scale the transform block index to pixel unit. | 
|  | const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2; | 
|  | const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2; | 
|  | const uint8_t *src = &x->plane[plane].src.buf[src_idx]; | 
|  | const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; | 
|  | const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); | 
|  |  | 
|  | assert(cpi != NULL); | 
|  | assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); | 
|  |  | 
|  | uint8_t *recon; | 
|  | DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | recon = CONVERT_TO_BYTEPTR(recon16); | 
|  | aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, | 
|  | CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh); | 
|  | } else { | 
|  | recon = (uint8_t *)recon16; | 
|  | aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh); | 
|  | } | 
|  | #else | 
|  | recon = (uint8_t *)recon16; | 
|  | aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh); | 
|  | #endif | 
|  |  | 
|  | const PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, | 
|  | cpi->common.features.reduced_tx_set_used); | 
|  | av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, | 
|  | MAX_TX_SIZE, eob, | 
|  | cpi->common.features.reduced_tx_set_used); | 
|  |  | 
|  | return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, | 
|  | blk_row, blk_col, plane_bsize, tx_bsize); | 
|  | } | 
|  |  | 
|  | static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row, | 
|  | int blk_col, BLOCK_SIZE plane_bsize, | 
|  | TX_SIZE tx_size) { | 
|  | int16_t tmp_data[64 * 64]; | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | const int16_t *diff = x->plane[plane].src_diff; | 
|  | const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col; | 
|  | const int txb_w = tx_size_wide[tx_size]; | 
|  | const int txb_h = tx_size_high[tx_size]; | 
|  | uint8_t *hash_data = (uint8_t *)cur_diff_row; | 
|  | if (txb_w != diff_stride) { | 
|  | int16_t *cur_hash_row = tmp_data; | 
|  | for (int i = 0; i < txb_h; i++) { | 
|  | memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w); | 
|  | cur_hash_row += txb_w; | 
|  | cur_diff_row += diff_stride; | 
|  | } | 
|  | hash_data = (uint8_t *)tmp_data; | 
|  | } | 
|  | CRC32C *crc = | 
|  | &x->txfm_search_info.txb_rd_records->mb_rd_record.crc_calculator; | 
|  | const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h); | 
|  | return (hash << 5) + tx_size; | 
|  | } | 
|  |  | 
|  | // pruning thresholds for prune_txk_type and prune_txk_type_separ | 
|  | static const int prune_factors[5] = { 200, 200, 120, 80, 40 };  // scale 1000 | 
|  | static const int mul_factors[5] = { 80, 80, 70, 50, 30 };       // scale 100 | 
|  |  | 
|  | static INLINE int is_intra_hash_match(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | int plane, int blk_row, int blk_col, | 
|  | BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | const TXB_CTX *const txb_ctx, | 
|  | TXB_RD_INFO **intra_txb_rd_info, | 
|  | const int tx_type_map_idx, | 
|  | uint16_t *cur_joint_ctx) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | assert(cpi->sf.tx_sf.use_intra_txb_hash && | 
|  | frame_is_intra_only(&cpi->common) && !is_inter_block(xd->mi[0]) && | 
|  | plane == 0 && tx_size_wide[tx_size] == tx_size_high[tx_size]); | 
|  | const uint32_t intra_hash = | 
|  | get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size); | 
|  | const int intra_hash_idx = find_tx_size_rd_info( | 
|  | &txfm_info->txb_rd_records->txb_rd_record_intra, intra_hash); | 
|  | *intra_txb_rd_info = &txfm_info->txb_rd_records->txb_rd_record_intra | 
|  | .tx_rd_info[intra_hash_idx]; | 
|  | *cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; | 
|  | if ((*intra_txb_rd_info)->entropy_context == *cur_joint_ctx && | 
|  | txfm_info->txb_rd_records->txb_rd_record_intra.tx_rd_info[intra_hash_idx] | 
|  | .valid) { | 
|  | xd->tx_type_map[tx_type_map_idx] = (*intra_txb_rd_info)->tx_type; | 
|  | const TX_TYPE ref_tx_type = | 
|  | av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, | 
|  | cpi->common.features.reduced_tx_set_used); | 
|  | return (ref_tx_type == (*intra_txb_rd_info)->tx_type); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // R-D costs are sorted in ascending order. | 
|  | static INLINE void sort_rd(int64_t rds[], int txk[], int len) { | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 1; i <= len - 1; ++i) { | 
|  | for (j = 0; j < i; ++j) { | 
|  | if (rds[j] > rds[i]) { | 
|  | int64_t temprd; | 
|  | int tempi; | 
|  |  | 
|  | temprd = rds[i]; | 
|  | tempi = txk[i]; | 
|  |  | 
|  | for (k = i; k > j; k--) { | 
|  | rds[k] = rds[k - 1]; | 
|  | txk[k] = txk[k - 1]; | 
|  | } | 
|  |  | 
|  | rds[j] = temprd; | 
|  | txk[j] = tempi; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block, | 
|  | TX_SIZE tx_size, int64_t *out_dist, | 
|  | int64_t *out_sse) { | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | // Transform domain distortion computation is more efficient as it does | 
|  | // not involve an inverse transform, but it is less accurate. | 
|  | const int buffer_length = av1_get_max_eob(tx_size); | 
|  | int64_t this_sse; | 
|  | // TX-domain results need to shift down to Q2/D10 to match pixel | 
|  | // domain distortion values which are in Q2^2 | 
|  | int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; | 
|  | const int block_offset = BLOCK_OFFSET(block); | 
|  | tran_low_t *const coeff = p->coeff + block_offset; | 
|  | tran_low_t *const dqcoeff = p->dqcoeff + block_offset; | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | if (is_cur_buf_hbd(xd)) | 
|  | *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, | 
|  | xd->bd); | 
|  | else | 
|  | #endif | 
|  | *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); | 
|  |  | 
|  | *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); | 
|  | *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); | 
|  | } | 
|  |  | 
|  | uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
|  | int block, TX_SIZE tx_size, int blk_row, | 
|  | int blk_col, BLOCK_SIZE plane_bsize, int *txk_map, | 
|  | int16_t allowed_tx_mask, int prune_factor, | 
|  | const TXB_CTX *const txb_ctx, | 
|  | int reduced_tx_set_used, int64_t ref_best_rd, | 
|  | int num_sel) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  |  | 
|  | int idx; | 
|  |  | 
|  | int64_t rds_v[4]; | 
|  | int64_t rds_h[4]; | 
|  | int idx_v[4] = { 0, 1, 2, 3 }; | 
|  | int idx_h[4] = { 0, 1, 2, 3 }; | 
|  | int skip_v[4] = { 0 }; | 
|  | int skip_h[4] = { 0 }; | 
|  | const int idx_map[16] = { | 
|  | DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT, | 
|  | ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST, | 
|  | FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, | 
|  | H_DCT,        H_ADST,        H_FLIPADST,        IDTX | 
|  | }; | 
|  |  | 
|  | const int sel_pattern_v[16] = { | 
|  | 0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3 | 
|  | }; | 
|  | const int sel_pattern_h[16] = { | 
|  | 0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3 | 
|  | }; | 
|  |  | 
|  | QUANT_PARAM quant_param; | 
|  | TxfmParam txfm_param; | 
|  | av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); | 
|  | av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, | 
|  | &quant_param); | 
|  | int tx_type; | 
|  | // to ensure we can try ones even outside of ext_tx_set of current block | 
|  | // this function should only be called for size < 16 | 
|  | assert(txsize_sqr_up_map[tx_size] <= TX_16X16); | 
|  | txfm_param.tx_set_type = EXT_TX_SET_ALL16; | 
|  |  | 
|  | int rate_cost = 0; | 
|  | int64_t dist = 0, sse = 0; | 
|  | // evaluate horizontal with vertical DCT | 
|  | for (idx = 0; idx < 4; ++idx) { | 
|  | tx_type = idx_map[idx]; | 
|  | txfm_param.tx_type = tx_type; | 
|  |  | 
|  | av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, | 
|  | &quant_param); | 
|  |  | 
|  | dist_block_tx_domain(x, plane, block, tx_size, &dist, &sse); | 
|  |  | 
|  | rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, | 
|  | txb_ctx, reduced_tx_set_used, 0); | 
|  |  | 
|  | rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist); | 
|  |  | 
|  | if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) { | 
|  | skip_h[idx] = 1; | 
|  | } | 
|  | } | 
|  | sort_rd(rds_h, idx_h, 4); | 
|  | for (idx = 1; idx < 4; idx++) { | 
|  | if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1; | 
|  | } | 
|  |  | 
|  | if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF; | 
|  |  | 
|  | // evaluate vertical with the best horizontal chosen | 
|  | rds_v[0] = rds_h[0]; | 
|  | int start_v = 1, end_v = 4; | 
|  | const int *idx_map_v = idx_map + idx_h[0]; | 
|  |  | 
|  | for (idx = start_v; idx < end_v; ++idx) { | 
|  | tx_type = idx_map_v[idx_v[idx] * 4]; | 
|  | txfm_param.tx_type = tx_type; | 
|  |  | 
|  | av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, | 
|  | &quant_param); | 
|  |  | 
|  | dist_block_tx_domain(x, plane, block, tx_size, &dist, &sse); | 
|  |  | 
|  | rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, | 
|  | txb_ctx, reduced_tx_set_used, 0); | 
|  |  | 
|  | rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist); | 
|  |  | 
|  | if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) { | 
|  | skip_v[idx] = 1; | 
|  | } | 
|  | } | 
|  | sort_rd(rds_v, idx_v, 4); | 
|  | for (idx = 1; idx < 4; idx++) { | 
|  | if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1; | 
|  | } | 
|  |  | 
|  | // combine rd_h and rd_v to prune tx candidates | 
|  | int i_v, i_h; | 
|  | int64_t rds[16]; | 
|  | int num_cand = 0, last = TX_TYPES - 1; | 
|  |  | 
|  | for (int i = 0; i < 16; i++) { | 
|  | i_v = sel_pattern_v[i]; | 
|  | i_h = sel_pattern_h[i]; | 
|  | tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]]; | 
|  | if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] || | 
|  | skip_v[idx_v[i_v]]) { | 
|  | txk_map[last] = tx_type; | 
|  | last--; | 
|  | } else { | 
|  | txk_map[num_cand] = tx_type; | 
|  | rds[num_cand] = rds_v[i_v] + rds_h[i_h]; | 
|  | if (rds[num_cand] == 0) rds[num_cand] = 1; | 
|  | num_cand++; | 
|  | } | 
|  | } | 
|  | sort_rd(rds, txk_map, num_cand); | 
|  |  | 
|  | uint16_t prune = (uint16_t)(~(1 << txk_map[0])); | 
|  | num_sel = AOMMIN(num_sel, num_cand); | 
|  |  | 
|  | for (int i = 1; i < num_sel; i++) { | 
|  | int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]); | 
|  | if (factor < (int64_t)prune_factor) | 
|  | prune &= ~(1 << txk_map[i]); | 
|  | else | 
|  | break; | 
|  | } | 
|  | return prune; | 
|  | } | 
|  |  | 
|  | uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
|  | int block, TX_SIZE tx_size, int blk_row, int blk_col, | 
|  | BLOCK_SIZE plane_bsize, int *txk_map, | 
|  | uint16_t allowed_tx_mask, int prune_factor, | 
|  | const TXB_CTX *const txb_ctx, int reduced_tx_set_used) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | int tx_type; | 
|  |  | 
|  | int64_t rds[TX_TYPES]; | 
|  |  | 
|  | int num_cand = 0; | 
|  | int last = TX_TYPES - 1; | 
|  |  | 
|  | TxfmParam txfm_param; | 
|  | QUANT_PARAM quant_param; | 
|  | av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); | 
|  | av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, | 
|  | &quant_param); | 
|  |  | 
|  | for (int idx = 0; idx < TX_TYPES; idx++) { | 
|  | tx_type = idx; | 
|  | int rate_cost = 0; | 
|  | int64_t dist = 0, sse = 0; | 
|  | if (!(allowed_tx_mask & (1 << tx_type))) { | 
|  | txk_map[last] = tx_type; | 
|  | last--; | 
|  | continue; | 
|  | } | 
|  | txfm_param.tx_type = tx_type; | 
|  |  | 
|  | // do txfm and quantization | 
|  | av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, | 
|  | &quant_param); | 
|  | // estimate rate cost | 
|  | rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, | 
|  | txb_ctx, reduced_tx_set_used, 0); | 
|  | // tx domain dist | 
|  | dist_block_tx_domain(x, plane, block, tx_size, &dist, &sse); | 
|  |  | 
|  | txk_map[num_cand] = tx_type; | 
|  | rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist); | 
|  | if (rds[num_cand] == 0) rds[num_cand] = 1; | 
|  | num_cand++; | 
|  | } | 
|  |  | 
|  | if (num_cand == 0) return (uint16_t)0xFFFF; | 
|  |  | 
|  | sort_rd(rds, txk_map, num_cand); | 
|  | uint16_t prune = (uint16_t)(~(1 << txk_map[0])); | 
|  |  | 
|  | // 0 < prune_factor <= 1000 controls aggressiveness | 
|  | int64_t factor = 0; | 
|  | for (int idx = 1; idx < num_cand; idx++) { | 
|  | factor = 1000 * (rds[idx] - rds[0]) / rds[0]; | 
|  | if (factor < (int64_t)prune_factor) | 
|  | prune &= ~(1 << txk_map[idx]); | 
|  | else | 
|  | break; | 
|  | } | 
|  | return prune; | 
|  | } | 
|  |  | 
|  | // These thresholds were calibrated to provide a certain number of TX types | 
|  | // pruned by the model on average, i.e. selecting a threshold with index i | 
|  | // will lead to pruning i+1 TX types on average | 
|  | static const float *prune_2D_adaptive_thresholds[] = { | 
|  | // TX_4X4 | 
|  | (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f, | 
|  | 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f, | 
|  | 0.09778f, 0.11780f }, | 
|  | // TX_8X8 | 
|  | (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f, | 
|  | 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f, | 
|  | 0.10803f, 0.14124f }, | 
|  | // TX_16X16 | 
|  | (float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f, | 
|  | 0.06897f, 0.07629f, 0.08875f, 0.11169f }, | 
|  | // TX_32X32 | 
|  | NULL, | 
|  | // TX_64X64 | 
|  | NULL, | 
|  | // TX_4X8 | 
|  | (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f, | 
|  | 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f, | 
|  | 0.10168f, 0.12585f }, | 
|  | // TX_8X4 | 
|  | (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f, | 
|  | 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f, | 
|  | 0.10583f, 0.13123f }, | 
|  | // TX_8X16 | 
|  | (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f, | 
|  | 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f, | 
|  | 0.10730f, 0.14221f }, | 
|  | // TX_16X8 | 
|  | (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f, | 
|  | 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f, | 
|  | 0.10339f, 0.13464f }, | 
|  | // TX_16X32 | 
|  | NULL, | 
|  | // TX_32X16 | 
|  | NULL, | 
|  | // TX_32X64 | 
|  | NULL, | 
|  | // TX_64X32 | 
|  | NULL, | 
|  | // TX_4X16 | 
|  | (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f, | 
|  | 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f, | 
|  | 0.10242f, 0.12878f }, | 
|  | // TX_16X4 | 
|  | (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f, | 
|  | 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f, | 
|  | 0.10217f, 0.12610f }, | 
|  | // TX_8X32 | 
|  | NULL, | 
|  | // TX_32X8 | 
|  | NULL, | 
|  | // TX_16X64 | 
|  | NULL, | 
|  | // TX_64X16 | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | // Probablities are sorted in descending order. | 
|  | static INLINE void sort_probability(float prob[], int txk[], int len) { | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 1; i <= len - 1; ++i) { | 
|  | for (j = 0; j < i; ++j) { | 
|  | if (prob[j] < prob[i]) { | 
|  | float temp; | 
|  | int tempi; | 
|  |  | 
|  | temp = prob[i]; | 
|  | tempi = txk[i]; | 
|  |  | 
|  | for (k = i; k > j; k--) { | 
|  | prob[k] = prob[k - 1]; | 
|  | txk[k] = txk[k - 1]; | 
|  | } | 
|  |  | 
|  | prob[j] = temp; | 
|  | txk[j] = tempi; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE float get_adaptive_thresholds( | 
|  | TX_SIZE tx_size, TxSetType tx_set_type, | 
|  | TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) { | 
|  | const int prune_aggr_table[5][2] = { | 
|  | { 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 } | 
|  | }; | 
|  | int pruning_aggressiveness = 0; | 
|  | if (tx_set_type == EXT_TX_SET_ALL16) | 
|  | pruning_aggressiveness = | 
|  | prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0]; | 
|  | else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) | 
|  | pruning_aggressiveness = | 
|  | prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1]; | 
|  |  | 
|  | return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness]; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_energy_distribution_finer(const int16_t *diff, | 
|  | int stride, int bw, int bh, | 
|  | float *hordist, | 
|  | float *verdist) { | 
|  | // First compute downscaled block energy values (esq); downscale factors | 
|  | // are defined by w_shift and h_shift. | 
|  | unsigned int esq[256]; | 
|  | const int w_shift = bw <= 8 ? 0 : 1; | 
|  | const int h_shift = bh <= 8 ? 0 : 1; | 
|  | const int esq_w = bw >> w_shift; | 
|  | const int esq_h = bh >> h_shift; | 
|  | const int esq_sz = esq_w * esq_h; | 
|  | int i, j; | 
|  | memset(esq, 0, esq_sz * sizeof(esq[0])); | 
|  | if (w_shift) { | 
|  | for (i = 0; i < bh; i++) { | 
|  | unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; | 
|  | const int16_t *cur_diff_row = diff + i * stride; | 
|  | for (j = 0; j < bw; j += 2) { | 
|  | cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] + | 
|  | cur_diff_row[j + 1] * cur_diff_row[j + 1]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < bh; i++) { | 
|  | unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; | 
|  | const int16_t *cur_diff_row = diff + i * stride; | 
|  | for (j = 0; j < bw; j++) { | 
|  | cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t total = 0; | 
|  | for (i = 0; i < esq_sz; i++) total += esq[i]; | 
|  |  | 
|  | // Output hordist and verdist arrays are normalized 1D projections of esq | 
|  | if (total == 0) { | 
|  | float hor_val = 1.0f / esq_w; | 
|  | for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; | 
|  | float ver_val = 1.0f / esq_h; | 
|  | for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const float e_recip = 1.0f / (float)total; | 
|  | memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); | 
|  | memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); | 
|  | const unsigned int *cur_esq_row; | 
|  | for (i = 0; i < esq_h - 1; i++) { | 
|  | cur_esq_row = esq + i * esq_w; | 
|  | for (j = 0; j < esq_w - 1; j++) { | 
|  | hordist[j] += (float)cur_esq_row[j]; | 
|  | verdist[i] += (float)cur_esq_row[j]; | 
|  | } | 
|  | verdist[i] += (float)cur_esq_row[j]; | 
|  | } | 
|  | cur_esq_row = esq + i * esq_w; | 
|  | for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; | 
|  |  | 
|  | for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; | 
|  | for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; | 
|  | } | 
|  |  | 
|  | static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size, | 
|  | int blk_row, int blk_col, TxSetType tx_set_type, | 
|  | TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map, | 
|  | uint16_t *allowed_tx_mask) { | 
|  | int tx_type_table_2D[16] = { | 
|  | DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT, | 
|  | ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST, | 
|  | FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, | 
|  | H_DCT,        H_ADST,        H_FLIPADST,        IDTX | 
|  | }; | 
|  | if (tx_set_type != EXT_TX_SET_ALL16 && | 
|  | tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT) | 
|  | return; | 
|  | #if CONFIG_NN_V2 | 
|  | NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; | 
|  | NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; | 
|  | #else | 
|  | const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; | 
|  | const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; | 
|  | #endif | 
|  | if (!nn_config_hor || !nn_config_ver) return;  // Model not established yet. | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | float hfeatures[16], vfeatures[16]; | 
|  | float hscores[4], vscores[4]; | 
|  | float scores_2D_raw[16]; | 
|  | float scores_2D[16]; | 
|  | const int bw = tx_size_wide[tx_size]; | 
|  | const int bh = tx_size_high[tx_size]; | 
|  | const int hfeatures_num = bw <= 8 ? bw : bw / 2; | 
|  | const int vfeatures_num = bh <= 8 ? bh : bh / 2; | 
|  | assert(hfeatures_num <= 16); | 
|  | assert(vfeatures_num <= 16); | 
|  |  | 
|  | const struct macroblock_plane *const p = &x->plane[0]; | 
|  | const int diff_stride = block_size_wide[bsize]; | 
|  | const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col; | 
|  | get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures, | 
|  | vfeatures); | 
|  | av1_get_horver_correlation_full(diff, diff_stride, bw, bh, | 
|  | &hfeatures[hfeatures_num - 1], | 
|  | &vfeatures[vfeatures_num - 1]); | 
|  | aom_clear_system_state(); | 
|  | #if CONFIG_NN_V2 | 
|  | av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores); | 
|  | av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores); | 
|  | #else | 
|  | av1_nn_predict(hfeatures, nn_config_hor, 1, hscores); | 
|  | av1_nn_predict(vfeatures, nn_config_ver, 1, vscores); | 
|  | #endif | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | for (int i = 0; i < 4; i++) { | 
|  | float *cur_scores_2D = scores_2D_raw + i * 4; | 
|  | cur_scores_2D[0] = vscores[i] * hscores[0]; | 
|  | cur_scores_2D[1] = vscores[i] * hscores[1]; | 
|  | cur_scores_2D[2] = vscores[i] * hscores[2]; | 
|  | cur_scores_2D[3] = vscores[i] * hscores[3]; | 
|  | } | 
|  |  | 
|  | av1_nn_softmax(scores_2D_raw, scores_2D, 16); | 
|  |  | 
|  | const float score_thresh = | 
|  | get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode); | 
|  |  | 
|  | // Always keep the TX type with the highest score, prune all others with | 
|  | // score below score_thresh. | 
|  | int max_score_i = 0; | 
|  | float max_score = 0.0f; | 
|  | uint16_t allow_bitmask = 0; | 
|  | float sum_score = 0.0; | 
|  | // Calculate sum of allowed tx type score and Populate allow bit mask based | 
|  | // on score_thresh and allowed_tx_mask | 
|  | for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) { | 
|  | int allow_tx_type = *allowed_tx_mask & (1 << tx_type_table_2D[tx_idx]); | 
|  | if (scores_2D[tx_idx] > max_score && allow_tx_type) { | 
|  | max_score = scores_2D[tx_idx]; | 
|  | max_score_i = tx_idx; | 
|  | } | 
|  | if (scores_2D[tx_idx] >= score_thresh && allow_tx_type) { | 
|  | // Set allow mask based on score_thresh | 
|  | allow_bitmask |= (1 << tx_type_table_2D[tx_idx]); | 
|  |  | 
|  | // Accumulate score of allowed tx type | 
|  | sum_score += scores_2D[tx_idx]; | 
|  | } | 
|  | } | 
|  | if (!((allow_bitmask >> max_score_i) & 0x01)) { | 
|  | // Set allow mask based on tx type with max score | 
|  | allow_bitmask |= (1 << tx_type_table_2D[max_score_i]); | 
|  | sum_score += scores_2D[max_score_i]; | 
|  | } | 
|  | // Sort tx type probability of all types | 
|  | sort_probability(scores_2D, tx_type_table_2D, TX_TYPES); | 
|  |  | 
|  | // Enable more pruning based on tx type probability and number of allowed tx | 
|  | // types | 
|  | if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) { | 
|  | float temp_score = 0.0; | 
|  | float score_ratio = 0.0; | 
|  | int tx_idx, tx_count = 0; | 
|  | const float inv_sum_score = 100 / sum_score; | 
|  | // Get allowed tx types based on sorted probability score and tx count | 
|  | for (tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) { | 
|  | // Skip the tx type which has more than 30% of cumulative | 
|  | // probability and allowed tx type count is more than 2 | 
|  | if (score_ratio > 30.0 && tx_count >= 2) break; | 
|  |  | 
|  | // Calculate cumulative probability of allowed tx types | 
|  | if (allow_bitmask & (1 << tx_type_table_2D[tx_idx])) { | 
|  | // Calculate cumulative probability | 
|  | temp_score += scores_2D[tx_idx]; | 
|  |  | 
|  | // Calculate percentage of cumulative probability of allowed tx type | 
|  | score_ratio = temp_score * inv_sum_score; | 
|  | tx_count++; | 
|  | } | 
|  | } | 
|  | // Set remaining tx types as pruned | 
|  | for (; tx_idx < TX_TYPES; tx_idx++) | 
|  | allow_bitmask &= ~(1 << tx_type_table_2D[tx_idx]); | 
|  | } | 
|  | memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D)); | 
|  | *allowed_tx_mask = allow_bitmask; | 
|  | } | 
|  |  | 
|  | static float get_dev(float mean, double x2_sum, int num) { | 
|  | const float e_x2 = (float)(x2_sum / num); | 
|  | const float diff = e_x2 - mean * mean; | 
|  | const float dev = (diff > 0) ? sqrtf(diff) : 0; | 
|  | return dev; | 
|  | } | 
|  |  | 
|  | // Feature used by the model to predict tx split: the mean and standard | 
|  | // deviation values of the block and sub-blocks. | 
|  | static AOM_INLINE void get_mean_dev_features(const int16_t *data, int stride, | 
|  | int bw, int bh, float *feature) { | 
|  | const int16_t *const data_ptr = &data[0]; | 
|  | const int subh = (bh >= bw) ? (bh >> 1) : bh; | 
|  | const int subw = (bw >= bh) ? (bw >> 1) : bw; | 
|  | const int num = bw * bh; | 
|  | const int sub_num = subw * subh; | 
|  | int feature_idx = 2; | 
|  | int total_x_sum = 0; | 
|  | int64_t total_x2_sum = 0; | 
|  | int blk_idx = 0; | 
|  | double mean2_sum = 0.0f; | 
|  | float dev_sum = 0.0f; | 
|  |  | 
|  | for (int row = 0; row < bh; row += subh) { | 
|  | for (int col = 0; col < bw; col += subw) { | 
|  | int x_sum; | 
|  | int64_t x2_sum; | 
|  | // TODO(any): Write a SIMD version. Clear registers. | 
|  | aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh, | 
|  | &x_sum, &x2_sum); | 
|  | total_x_sum += x_sum; | 
|  | total_x2_sum += x2_sum; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | const float mean = (float)x_sum / sub_num; | 
|  | const float dev = get_dev(mean, (double)x2_sum, sub_num); | 
|  | feature[feature_idx++] = mean; | 
|  | feature[feature_idx++] = dev; | 
|  | mean2_sum += (double)(mean * mean); | 
|  | dev_sum += dev; | 
|  | blk_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | const float lvl0_mean = (float)total_x_sum / num; | 
|  | feature[0] = lvl0_mean; | 
|  | feature[1] = get_dev(lvl0_mean, (double)total_x2_sum, num); | 
|  |  | 
|  | if (blk_idx > 1) { | 
|  | // Deviation of means. | 
|  | feature[feature_idx++] = get_dev(lvl0_mean, mean2_sum, blk_idx); | 
|  | // Mean of deviations. | 
|  | feature[feature_idx++] = dev_sum / blk_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row, | 
|  | int blk_col, TX_SIZE tx_size) { | 
|  | const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size]; | 
|  | if (!nn_config) return -1; | 
|  |  | 
|  | const int diff_stride = block_size_wide[bsize]; | 
|  | const int16_t *diff = | 
|  | x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; | 
|  | const int bw = tx_size_wide[tx_size]; | 
|  | const int bh = tx_size_high[tx_size]; | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | float features[64] = { 0.0f }; | 
|  | get_mean_dev_features(diff, diff_stride, bw, bh, features); | 
|  |  | 
|  | float score = 0.0f; | 
|  | av1_nn_predict(features, nn_config, 1, &score); | 
|  | aom_clear_system_state(); | 
|  |  | 
|  | int int_score = (int)(score * 10000); | 
|  | return clamp(int_score, -80000, 80000); | 
|  | } | 
|  |  | 
|  | static INLINE uint16_t | 
|  | get_tx_mask(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, | 
|  | int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode, | 
|  | int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY; | 
|  | // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed < | 
|  | // TX_TYPES, only that specific tx type is allowed. | 
|  | TX_TYPE txk_allowed = TX_TYPES; | 
|  |  | 
|  | if ((!is_inter && txfm_params->use_default_intra_tx_type) || | 
|  | (is_inter && txfm_params->use_default_inter_tx_type)) { | 
|  | txk_allowed = | 
|  | get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools); | 
|  | } else if (x->rd_model == LOW_TXFM_RD) { | 
|  | if (plane == 0) txk_allowed = DCT_DCT; | 
|  | } | 
|  |  | 
|  | const TxSetType tx_set_type = av1_get_ext_tx_set_type( | 
|  | tx_size, is_inter, cm->features.reduced_tx_set_used); | 
|  |  | 
|  | TX_TYPE uv_tx_type = DCT_DCT; | 
|  | if (plane) { | 
|  | // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y | 
|  | uv_tx_type = txk_allowed = | 
|  | av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, | 
|  | cm->features.reduced_tx_set_used); | 
|  | } | 
|  | PREDICTION_MODE intra_dir = | 
|  | mbmi->filter_intra_mode_info.use_filter_intra | 
|  | ? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode] | 
|  | : mbmi->mode; | 
|  | uint16_t ext_tx_used_flag = | 
|  | cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 && | 
|  | tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT | 
|  | ? av1_reduced_intra_tx_used_flag[intra_dir] | 
|  | : av1_ext_tx_used_flag[tx_set_type]; | 
|  |  | 
|  | if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2) | 
|  | ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir]; | 
|  |  | 
|  | if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 || | 
|  | ext_tx_used_flag == 0x0001 || | 
|  | (is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) || | 
|  | (!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) { | 
|  | txk_allowed = DCT_DCT; | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0) | 
|  | ext_tx_used_flag &= DCT_ADST_TX_MASK; | 
|  |  | 
|  | uint16_t allowed_tx_mask = 0;  // 1: allow; 0: skip. | 
|  | if (txk_allowed < TX_TYPES) { | 
|  | allowed_tx_mask = 1 << txk_allowed; | 
|  | allowed_tx_mask &= ext_tx_used_flag; | 
|  | } else if (fast_tx_search) { | 
|  | allowed_tx_mask = 0x0c01;  // V_DCT, H_DCT, DCT_DCT | 
|  | allowed_tx_mask &= ext_tx_used_flag; | 
|  | } else { | 
|  | assert(plane == 0); | 
|  | allowed_tx_mask = ext_tx_used_flag; | 
|  | int num_allowed = 0; | 
|  | const FRAME_UPDATE_TYPE update_type = | 
|  | get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); | 
|  | const int *tx_type_probs = | 
|  | cpi->frame_probs.tx_type_probs[update_type][tx_size]; | 
|  | int i; | 
|  |  | 
|  | if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) { | 
|  | static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 }, | 
|  | { 10, 17, 17, 10, 17, 17, 17 } }; | 
|  | const int thresh = | 
|  | thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1] | 
|  | [update_type]; | 
|  | uint16_t prune = 0; | 
|  | int max_prob = -1; | 
|  | int max_idx = 0; | 
|  | for (i = 0; i < TX_TYPES; i++) { | 
|  | if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) { | 
|  | max_prob = tx_type_probs[i]; | 
|  | max_idx = i; | 
|  | } | 
|  | if (tx_type_probs[i] < thresh) prune |= (1 << i); | 
|  | } | 
|  | if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx); | 
|  | allowed_tx_mask &= (~prune); | 
|  | } | 
|  | for (i = 0; i < TX_TYPES; i++) { | 
|  | if (allowed_tx_mask & (1 << i)) num_allowed++; | 
|  | } | 
|  | assert(num_allowed > 0); | 
|  |  | 
|  | if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) { | 
|  | int pf = prune_factors[txfm_params->prune_2d_txfm_mode]; | 
|  | int mf = mul_factors[txfm_params->prune_2d_txfm_mode]; | 
|  | if (num_allowed <= 7) { | 
|  | const uint16_t prune = | 
|  | prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col, | 
|  | plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx, | 
|  | cm->features.reduced_tx_set_used); | 
|  | allowed_tx_mask &= (~prune); | 
|  | } else { | 
|  | const int num_sel = (num_allowed * mf + 50) / 100; | 
|  | const uint16_t prune = prune_txk_type_separ( | 
|  | cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize, | 
|  | txk_map, allowed_tx_mask, pf, txb_ctx, | 
|  | cm->features.reduced_tx_set_used, ref_best_rd, num_sel); | 
|  |  | 
|  | allowed_tx_mask &= (~prune); | 
|  | } | 
|  | } else { | 
|  | assert(num_allowed > 0); | 
|  | int allowed_tx_count = | 
|  | (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5; | 
|  | // !fast_tx_search && txk_end != txk_start && plane == 0 | 
|  | if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter && | 
|  | num_allowed > allowed_tx_count) { | 
|  | prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type, | 
|  | txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Need to have at least one transform type allowed. | 
|  | if (allowed_tx_mask == 0) { | 
|  | txk_allowed = (plane ? uv_tx_type : DCT_DCT); | 
|  | allowed_tx_mask = (1 << txk_allowed); | 
|  | } | 
|  |  | 
|  | assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed)); | 
|  | *allowed_txk_types = txk_allowed; | 
|  | return allowed_tx_mask; | 
|  | } | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | static INLINE void update_txb_coeff_cost(RD_STATS *rd_stats, int plane, | 
|  | int txb_coeff_cost) { | 
|  | rd_stats->txb_coeff_cost[plane] += txb_coeff_cost; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static INLINE int cost_coeffs(MACROBLOCK *x, int plane, int block, | 
|  | TX_SIZE tx_size, const TX_TYPE tx_type, | 
|  | const TXB_CTX *const txb_ctx, | 
|  | int reduced_tx_set_used) { | 
|  | #if TXCOEFF_COST_TIMER | 
|  | struct aom_usec_timer timer; | 
|  | aom_usec_timer_start(&timer); | 
|  | #endif | 
|  | const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type, | 
|  | txb_ctx, reduced_tx_set_used); | 
|  | #if TXCOEFF_COST_TIMER | 
|  | AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common; | 
|  | aom_usec_timer_mark(&timer); | 
|  | const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); | 
|  | tmp_cm->txcoeff_cost_timer += elapsed_time; | 
|  | ++tmp_cm->txcoeff_cost_count; | 
|  | #endif | 
|  | return cost; | 
|  | } | 
|  |  | 
|  | static int skip_trellis_opt_based_on_satd(MACROBLOCK *x, | 
|  | QUANT_PARAM *quant_param, int plane, | 
|  | int block, TX_SIZE tx_size, | 
|  | int quant_b_adapt, int qstep, | 
|  | unsigned int coeff_opt_satd_threshold, | 
|  | int skip_trellis, int dc_only_blk) { | 
|  | if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX)) | 
|  | return skip_trellis; | 
|  |  | 
|  | const struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const int block_offset = BLOCK_OFFSET(block); | 
|  | tran_low_t *const coeff_ptr = p->coeff + block_offset; | 
|  | const int n_coeffs = av1_get_max_eob(tx_size); | 
|  | const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)); | 
|  | int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs); | 
|  | satd = RIGHT_SIGNED_SHIFT(satd, shift); | 
|  | satd >>= (x->e_mbd.bd - 8); | 
|  |  | 
|  | const int skip_block_trellis = | 
|  | ((uint64_t)satd > | 
|  | (uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]); | 
|  |  | 
|  | av1_setup_quant( | 
|  | tx_size, !skip_block_trellis, | 
|  | skip_block_trellis | 
|  | ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP) | 
|  | : AV1_XFORM_QUANT_FP, | 
|  | quant_b_adapt, quant_param); | 
|  |  | 
|  | return skip_block_trellis; | 
|  | } | 
|  |  | 
|  | // Predict DC only blocks if the residual variance is below a qstep based | 
|  | // threshold.For such blocks, transform type search is bypassed. | 
|  | static INLINE void predict_dc_only_block( | 
|  | MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | int block, int blk_row, int blk_col, RD_STATS *best_rd_stats, | 
|  | int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean, | 
|  | int *dc_only_blk) { | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; | 
|  | const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift; | 
|  | uint64_t block_var = UINT64_MAX; | 
|  | const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3; | 
|  | *block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize, | 
|  | txsize_to_bsize[tx_size], block_mse_q8, | 
|  | per_px_mean, &block_var); | 
|  | assert((*block_mse_q8) != UINT_MAX); | 
|  | uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep); | 
|  | if (is_cur_buf_hbd(xd)) | 
|  | block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2); | 
|  | // Early prediction of skip block if residual mean and variance are less | 
|  | // than qstep based threshold | 
|  | if (((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) && | 
|  | (block_var < var_threshold)) { | 
|  | // If the normalized mean of residual block is less than the dc qstep and | 
|  | // the  normalized block variance is less than ac qstep, then the block is | 
|  | // assumed to be a skip block and its rdcost is updated accordingly. | 
|  | best_rd_stats->skip_txfm = 1; | 
|  |  | 
|  | x->plane[plane].eobs[block] = 0; | 
|  |  | 
|  | if (is_cur_buf_hbd(xd)) | 
|  | *block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2); | 
|  |  | 
|  | best_rd_stats->dist = (*block_sse) << 4; | 
|  | best_rd_stats->sse = best_rd_stats->dist; | 
|  |  | 
|  | ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; | 
|  | ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; | 
|  | av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl); | 
|  | ENTROPY_CONTEXT *ta = ctxa; | 
|  | ENTROPY_CONTEXT *tl = ctxl; | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  | TXB_CTX txb_ctx_tmp; | 
|  | const PLANE_TYPE plane_type = get_plane_type(plane); | 
|  | get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp); | 
|  | const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type] | 
|  | .txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1]; | 
|  | best_rd_stats->rate = zero_blk_rate; | 
|  |  | 
|  | best_rd_stats->rdcost = | 
|  | RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse); | 
|  |  | 
|  | x->plane[plane].txb_entropy_ctx[block] = 0; | 
|  | } else if (block_var < var_threshold) { | 
|  | // Predict DC only blocks based on residual variance. | 
|  | // For chroma plane, this early prediction is disabled for intra blocks. | 
|  | if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search for the best transform type for a given transform block. | 
|  | // This function can be used for both inter and intra, both luma and chroma. | 
|  | static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, | 
|  | int block, int blk_row, int blk_col, | 
|  | BLOCK_SIZE plane_bsize, TX_SIZE tx_size, | 
|  | const TXB_CTX *const txb_ctx, | 
|  | FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis, | 
|  | int64_t ref_best_rd, RD_STATS *best_rd_stats) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | int64_t best_rd = INT64_MAX; | 
|  | uint16_t best_eob = 0; | 
|  | TX_TYPE best_tx_type = DCT_DCT; | 
|  | int rate_cost = 0; | 
|  | // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff | 
|  | // of the best tx_type | 
|  | DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]); | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | tran_low_t *orig_dqcoeff = p->dqcoeff; | 
|  | tran_low_t *best_dqcoeff = this_dqcoeff; | 
|  | const int tx_type_map_idx = | 
|  | plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col; | 
|  | av1_invalid_rd_stats(best_rd_stats); | 
|  |  | 
|  | skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id], | 
|  | DRY_RUN_NORMAL); | 
|  |  | 
|  | // Hashing based speed feature for intra block. If the hash of the residue | 
|  | // is found in the hash table, use the previous RD search results stored in | 
|  | // the table and terminate early. | 
|  | TXB_RD_INFO *intra_txb_rd_info = NULL; | 
|  | uint16_t cur_joint_ctx = 0; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int use_intra_txb_hash = | 
|  | cpi->sf.tx_sf.use_intra_txb_hash && frame_is_intra_only(cm) && | 
|  | !is_inter && plane == 0 && tx_size_wide[tx_size] == tx_size_high[tx_size]; | 
|  | if (use_intra_txb_hash) { | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | const int within_border = | 
|  | mi_row >= xd->tile.mi_row_start && | 
|  | (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) && | 
|  | mi_col >= xd->tile.mi_col_start && | 
|  | (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end); | 
|  | if (within_border && | 
|  | is_intra_hash_match(cpi, x, plane, blk_row, blk_col, plane_bsize, | 
|  | tx_size, txb_ctx, &intra_txb_rd_info, | 
|  | tx_type_map_idx, &cur_joint_ctx)) { | 
|  | best_rd_stats->rate = intra_txb_rd_info->rate; | 
|  | best_rd_stats->dist = intra_txb_rd_info->dist; | 
|  | best_rd_stats->sse = intra_txb_rd_info->sse; | 
|  | best_rd_stats->skip_txfm = intra_txb_rd_info->eob == 0; | 
|  | x->plane[plane].eobs[block] = intra_txb_rd_info->eob; | 
|  | x->plane[plane].txb_entropy_ctx[block] = | 
|  | intra_txb_rd_info->txb_entropy_ctx; | 
|  | best_eob = intra_txb_rd_info->eob; | 
|  | best_tx_type = intra_txb_rd_info->tx_type; | 
|  | skip_trellis |= !intra_txb_rd_info->perform_block_coeff_opt; | 
|  | update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type); | 
|  | recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, | 
|  | txb_ctx, skip_trellis, best_tx_type, 1, &rate_cost, best_eob); | 
|  | p->dqcoeff = orig_dqcoeff; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint8_t best_txb_ctx = 0; | 
|  | // txk_allowed = TX_TYPES: >1 tx types are allowed | 
|  | // txk_allowed < TX_TYPES: only that specific tx type is allowed. | 
|  | TX_TYPE txk_allowed = TX_TYPES; | 
|  | int txk_map[TX_TYPES] = { | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | 
|  | }; | 
|  | const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; | 
|  | const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift; | 
|  |  | 
|  | const uint8_t txw = tx_size_wide[tx_size]; | 
|  | const uint8_t txh = tx_size_high[tx_size]; | 
|  | int64_t block_sse; | 
|  | unsigned int block_mse_q8; | 
|  | int dc_only_blk = 0; | 
|  | const bool predict_dc_block = | 
|  | txfm_params->predict_dc_level && txw != 64 && txh != 64; | 
|  | int64_t per_px_mean = INT64_MAX; | 
|  | if (predict_dc_block) { | 
|  | predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row, | 
|  | blk_col, best_rd_stats, &block_sse, &block_mse_q8, | 
|  | &per_px_mean, &dc_only_blk); | 
|  | if (best_rd_stats->skip_txfm == 1) return; | 
|  | } else { | 
|  | block_sse = pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, | 
|  | txsize_to_bsize[tx_size], &block_mse_q8); | 
|  | assert(block_mse_q8 != UINT_MAX); | 
|  | } | 
|  |  | 
|  | // Bit mask to indicate which transform types are allowed in the RD search. | 
|  | uint16_t tx_mask; | 
|  |  | 
|  | // Use DCT_DCT transform for DC only block. | 
|  | if (dc_only_blk) | 
|  | tx_mask = 1 << DCT_DCT; | 
|  | else | 
|  | tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize, | 
|  | tx_size, txb_ctx, ftxs_mode, ref_best_rd, | 
|  | &txk_allowed, txk_map); | 
|  | const uint16_t allowed_tx_mask = tx_mask; | 
|  |  | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2); | 
|  | block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2); | 
|  | } | 
|  | block_sse *= 16; | 
|  | // Use mse / qstep^2 based threshold logic to take decision of R-D | 
|  | // optimization of coeffs. For smaller residuals, coeff optimization | 
|  | // would be helpful. For larger residuals, R-D optimization may not be | 
|  | // effective. | 
|  | // TODO(any): Experiment with variance and mean based thresholds | 
|  | const int perform_block_coeff_opt = | 
|  | ((uint64_t)block_mse_q8 <= | 
|  | (uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep); | 
|  | skip_trellis |= !perform_block_coeff_opt; | 
|  |  | 
|  | // Flag to indicate if distortion should be calculated in transform domain or | 
|  | // not during iterating through transform type candidates. | 
|  | // Transform domain distortion is accurate for higher residuals. | 
|  | // TODO(any): Experiment with variance and mean based thresholds | 
|  | int use_transform_domain_distortion = | 
|  | (txfm_params->use_transform_domain_distortion > 0) && | 
|  | (block_mse_q8 >= txfm_params->tx_domain_dist_threshold) && | 
|  | // Any 64-pt transforms only preserves half the coefficients. | 
|  | // Therefore transform domain distortion is not valid for these | 
|  | // transform sizes. | 
|  | (txsize_sqr_up_map[tx_size] != TX_64X64) && | 
|  | // Use pixel domain distortion for DC only blocks | 
|  | !dc_only_blk; | 
|  | // Flag to indicate if an extra calculation of distortion in the pixel domain | 
|  | // should be performed at the end, after the best transform type has been | 
|  | // decided. | 
|  | int calc_pixel_domain_distortion_final = | 
|  | txfm_params->use_transform_domain_distortion == 1 && | 
|  | use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD; | 
|  | if (calc_pixel_domain_distortion_final && | 
|  | (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001)) | 
|  | calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0; | 
|  |  | 
|  | const uint16_t *eobs_ptr = x->plane[plane].eobs; | 
|  |  | 
|  | TxfmParam txfm_param; | 
|  | QUANT_PARAM quant_param; | 
|  | int skip_trellis_based_on_satd[TX_TYPES] = { 0 }; | 
|  | av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); | 
|  | av1_setup_quant(tx_size, !skip_trellis, | 
|  | skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B | 
|  | : AV1_XFORM_QUANT_FP) | 
|  | : AV1_XFORM_QUANT_FP, | 
|  | cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); | 
|  |  | 
|  | // Iterate through all transform type candidates. | 
|  | for (int idx = 0; idx < TX_TYPES; ++idx) { | 
|  | const TX_TYPE tx_type = (TX_TYPE)txk_map[idx]; | 
|  | if (!(allowed_tx_mask & (1 << tx_type))) continue; | 
|  | txfm_param.tx_type = tx_type; | 
|  | if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) { | 
|  | av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, | 
|  | &quant_param); | 
|  | } | 
|  | if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type; | 
|  | RD_STATS this_rd_stats; | 
|  | av1_invalid_rd_stats(&this_rd_stats); | 
|  |  | 
|  | if (!dc_only_blk) | 
|  | av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param); | 
|  | else | 
|  | av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean); | 
|  |  | 
|  | skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd( | 
|  | x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt, | 
|  | qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk); | 
|  |  | 
|  | av1_quant(x, plane, block, &txfm_param, &quant_param); | 
|  |  | 
|  | // Calculate rate cost of quantized coefficients. | 
|  | if (quant_param.use_optimize_b) { | 
|  | av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, | 
|  | &rate_cost); | 
|  | } else { | 
|  | rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx, | 
|  | cm->features.reduced_tx_set_used); | 
|  | } | 
|  |  | 
|  | // If rd cost based on coeff rate alone is already more than best_rd, | 
|  | // terminate early. | 
|  | if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue; | 
|  |  | 
|  | // Calculate distortion. | 
|  | if (eobs_ptr[block] == 0) { | 
|  | // When eob is 0, pixel domain distortion is more efficient and accurate. | 
|  | this_rd_stats.dist = this_rd_stats.sse = block_sse; | 
|  | } else if (dc_only_blk) { | 
|  | this_rd_stats.sse = block_sse; | 
|  | this_rd_stats.dist = dist_block_px_domain( | 
|  | cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); | 
|  | } else if (use_transform_domain_distortion) { | 
|  | dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, | 
|  | &this_rd_stats.sse); | 
|  | } else { | 
|  | int64_t sse_diff = INT64_MAX; | 
|  | // high_energy threshold assumes that every pixel within a txfm block | 
|  | // has a residue energy of at least 25% of the maximum, i.e. 128 * 128 | 
|  | // for 8 bit. | 
|  | const int64_t high_energy_thresh = | 
|  | ((int64_t)128 * 128 * tx_size_2d[tx_size]); | 
|  | const int is_high_energy = (block_sse >= high_energy_thresh); | 
|  | if (tx_size == TX_64X64 || is_high_energy) { | 
|  | // Because 3 out 4 quadrants of transform coefficients are forced to | 
|  | // zero, the inverse transform has a tendency to overflow. sse_diff | 
|  | // is effectively the energy of those 3 quadrants, here we use it | 
|  | // to decide if we should do pixel domain distortion. If the energy | 
|  | // is mostly in first quadrant, then it is unlikely that we have | 
|  | // overflow issue in inverse transform. | 
|  | dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, | 
|  | &this_rd_stats.sse); | 
|  | sse_diff = block_sse - this_rd_stats.sse; | 
|  | } | 
|  | if (tx_size != TX_64X64 || !is_high_energy || | 
|  | (sse_diff * 2) < this_rd_stats.sse) { | 
|  | const int64_t tx_domain_dist = this_rd_stats.dist; | 
|  | this_rd_stats.dist = dist_block_px_domain( | 
|  | cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); | 
|  | // For high energy blocks, occasionally, the pixel domain distortion | 
|  | // can be artificially low due to clamping at reconstruction stage | 
|  | // even when inverse transform output is hugely different from the | 
|  | // actual residue. | 
|  | if (is_high_energy && this_rd_stats.dist < tx_domain_dist) | 
|  | this_rd_stats.dist = tx_domain_dist; | 
|  | } else { | 
|  | assert(sse_diff < INT64_MAX); | 
|  | this_rd_stats.dist += sse_diff; | 
|  | } | 
|  | this_rd_stats.sse = block_sse; | 
|  | } | 
|  |  | 
|  | this_rd_stats.rate = rate_cost; | 
|  |  | 
|  | const int64_t rd = | 
|  | RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); | 
|  |  | 
|  | if (rd < best_rd) { | 
|  | best_rd = rd; | 
|  | *best_rd_stats = this_rd_stats; | 
|  | best_tx_type = tx_type; | 
|  | best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; | 
|  | best_eob = x->plane[plane].eobs[block]; | 
|  | // Swap dqcoeff buffers | 
|  | tran_low_t *const tmp_dqcoeff = best_dqcoeff; | 
|  | best_dqcoeff = p->dqcoeff; | 
|  | p->dqcoeff = tmp_dqcoeff; | 
|  | } | 
|  |  | 
|  | #if CONFIG_COLLECT_RD_STATS == 1 | 
|  | if (plane == 0) { | 
|  | PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col, | 
|  | plane_bsize, tx_size, tx_type, rd); | 
|  | } | 
|  | #endif  // CONFIG_COLLECT_RD_STATS == 1 | 
|  |  | 
|  | #if COLLECT_TX_SIZE_DATA | 
|  | // Generate small sample to restrict output size. | 
|  | static unsigned int seed = 21743; | 
|  | if (lcg_rand16(&seed) % 200 == 0) { | 
|  | FILE *fp = NULL; | 
|  |  | 
|  | if (within_border) { | 
|  | fp = fopen(av1_tx_size_data_output_file, "a"); | 
|  | } | 
|  |  | 
|  | if (fp) { | 
|  | // Transform info and RD | 
|  | const int txb_w = tx_size_wide[tx_size]; | 
|  | const int txb_h = tx_size_high[tx_size]; | 
|  |  | 
|  | // Residue signal. | 
|  | const int diff_stride = block_size_wide[plane_bsize]; | 
|  | struct macroblock_plane *const p = &x->plane[plane]; | 
|  | const int16_t *src_diff = | 
|  | &p->src_diff[(blk_row * diff_stride + blk_col) * 4]; | 
|  |  | 
|  | for (int r = 0; r < txb_h; ++r) { | 
|  | for (int c = 0; c < txb_w; ++c) { | 
|  | fprintf(fp, "%d,", src_diff[c]); | 
|  | } | 
|  | src_diff += diff_stride; | 
|  | } | 
|  |  | 
|  | fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd); | 
|  | fprintf(fp, "\n"); | 
|  | fclose(fp); | 
|  | } | 
|  | } | 
|  | #endif  // COLLECT_TX_SIZE_DATA | 
|  |  | 
|  | // If the current best RD cost is much worse than the reference RD cost, | 
|  | // terminate early. | 
|  | if (cpi->sf.tx_sf.adaptive_txb_search_level) { | 
|  | if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) > | 
|  | ref_best_rd) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Terminate transform type search if the block has been quantized to | 
|  | // all zero. | 
|  | if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break; | 
|  | } | 
|  |  | 
|  | assert(best_rd != INT64_MAX); | 
|  |  | 
|  | best_rd_stats->skip_txfm = best_eob == 0; | 
|  | if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type); | 
|  | x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; | 
|  | x->plane[plane].eobs[block] = best_eob; | 
|  | skip_trellis = skip_trellis_based_on_satd[best_tx_type]; | 
|  |  | 
|  | // Point dqcoeff to the quantized coefficients corresponding to the best | 
|  | // transform type, then we can skip transform and quantization, e.g. in the | 
|  | // final pixel domain distortion calculation and recon_intra(). | 
|  | p->dqcoeff = best_dqcoeff; | 
|  |  | 
|  | if (calc_pixel_domain_distortion_final && best_eob) { | 
|  | best_rd_stats->dist = dist_block_px_domain( | 
|  | cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); | 
|  | best_rd_stats->sse = block_sse; | 
|  | } | 
|  |  | 
|  | if (intra_txb_rd_info != NULL) { | 
|  | intra_txb_rd_info->valid = 1; | 
|  | intra_txb_rd_info->entropy_context = cur_joint_ctx; | 
|  | intra_txb_rd_info->rate = best_rd_stats->rate; | 
|  | intra_txb_rd_info->dist = best_rd_stats->dist; | 
|  | intra_txb_rd_info->sse = best_rd_stats->sse; | 
|  | intra_txb_rd_info->eob = best_eob; | 
|  | intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx; | 
|  | intra_txb_rd_info->perform_block_coeff_opt = perform_block_coeff_opt; | 
|  | if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type; | 
|  | } | 
|  |  | 
|  | // Intra mode needs decoded pixels such that the next transform block | 
|  | // can use them for prediction. | 
|  | recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, | 
|  | txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob); | 
|  | p->dqcoeff = orig_dqcoeff; | 
|  | } | 
|  |  | 
|  | // Pick transform type for a luma transform block of tx_size. Note this function | 
|  | // is used only for inter-predicted blocks. | 
|  | static AOM_INLINE void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | TX_SIZE tx_size, int blk_row, int blk_col, | 
|  | int block, int plane_bsize, TXB_CTX *txb_ctx, | 
|  | RD_STATS *rd_stats, | 
|  | FAST_TX_SEARCH_MODE ftxs_mode, | 
|  | int64_t ref_rdcost, | 
|  | TXB_RD_INFO *rd_info_array) { | 
|  | const struct macroblock_plane *const p = &x->plane[0]; | 
|  | const uint16_t cur_joint_ctx = | 
|  | (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | assert(is_inter_block(xd->mi[0])); | 
|  | const int tx_type_map_idx = blk_row * xd->tx_type_map_stride + blk_col; | 
|  | // Look up RD and terminate early in case when we've already processed exactly | 
|  | // the same residue with exactly the same entropy context. | 
|  | if (rd_info_array != NULL && rd_info_array->valid && | 
|  | rd_info_array->entropy_context == cur_joint_ctx) { | 
|  | xd->tx_type_map[tx_type_map_idx] = rd_info_array->tx_type; | 
|  | const TX_TYPE ref_tx_type = | 
|  | av1_get_tx_type(&x->e_mbd, get_plane_type(0), blk_row, blk_col, tx_size, | 
|  | cpi->common.features.reduced_tx_set_used); | 
|  | if (ref_tx_type == rd_info_array->tx_type) { | 
|  | rd_stats->rate += rd_info_array->rate; | 
|  | rd_stats->dist += rd_info_array->dist; | 
|  | rd_stats->sse += rd_info_array->sse; | 
|  | rd_stats->skip_txfm &= rd_info_array->eob == 0; | 
|  | p->eobs[block] = rd_info_array->eob; | 
|  | p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | RD_STATS this_rd_stats; | 
|  | const int skip_trellis = 0; | 
|  | search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size, | 
|  | txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats); | 
|  |  | 
|  | av1_merge_rd_stats(rd_stats, &this_rd_stats); | 
|  |  | 
|  | // Save RD results for possible reuse in future. | 
|  | if (rd_info_array != NULL) { | 
|  | rd_info_array->valid = 1; | 
|  | rd_info_array->entropy_context = cur_joint_ctx; | 
|  | rd_info_array->rate = this_rd_stats.rate; | 
|  | rd_info_array->dist = this_rd_stats.dist; | 
|  | rd_info_array->sse = this_rd_stats.sse; | 
|  | rd_info_array->eob = p->eobs[block]; | 
|  | rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block]; | 
|  | rd_info_array->tx_type = xd->tx_type_map[tx_type_map_idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void try_tx_block_no_split( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, | 
|  | TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, | 
|  | const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl, | 
|  | int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd, | 
|  | FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, | 
|  | TxCandidateInfo *no_split) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  | const int bw = mi_size_wide[plane_bsize]; | 
|  | const ENTROPY_CONTEXT *const pta = ta + blk_col; | 
|  | const ENTROPY_CONTEXT *const ptl = tl + blk_row; | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  | TXB_CTX txb_ctx; | 
|  | get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx); | 
|  | const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y] | 
|  | .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; | 
|  | rd_stats->zero_rate = zero_blk_rate; | 
|  | const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); | 
|  | mbmi->inter_tx_size[index] = tx_size; | 
|  | tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx, | 
|  | rd_stats, ftxs_mode, ref_best_rd, | 
|  | rd_info_node != NULL ? rd_info_node->rd_info_array : NULL); | 
|  | assert(rd_stats->rate < INT_MAX); | 
|  |  | 
|  | const int pick_skip_txfm = | 
|  | !xd->lossless[mbmi->segment_id] && | 
|  | (rd_stats->skip_txfm == 1 || | 
|  | RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= | 
|  | RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse)); | 
|  | if (pick_skip_txfm) { | 
|  | #if CONFIG_RD_DEBUG | 
|  | update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate); | 
|  | #endif  // CONFIG_RD_DEBUG | 
|  | rd_stats->rate = zero_blk_rate; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | p->eobs[block] = 0; | 
|  | update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); | 
|  | } | 
|  | rd_stats->skip_txfm = pick_skip_txfm; | 
|  | set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col, | 
|  | pick_skip_txfm); | 
|  |  | 
|  | if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) | 
|  | rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0]; | 
|  |  | 
|  | no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); | 
|  | no_split->txb_entropy_ctx = p->txb_entropy_ctx[block]; | 
|  | no_split->tx_type = | 
|  | xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void try_tx_block_split( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, | 
|  | TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, | 
|  | ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, | 
|  | int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd, | 
|  | FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, | 
|  | RD_STATS *split_rd_stats) { | 
|  | assert(tx_size < TX_SIZES_ALL); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); | 
|  | const int txb_width = tx_size_wide_unit[tx_size]; | 
|  | const int txb_height = tx_size_high_unit[tx_size]; | 
|  | // Transform size after splitting current block. | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int sub_txb_width = tx_size_wide_unit[sub_txs]; | 
|  | const int sub_txb_height = tx_size_high_unit[sub_txs]; | 
|  | const int sub_step = sub_txb_width * sub_txb_height; | 
|  | const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width); | 
|  | assert(nblks > 0); | 
|  | av1_init_rd_stats(split_rd_stats); | 
|  | split_rd_stats->rate = | 
|  | x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1]; | 
|  |  | 
|  | for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) { | 
|  | const int offsetr = blk_row + r; | 
|  | if (offsetr >= max_blocks_high) break; | 
|  | for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) { | 
|  | assert(blk_idx < 4); | 
|  | const int offsetc = blk_col + c; | 
|  | if (offsetc >= max_blocks_wide) continue; | 
|  |  | 
|  | RD_STATS this_rd_stats; | 
|  | int this_cost_valid = 1; | 
|  | select_tx_block( | 
|  | cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta, | 
|  | tl, tx_above, tx_left, &this_rd_stats, no_split_rd / nblks, | 
|  | ref_best_rd - split_rd_stats->rdcost, &this_cost_valid, ftxs_mode, | 
|  | (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL); | 
|  | if (!this_cost_valid) { | 
|  | split_rd_stats->rdcost = INT64_MAX; | 
|  | return; | 
|  | } | 
|  | av1_merge_rd_stats(split_rd_stats, &this_rd_stats); | 
|  | split_rd_stats->rdcost = | 
|  | RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist); | 
|  | if (split_rd_stats->rdcost > ref_best_rd) { | 
|  | split_rd_stats->rdcost = INT64_MAX; | 
|  | return; | 
|  | } | 
|  | block += sub_step; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static float get_var(float mean, double x2_sum, int num) { | 
|  | const float e_x2 = (float)(x2_sum / num); | 
|  | const float diff = e_x2 - mean * mean; | 
|  | return diff; | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void get_blk_var_dev(const int16_t *data, int stride, int bw, | 
|  | int bh, float *dev_of_mean, | 
|  | float *var_of_vars) { | 
|  | const int16_t *const data_ptr = &data[0]; | 
|  | const int subh = (bh >= bw) ? (bh >> 1) : bh; | 
|  | const int subw = (bw >= bh) ? (bw >> 1) : bw; | 
|  | const int num = bw * bh; | 
|  | const int sub_num = subw * subh; | 
|  | int total_x_sum = 0; | 
|  | int64_t total_x2_sum = 0; | 
|  | int blk_idx = 0; | 
|  | float var_sum = 0.0f; | 
|  | float mean_sum = 0.0f; | 
|  | double var2_sum = 0.0f; | 
|  | double mean2_sum = 0.0f; | 
|  |  | 
|  | for (int row = 0; row < bh; row += subh) { | 
|  | for (int col = 0; col < bw; col += subw) { | 
|  | int x_sum; | 
|  | int64_t x2_sum; | 
|  | aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh, | 
|  | &x_sum, &x2_sum); | 
|  | total_x_sum += x_sum; | 
|  | total_x2_sum += x2_sum; | 
|  |  | 
|  | aom_clear_system_state(); | 
|  | const float mean = (float)x_sum / sub_num; | 
|  | const float var = get_var(mean, (double)x2_sum, sub_num); | 
|  | mean_sum += mean; | 
|  | mean2_sum += (double)(mean * mean); | 
|  | var_sum += var; | 
|  | var2_sum += var * var; | 
|  | blk_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | const float lvl0_mean = (float)total_x_sum / num; | 
|  | const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num); | 
|  | mean_sum += lvl0_mean; | 
|  | mean2_sum += (double)(lvl0_mean * lvl0_mean); | 
|  | var_sum += block_var; | 
|  | var2_sum += block_var * block_var; | 
|  | const float av_mean = mean_sum / 5; | 
|  |  | 
|  | if (blk_idx > 1) { | 
|  | // Deviation of means. | 
|  | *dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1)); | 
|  | // Variance of variances. | 
|  | const float mean_var = var_sum / (blk_idx + 1); | 
|  | *var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | int blk_row, int blk_col, TX_SIZE tx_size, | 
|  | int *try_no_split, int *try_split, | 
|  | int pruning_level) { | 
|  | const int diff_stride = block_size_wide[bsize]; | 
|  | const int16_t *diff = | 
|  | x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; | 
|  | const int bw = tx_size_wide[tx_size]; | 
|  | const int bh = tx_size_high[tx_size]; | 
|  | aom_clear_system_state(); | 
|  | float dev_of_means = 0.0f; | 
|  | float var_of_vars = 0.0f; | 
|  |  | 
|  | // This function calculates the deviation of means, and the variance of pixel | 
|  | // variances of the block as well as it's sub-blocks. | 
|  | get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars); | 
|  | const int dc_q = x->plane[0].dequant_QTX[0] >> 3; | 
|  | const int ac_q = x->plane[0].dequant_QTX[1] >> 3; | 
|  | const int no_split_thresh_scales[4] = { 0, 24, 8, 8 }; | 
|  | const int no_split_thresh_scale = no_split_thresh_scales[pruning_level]; | 
|  | const int split_thresh_scales[4] = { 0, 24, 10, 8 }; | 
|  | const int split_thresh_scale = split_thresh_scales[pruning_level]; | 
|  |  | 
|  | if ((dev_of_means <= dc_q) && | 
|  | (split_thresh_scale * var_of_vars <= ac_q * ac_q)) { | 
|  | *try_split = 0; | 
|  | } | 
|  | if ((dev_of_means > no_split_thresh_scale * dc_q) && | 
|  | (var_of_vars > no_split_thresh_scale * ac_q * ac_q)) { | 
|  | *try_no_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search for the best transform partition(recursive)/type for a given | 
|  | // inter-predicted luma block. The obtained transform selection will be saved | 
|  | // in xd->mi[0], the corresponding RD stats will be saved in rd_stats. | 
|  | static AOM_INLINE void select_tx_block( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, | 
|  | TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, | 
|  | ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, | 
|  | RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd, | 
|  | int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode, | 
|  | TXB_RD_INFO_NODE *rd_info_node) { | 
|  | assert(tx_size < TX_SIZES_ALL); | 
|  | av1_init_rd_stats(rd_stats); | 
|  | if (ref_best_rd < 0) { | 
|  | *is_cost_valid = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | assert(blk_row < max_block_high(xd, plane_bsize, 0) && | 
|  | blk_col < max_block_wide(xd, plane_bsize, 0)); | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, | 
|  | mbmi->bsize, tx_size); | 
|  | struct macroblock_plane *const p = &x->plane[0]; | 
|  |  | 
|  | int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 || | 
|  | txsize_sqr_up_map[tx_size] != TX_64X64) && | 
|  | (cpi->oxcf.txfm_cfg.enable_rect_tx || | 
|  | tx_size_wide[tx_size] == tx_size_high[tx_size]); | 
|  | int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH; | 
|  | TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES }; | 
|  |  | 
|  | // Prune tx_split and no-split based on sub-block properties. | 
|  | if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 && | 
|  | cpi->sf.tx_sf.prune_tx_size_level > 0) { | 
|  | prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size, | 
|  | &try_no_split, &try_split, | 
|  | cpi->sf.tx_sf.prune_tx_size_level); | 
|  | } | 
|  |  | 
|  | // Try using current block as a single transform block without split. | 
|  | if (try_no_split) { | 
|  | try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth, | 
|  | plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd, | 
|  | ftxs_mode, rd_info_node, &no_split); | 
|  |  | 
|  | // Speed features for early termination. | 
|  | const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level; | 
|  | if (search_level) { | 
|  | if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) { | 
|  | *is_cost_valid = 0; | 
|  | return; | 
|  | } | 
|  | if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) { | 
|  | try_split = 0; | 
|  | } | 
|  | } | 
|  | if (cpi->sf.tx_sf.txb_split_cap) { | 
|  | if (p->eobs[block] == 0) try_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ML based speed feature to skip searching for split transform blocks. | 
|  | if (x->e_mbd.bd == 8 && try_split && | 
|  | !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) { | 
|  | const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh; | 
|  | if (threshold >= 0) { | 
|  | const int split_score = | 
|  | ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size); | 
|  | if (split_score < -threshold) try_split = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | RD_STATS split_rd_stats; | 
|  | split_rd_stats.rdcost = INT64_MAX; | 
|  | // Try splitting current block into smaller transform blocks. | 
|  | if (try_split) { | 
|  | try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth, | 
|  | plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd, | 
|  | AOMMIN(no_split.rd, ref_best_rd), ftxs_mode, | 
|  | rd_info_node, &split_rd_stats); | 
|  | } | 
|  |  | 
|  | if (no_split.rd < split_rd_stats.rdcost) { | 
|  | ENTROPY_CONTEXT *pta = ta + blk_col; | 
|  | ENTROPY_CONTEXT *ptl = tl + blk_row; | 
|  | p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx; | 
|  | av1_set_txb_context(x, 0, block, tx_size, pta, ptl); | 
|  | txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, | 
|  | tx_size); | 
|  | for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { | 
|  | for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { | 
|  | const int index = | 
|  | av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); | 
|  | mbmi->inter_tx_size[index] = tx_size; | 
|  | } | 
|  | } | 
|  | mbmi->tx_size = tx_size; | 
|  | update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type); | 
|  | const int bw = mi_size_wide[plane_bsize]; | 
|  | set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col, | 
|  | rd_stats->skip_txfm); | 
|  | } else { | 
|  | *rd_stats = split_rd_stats; | 
|  | if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void choose_largest_tx_size(const AV1_COMP *const cpi, | 
|  | MACROBLOCK *x, RD_STATS *rd_stats, | 
|  | int64_t ref_best_rd, | 
|  | BLOCK_SIZE bs) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type); | 
|  |  | 
|  | // If tx64 is not enabled, we need to go down to the next available size | 
|  | if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) { | 
|  | static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = { | 
|  | TX_4X4,    // 4x4 transform | 
|  | TX_8X8,    // 8x8 transform | 
|  | TX_16X16,  // 16x16 transform | 
|  | TX_32X32,  // 32x32 transform | 
|  | TX_32X32,  // 64x64 transform | 
|  | TX_4X8,    // 4x8 transform | 
|  | TX_8X4,    // 8x4 transform | 
|  | TX_8X16,   // 8x16 transform | 
|  | TX_16X8,   // 16x8 transform | 
|  | TX_16X32,  // 16x32 transform | 
|  | TX_32X16,  // 32x16 transform | 
|  | TX_32X32,  // 32x64 transform | 
|  | TX_32X32,  // 64x32 transform | 
|  | TX_4X16,   // 4x16 transform | 
|  | TX_16X4,   // 16x4 transform | 
|  | TX_8X32,   // 8x32 transform | 
|  | TX_32X8,   // 32x8 transform | 
|  | TX_16X32,  // 16x64 transform | 
|  | TX_32X16,  // 64x16 transform | 
|  | }; | 
|  | mbmi->tx_size = tx_size_max_32[mbmi->tx_size]; | 
|  | } else if (cpi->oxcf.txfm_cfg.enable_tx64 && | 
|  | !cpi->oxcf.txfm_cfg.enable_rect_tx) { | 
|  | static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = { | 
|  | TX_4X4,    // 4x4 transform | 
|  | TX_8X8,    // 8x8 transform | 
|  | TX_16X16,  // 16x16 transform | 
|  | TX_32X32,  // 32x32 transform | 
|  | TX_64X64,  // 64x64 transform | 
|  | TX_4X4,    // 4x8 transform | 
|  | TX_4X4,    // 8x4 transform | 
|  | TX_8X8,    // 8x16 transform | 
|  | TX_8X8,    // 16x8 transform | 
|  | TX_16X16,  // 16x32 transform | 
|  | TX_16X16,  // 32x16 transform | 
|  | TX_32X32,  // 32x64 transform | 
|  | TX_32X32,  // 64x32 transform | 
|  | TX_4X4,    // 4x16 transform | 
|  | TX_4X4,    // 16x4 transform | 
|  | TX_8X8,    // 8x32 transform | 
|  | TX_8X8,    // 32x8 transform | 
|  | TX_16X16,  // 16x64 transform | 
|  | TX_16X16,  // 64x16 transform | 
|  | }; | 
|  | mbmi->tx_size = tx_size_max_square[mbmi->tx_size]; | 
|  | } else if (!cpi->oxcf.txfm_cfg.enable_tx64 && | 
|  | !cpi->oxcf.txfm_cfg.enable_rect_tx) { | 
|  | static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = { | 
|  | TX_4X4,    // 4x4 transform | 
|  | TX_8X8,    // 8x8 transform | 
|  | TX_16X16,  // 16x16 transform | 
|  | TX_32X32,  // 32x32 transform | 
|  | TX_32X32,  // 64x64 transform | 
|  | TX_4X4,    // 4x8 transform | 
|  | TX_4X4,    // 8x4 transform | 
|  | TX_8X8,    // 8x16 transform | 
|  | TX_8X8,    // 16x8 transform | 
|  | TX_16X16,  // 16x32 transform | 
|  | TX_16X16,  // 32x16 transform | 
|  | TX_32X32,  // 32x64 transform | 
|  | TX_32X32,  // 64x32 transform | 
|  | TX_4X4,    // 4x16 transform | 
|  | TX_4X4,    // 16x4 transform | 
|  | TX_8X8,    // 8x32 transform | 
|  | TX_8X8,    // 32x8 transform | 
|  | TX_16X16,  // 16x64 transform | 
|  | TX_16X16,  // 64x16 transform | 
|  | }; | 
|  |  | 
|  | mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size]; | 
|  | } | 
|  |  | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0]; | 
|  | const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; | 
|  | // Skip RDcost is used only for Inter blocks | 
|  | const int64_t skip_txfm_rd = | 
|  | is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX; | 
|  | const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0); | 
|  | const int skip_trellis = 0; | 
|  | av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, | 
|  | AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs, | 
|  | mbmi->tx_size, FTXS_NONE, skip_trellis); | 
|  | } | 
|  |  | 
|  | static AOM_INLINE void choose_smallest_tx_size(const AV1_COMP *const cpi, | 
|  | MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, | 
|  | int64_t ref_best_rd, | 
|  | BLOCK_SIZE bs) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  |  | 
|  | mbmi->tx_size = TX_4X4; | 
|  | // TODO(any) : Pass this_rd based on skip/non-skip cost | 
|  | const int skip_trellis = 0; | 
|  | av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size, | 
|  | FTXS_NONE, skip_trellis); | 
|  | } | 
|  |  | 
|  | // Search for the best uniform transform size and type for current coding block. | 
|  | static AOM_INLINE void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, | 
|  | MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, | 
|  | int64_t ref_best_rd, | 
|  | BLOCK_SIZE bs) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs]; | 
|  | const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT; | 
|  | int start_tx; | 
|  | // The split depth can be at most MAX_TX_DEPTH, so the init_depth controls | 
|  | // how many times of splitting is allowed during the RD search. | 
|  | int init_depth; | 
|  |  | 
|  | if (tx_select) { | 
|  | start_tx = max_rect_tx_size; | 
|  | init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], | 
|  | is_inter_block(mbmi), &cpi->sf, | 
|  | txfm_params->tx_size_search_method); | 
|  | } else { | 
|  | const TX_SIZE chosen_tx_size = | 
|  | tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type); | 
|  | start_tx = chosen_tx_size; | 
|  | init_depth = MAX_TX_DEPTH; | 
|  | } | 
|  |  | 
|  | const int skip_trellis = 0; | 
|  | uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | TX_SIZE best_tx_size = max_rect_tx_size; | 
|  | int64_t best_rd = INT64_MAX; | 
|  | const int num_blks = bsize_to_num_blk(bs); | 
|  | x->rd_model = FULL_TXFM_RD; | 
|  | int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX }; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH; | 
|  | depth++, tx_size = sub_tx_size_map[tx_size]) { | 
|  | if ((!cpi->oxcf.txfm_cfg.enable_tx64 && | 
|  | txsize_sqr_up_map[tx_size] == TX_64X64) || | 
|  | (!cpi->oxcf.txfm_cfg.enable_rect_tx && | 
|  | tx_size_wide[tx_size] != tx_size_high[tx_size])) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RD_STATS this_rd_stats; | 
|  | rd[depth] = av1_uniform_txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, | 
|  | tx_size, FTXS_NONE, skip_trellis); | 
|  | if (rd[depth] < best_rd) { | 
|  | av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks); | 
|  | av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks); | 
|  | best_tx_size = tx_size; | 
|  | best_rd = rd[depth]; | 
|  | *rd_stats = this_rd_stats; | 
|  | } | 
|  | if (tx_size == TX_4X4) break; | 
|  | // If we are searching three depths, prune the smallest size depending | 
|  | // on rd results for the first two depths for low contrast blocks. | 
|  | if (depth > init_depth && depth != MAX_TX_DEPTH && | 
|  | x->source_variance < 256) { | 
|  | if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rd_stats->rate != INT_MAX) { | 
|  | mbmi->tx_size = best_tx_size; | 
|  | av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks); | 
|  | av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search for the best transform type for the given transform block in the | 
|  | // given plane/channel, and calculate the corresponding RD cost. | 
|  | static AOM_INLINE void block_rd_txfm(int plane, int block, int blk_row, | 
|  | int blk_col, BLOCK_SIZE plane_bsize, | 
|  | TX_SIZE tx_size, void *arg) { | 
|  | struct rdcost_block_args *args = arg; | 
|  | if (args->exit_early) { | 
|  | args->incomplete_exit = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | MACROBLOCK *const x = args->x; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const int is_inter = is_inter_block(xd->mi[0]); | 
|  | const AV1_COMP *cpi = args->cpi; | 
|  | ENTROPY_CONTEXT *a = args->t_above + blk_col; | 
|  | ENTROPY_CONTEXT *l = args->t_left + blk_row; | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | RD_STATS this_rd_stats; | 
|  | av1_init_rd_stats(&this_rd_stats); | 
|  |  | 
|  | if (!is_inter) { | 
|  | av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); | 
|  | av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); | 
|  | } | 
|  |  | 
|  | TXB_CTX txb_ctx; | 
|  | get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); | 
|  | search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, | 
|  | &txb_ctx, args->ftxs_mode, args->skip_trellis, | 
|  | args->best_rd - args->current_rd, &this_rd_stats); | 
|  |  | 
|  | if (plane == AOM_PLANE_Y && xd->cfl.store_y) { | 
|  | assert(!is_inter || plane_bsize < BLOCK_8X8); | 
|  | cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); | 
|  | } | 
|  |  | 
|  | #if CONFIG_RD_DEBUG | 
|  | update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate); | 
|  | #endif  // CONFIG_RD_DEBUG | 
|  | av1_set_txb_context(x, plane, block, tx_size, a, l); | 
|  |  | 
|  | const int blk_idx = | 
|  | blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col; | 
|  |  | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | if (plane == 0) | 
|  | set_blk_skip(txfm_info->blk_skip, plane, blk_idx, | 
|  | x->plane[plane].eobs[block] == 0); | 
|  | else | 
|  | set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0); | 
|  |  | 
|  | int64_t rd; | 
|  | if (is_inter) { | 
|  | const int64_t no_skip_txfm_rd = | 
|  | RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); | 
|  | const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse); | 
|  | rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd); | 
|  | this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block]; | 
|  | } else { | 
|  | // Signal non-skip_txfm for Intra blocks | 
|  | rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); | 
|  | this_rd_stats.skip_txfm = 0; | 
|  | } | 
|  |  | 
|  | av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); | 
|  |  | 
|  | args->current_rd += rd; | 
|  | if (args->current_rd > args->best_rd) args->exit_early = 1; | 
|  | } | 
|  |  | 
|  | int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, int64_t ref_best_rd, | 
|  | BLOCK_SIZE bs, TX_SIZE tx_size) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | block_signals_txsize(mbmi->bsize); | 
|  | int tx_size_rate = 0; | 
|  | if (tx_select) { | 
|  | const int ctx = txfm_partition_context( | 
|  | xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size); | 
|  | tx_size_rate = mode_costs->txfm_partition_cost[ctx][0]; | 
|  | } | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0]; | 
|  | const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1]; | 
|  | const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0); | 
|  | const int64_t no_this_rd = | 
|  | RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0); | 
|  | mbmi->tx_size = tx_size; | 
|  |  | 
|  | const uint8_t txw_unit = tx_size_wide_unit[tx_size]; | 
|  | const uint8_t txh_unit = tx_size_high_unit[tx_size]; | 
|  | const int step = txw_unit * txh_unit; | 
|  | const int max_blocks_wide = max_block_wide(xd, bs, 0); | 
|  | const int max_blocks_high = max_block_high(xd, bs, 0); | 
|  |  | 
|  | struct rdcost_block_args args; | 
|  | av1_zero(args); | 
|  | args.x = x; | 
|  | args.cpi = cpi; | 
|  | args.best_rd = ref_best_rd; | 
|  | args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd); | 
|  | av1_init_rd_stats(&args.rd_stats); | 
|  | av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left); | 
|  | int i = 0; | 
|  | for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit; | 
|  | blk_row += txh_unit) { | 
|  | for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) { | 
|  | RD_STATS this_rd_stats; | 
|  | av1_init_rd_stats(&this_rd_stats); | 
|  |  | 
|  | if (args.exit_early) { | 
|  | args.incomplete_exit = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ENTROPY_CONTEXT *a = args.t_above + blk_col; | 
|  | ENTROPY_CONTEXT *l = args.t_left + blk_row; | 
|  | TXB_CTX txb_ctx; | 
|  | get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx); | 
|  |  | 
|  | TxfmParam txfm_param; | 
|  | QUANT_PARAM quant_param; | 
|  | av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param); | 
|  | av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param); | 
|  |  | 
|  | av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param); | 
|  | av1_quant(x, 0, i, &txfm_param, &quant_param); | 
|  |  | 
|  | this_rd_stats.rate = | 
|  | cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0); | 
|  |  | 
|  | dist_block_tx_domain(x, 0, i, tx_size, &this_rd_stats.dist, | 
|  | &this_rd_stats.sse); | 
|  |  | 
|  | const int64_t no_skip_txfm_rd = | 
|  | RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); | 
|  | const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse); | 
|  |  | 
|  | this_rd_stats.skip_txfm &= !x->plane[0].eobs[i]; | 
|  |  | 
|  | av1_merge_rd_stats(&args.rd_stats, &this_rd_stats); | 
|  | args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd); | 
|  |  | 
|  | if (args.current_rd > ref_best_rd) { | 
|  | args.exit_early = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | av1_set_txb_context(x, 0, i, tx_size, a, l); | 
|  | i += step; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats); | 
|  |  | 
|  | *rd_stats = args.rd_stats; | 
|  | if (rd_stats->rate == INT_MAX) return INT64_MAX; | 
|  |  | 
|  | int64_t rd; | 
|  | // rdstats->rate should include all the rate except skip/non-skip cost as the | 
|  | // same is accounted in the caller functions after rd evaluation of all | 
|  | // planes. However the decisions should be done after considering the | 
|  | // skip/non-skip header cost | 
|  | if (rd_stats->skip_txfm && is_inter) { | 
|  | rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); | 
|  | } else { | 
|  | // Intra blocks are always signalled as non-skip | 
|  | rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate, | 
|  | rd_stats->dist); | 
|  | rd_stats->rate += tx_size_rate; | 
|  | } | 
|  | // Check if forcing the block to skip transform leads to smaller RD cost. | 
|  | if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) { | 
|  | int64_t temp_skip_txfm_rd = | 
|  | RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); | 
|  | if (temp_skip_txfm_rd <= rd) { | 
|  | rd = temp_skip_txfm_rd; | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | rd_stats->skip_txfm = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rd; | 
|  | } | 
|  |  | 
|  | int64_t av1_uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, int64_t ref_best_rd, | 
|  | BLOCK_SIZE bs, TX_SIZE tx_size, | 
|  | FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis) { | 
|  | assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | block_signals_txsize(mbmi->bsize); | 
|  | int tx_size_rate = 0; | 
|  | if (tx_select) { | 
|  | const int ctx = txfm_partition_context( | 
|  | xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size); | 
|  | tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0] | 
|  | : tx_size_cost(x, bs, tx_size); | 
|  | } | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0]; | 
|  | const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1]; | 
|  | const int64_t skip_txfm_rd = | 
|  | is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX; | 
|  | const int64_t no_this_rd = | 
|  | RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0); | 
|  |  | 
|  | mbmi->tx_size = tx_size; | 
|  | av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, | 
|  | AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs, | 
|  | tx_size, ftxs_mode, skip_trellis); | 
|  | if (rd_stats->rate == INT_MAX) return INT64_MAX; | 
|  |  | 
|  | int64_t rd; | 
|  | // rdstats->rate should include all the rate except skip/non-skip cost as the | 
|  | // same is accounted in the caller functions after rd evaluation of all | 
|  | // planes. However the decisions should be done after considering the | 
|  | // skip/non-skip header cost | 
|  | if (rd_stats->skip_txfm && is_inter) { | 
|  | rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); | 
|  | } else { | 
|  | // Intra blocks are always signalled as non-skip | 
|  | rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate, | 
|  | rd_stats->dist); | 
|  | rd_stats->rate += tx_size_rate; | 
|  | } | 
|  | // Check if forcing the block to skip transform leads to smaller RD cost. | 
|  | if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) { | 
|  | int64_t temp_skip_txfm_rd = | 
|  | RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); | 
|  | if (temp_skip_txfm_rd <= rd) { | 
|  | rd = temp_skip_txfm_rd; | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | rd_stats->skip_txfm = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rd; | 
|  | } | 
|  |  | 
|  | // Search for the best transform type for a luma inter-predicted block, given | 
|  | // the transform block partitions. | 
|  | // This function is used only when some speed features are enabled. | 
|  | static AOM_INLINE void tx_block_yrd( | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, | 
|  | TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int depth, | 
|  | ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, | 
|  | TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, int64_t ref_best_rd, | 
|  | RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode) { | 
|  | assert(tx_size < TX_SIZES_ALL); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(is_inter_block(mbmi)); | 
|  | const int max_blocks_high = max_block_high(xd, plane_bsize, 0); | 
|  | const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); | 
|  |  | 
|  | if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
|  |  | 
|  | const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( | 
|  | plane_bsize, blk_row, blk_col)]; | 
|  | const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, | 
|  | mbmi->bsize, tx_size); | 
|  |  | 
|  | av1_init_rd_stats(rd_stats); | 
|  | if (tx_size == plane_tx_size) { | 
|  | ENTROPY_CONTEXT *ta = above_ctx + blk_col; | 
|  | ENTROPY_CONTEXT *tl = left_ctx + blk_row; | 
|  | const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); | 
|  | TXB_CTX txb_ctx; | 
|  | get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx); | 
|  |  | 
|  | const int zero_blk_rate = | 
|  | x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)] | 
|  | .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; | 
|  | rd_stats->zero_rate = zero_blk_rate; | 
|  | tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx, | 
|  | rd_stats, ftxs_mode, ref_best_rd, NULL); | 
|  | const int mi_width = mi_size_wide[plane_bsize]; | 
|  | TxfmSearchInfo *txfm_info = &x->txfm_search_info; | 
|  | if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= | 
|  | RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || | 
|  | rd_stats->skip_txfm == 1) { | 
|  | rd_stats->rate = zero_blk_rate; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | rd_stats->skip_txfm = 1; | 
|  | set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1); | 
|  | x->plane[0].eobs[block] = 0; | 
|  | x->plane[0].txb_entropy_ctx[block] = 0; | 
|  | update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); | 
|  | } else { | 
|  | rd_stats->skip_txfm = 0; | 
|  | set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0); | 
|  | } | 
|  | if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) | 
|  | rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0]; | 
|  | av1_set_txb_context(x, 0, block, tx_size, ta, tl); | 
|  | txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, | 
|  | tx_size); | 
|  | } else { | 
|  | const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
|  | const int txb_width = tx_size_wide_unit[sub_txs]; | 
|  | const int txb_height = tx_size_high_unit[sub_txs]; | 
|  | const int step = txb_height * txb_width; | 
|  | const int row_end = | 
|  | AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); | 
|  | const int col_end = | 
|  | AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); | 
|  | RD_STATS pn_rd_stats; | 
|  | int64_t this_rd = 0; | 
|  | assert(txb_width > 0 && txb_height > 0); | 
|  |  | 
|  | for (int row = 0; row < row_end; row += txb_height) { | 
|  | const int offsetr = blk_row + row; | 
|  | for (int col = 0; col < col_end; col += txb_width) { | 
|  | const int offsetc = blk_col + col; | 
|  |  | 
|  | av1_init_rd_stats(&pn_rd_stats); | 
|  | tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize, | 
|  | depth + 1, above_ctx, left_ctx, tx_above, tx_left, | 
|  | ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); | 
|  | if (pn_rd_stats.rate == INT_MAX) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return; | 
|  | } | 
|  | av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
|  | this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); | 
|  | block += step; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) | 
|  | rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // search for tx type with tx sizes already decided for a inter-predicted luma | 
|  | // partition block. It's used only when some speed features are enabled. | 
|  | // Return value 0: early termination triggered, no valid rd cost available; | 
|  | //              1: rd cost values are valid. | 
|  | static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
|  | int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) { | 
|  | if (ref_best_rd < 0) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | av1_init_rd_stats(rd_stats); | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  | const int step = bw * bh; | 
|  | const int init_depth = get_search_init_depth( | 
|  | mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method); | 
|  | ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; | 
|  | ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; | 
|  | TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; | 
|  | TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; | 
|  | av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); | 
|  | memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); | 
|  | memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); | 
|  |  | 
|  | int64_t this_rd = 0; | 
|  | for (int idy = 0, block = 0; idy < mi_height; idy += bh) { | 
|  | for (int idx = 0; idx < mi_width; idx += bw) { | 
|  | RD_STATS pn_rd_stats; | 
|  | av1_init_rd_stats(&pn_rd_stats); | 
|  | tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth, | 
|  | ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd, | 
|  | &pn_rd_stats, ftxs_mode); | 
|  | if (pn_rd_stats.rate == INT_MAX) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return 0; | 
|  | } | 
|  | av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
|  | this_rd += | 
|  | AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), | 
|  | RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); | 
|  | block += step; | 
|  | } | 
|  | } | 
|  |  | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0]; | 
|  | const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; | 
|  | const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); | 
|  | this_rd = | 
|  | RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist); | 
|  | if (skip_txfm_rd < this_rd) { | 
|  | this_rd = skip_txfm_rd; | 
|  | rd_stats->rate = 0; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | rd_stats->skip_txfm = 1; | 
|  | } | 
|  |  | 
|  | const int is_cost_valid = this_rd > ref_best_rd; | 
|  | if (!is_cost_valid) { | 
|  | // reset cost value | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | } | 
|  | return is_cost_valid; | 
|  | } | 
|  |  | 
|  | // Search for the best transform size and type for current inter-predicted | 
|  | // luma block with recursive transform block partitioning. The obtained | 
|  | // transform selection will be saved in xd->mi[0], the corresponding RD stats | 
|  | // will be saved in rd_stats. The returned value is the corresponding RD cost. | 
|  | static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
|  | int64_t ref_best_rd, | 
|  | TXB_RD_INFO_NODE *rd_info_tree) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | assert(is_inter_block(xd->mi[0])); | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD; | 
|  | int64_t rd_thresh = ref_best_rd; | 
|  | if (rd_thresh == 0) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return INT64_MAX; | 
|  | } | 
|  | if (fast_tx_search && rd_thresh < INT64_MAX) { | 
|  | if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); | 
|  | } | 
|  | assert(rd_thresh > 0); | 
|  | const FAST_TX_SEARCH_MODE ftxs_mode = | 
|  | fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[0]; | 
|  | assert(bsize < BLOCK_SIZES_ALL); | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; | 
|  | ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; | 
|  | TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; | 
|  | TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; | 
|  | av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); | 
|  | memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); | 
|  | memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); | 
|  | const int init_depth = get_search_init_depth( | 
|  | mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method); | 
|  | const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
|  | const int bh = tx_size_high_unit[max_tx_size]; | 
|  | const int bw = tx_size_wide_unit[max_tx_size]; | 
|  | const int step = bw * bh; | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0]; | 
|  | const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1]; | 
|  | int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0); | 
|  | int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0); | 
|  | int block = 0; | 
|  |  | 
|  | av1_init_rd_stats(rd_stats); | 
|  | for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) { | 
|  | for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) { | 
|  | const int64_t best_rd_sofar = | 
|  | (rd_thresh == INT64_MAX) | 
|  | ? INT64_MAX | 
|  | : (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd))); | 
|  | int is_cost_valid = 1; | 
|  | RD_STATS pn_rd_stats; | 
|  | // Search for the best transform block size and type for the sub-block. | 
|  | select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize, | 
|  | ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX, | 
|  | best_rd_sofar, &is_cost_valid, ftxs_mode, rd_info_tree); | 
|  | if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return INT64_MAX; | 
|  | } | 
|  | av1_merge_rd_stats(rd_stats, &pn_rd_stats); | 
|  | skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse); | 
|  | no_skip_txfm_rd = | 
|  | RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist); | 
|  | block += step; | 
|  | if (rd_info_tree != NULL) rd_info_tree += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rd_stats->rate == INT_MAX) return INT64_MAX; | 
|  |  | 
|  | rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd); | 
|  |  | 
|  | // If fast_tx_search is true, only DCT and 1D DCT were tested in | 
|  | // select_inter_block_yrd() above. Do a better search for tx type with | 
|  | // tx sizes already decided. | 
|  | if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) { | 
|  | if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE)) | 
|  | return INT64_MAX; | 
|  | } | 
|  |  | 
|  | int64_t final_rd; | 
|  | if (rd_stats->skip_txfm) { | 
|  | final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse); | 
|  | } else { | 
|  | final_rd = | 
|  | RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist); | 
|  | if (!xd->lossless[xd->mi[0]->segment_id]) { | 
|  | final_rd = | 
|  | AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return final_rd; | 
|  | } | 
|  |  | 
|  | // Return 1 to terminate transform search early. The decision is made based on | 
|  | // the comparison with the reference RD cost and the model-estimated RD cost. | 
|  | static AOM_INLINE int model_based_tx_search_prune(const AV1_COMP *cpi, | 
|  | MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, | 
|  | int64_t ref_best_rd) { | 
|  | const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level; | 
|  | assert(level >= 0 && level <= 2); | 
|  | int model_rate; | 
|  | int64_t model_dist; | 
|  | int model_skip; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE]( | 
|  | cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL, | 
|  | NULL, NULL, NULL); | 
|  | if (model_skip) return 0; | 
|  | const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist); | 
|  | // TODO(debargha, urvang): Improve the model and make the check below | 
|  | // tighter. | 
|  | static const int prune_factor_by8[] = { 3, 5 }; | 
|  | const int factor = prune_factor_by8[level - 1]; | 
|  | return ((model_rd * factor) >> 3) > ref_best_rd; | 
|  | } | 
|  |  | 
|  | void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, BLOCK_SIZE bsize, | 
|  | int64_t ref_best_rd) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | assert(is_inter_block(xd->mi[0])); | 
|  |  | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  |  | 
|  | // If modeled RD cost is a lot worse than the best so far, terminate early. | 
|  | if (cpi->sf.tx_sf.model_based_prune_tx_search_level && | 
|  | ref_best_rd != INT64_MAX) { | 
|  | if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return; | 
|  | } | 
|  |  | 
|  | // Hashing based speed feature. If the hash of the prediction residue block is | 
|  | // found in the hash table, use previous search results and terminate early. | 
|  | uint32_t hash = 0; | 
|  | MB_RD_RECORD *mb_rd_record = NULL; | 
|  | const int mi_row = x->e_mbd.mi_row; | 
|  | const int mi_col = x->e_mbd.mi_col; | 
|  | const int within_border = | 
|  | mi_row >= xd->tile.mi_row_start && | 
|  | (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && | 
|  | mi_col >= xd->tile.mi_col_start && | 
|  | (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); | 
|  | const int is_mb_rd_hash_enabled = | 
|  | (within_border && cpi->sf.rd_sf.use_mb_rd_hash); | 
|  | const int n4 = bsize_to_num_blk(bsize); | 
|  | if (is_mb_rd_hash_enabled) { | 
|  | hash = get_block_residue_hash(x, bsize); | 
|  | mb_rd_record = &x->txfm_search_info.txb_rd_records->mb_rd_record; | 
|  | const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); | 
|  | if (match_index != -1) { | 
|  | MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[match_index]; | 
|  | fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we predict that skip is the optimal RD decision - set the respective | 
|  | // context and terminate early. | 
|  | int64_t dist; | 
|  | if (txfm_params->skip_txfm_level && | 
|  | predict_skip_txfm(x, bsize, &dist, | 
|  | cpi->common.features.reduced_tx_set_used)) { | 
|  | set_skip_txfm(x, rd_stats, bsize, dist); | 
|  | // Save the RD search results into tx_rd_record. | 
|  | if (is_mb_rd_hash_enabled) | 
|  | save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); | 
|  | return; | 
|  | } | 
|  | #if CONFIG_SPEED_STATS | 
|  | ++x->txfm_search_info.tx_search_count; | 
|  | #endif  // CONFIG_SPEED_STATS | 
|  |  | 
|  | // Pre-compute residue hashes (transform block level) and find existing or | 
|  | // add new RD records to store and reuse rate and distortion values to speed | 
|  | // up TX size/type search. | 
|  | TXB_RD_INFO_NODE matched_rd_info[4 + 16 + 64]; | 
|  | int found_rd_info = 0; | 
|  | if (ref_best_rd != INT64_MAX && within_border && | 
|  | cpi->sf.tx_sf.use_inter_txb_hash) { | 
|  | found_rd_info = find_tx_size_rd_records(x, bsize, matched_rd_info); | 
|  | } | 
|  |  | 
|  | const int64_t rd = | 
|  | select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd, | 
|  | found_rd_info ? matched_rd_info : NULL); | 
|  |  | 
|  | if (rd == INT64_MAX) { | 
|  | // We should always find at least one candidate unless ref_best_rd is less | 
|  | // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type | 
|  | // might have failed to find something better) | 
|  | assert(ref_best_rd != INT64_MAX); | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Save the RD search results into tx_rd_record. | 
|  | if (is_mb_rd_hash_enabled) { | 
|  | assert(mb_rd_record != NULL); | 
|  | save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | RD_STATS *rd_stats, BLOCK_SIZE bs, | 
|  | int64_t ref_best_rd) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const TxfmSearchParams *tx_params = &x->txfm_search_params; | 
|  | assert(bs == mbmi->bsize); | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  |  | 
|  | av1_init_rd_stats(rd_stats); | 
|  |  | 
|  | // Hashing based speed feature for inter blocks. If the hash of the residue | 
|  | // block is found in the table, use previously saved search results and | 
|  | // terminate early. | 
|  | uint32_t hash = 0; | 
|  | MB_RD_RECORD *mb_rd_record = NULL; | 
|  | const int num_blks = bsize_to_num_blk(bs); | 
|  | if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) { | 
|  | const int within_border = | 
|  | mi_row >= xd->tile.mi_row_start && | 
|  | (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) && | 
|  | mi_col >= xd->tile.mi_col_start && | 
|  | (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end); | 
|  | if (within_border) { | 
|  | hash = get_block_residue_hash(x, bs); | 
|  | mb_rd_record = &x->txfm_search_info.txb_rd_records->mb_rd_record; | 
|  | const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); | 
|  | if (match_index != -1) { | 
|  | MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[match_index]; | 
|  | fetch_tx_rd_info(num_blks, tx_rd_info, rd_stats, x); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we predict that skip is the optimal RD decision - set the respective | 
|  | // context and terminate early. | 
|  | int64_t dist; | 
|  | if (tx_params->skip_txfm_level && is_inter && | 
|  | !xd->lossless[mbmi->segment_id] && | 
|  | predict_skip_txfm(x, bs, &dist, | 
|  | cpi->common.features.reduced_tx_set_used)) { | 
|  | // Populate rdstats as per skip decision | 
|  | set_skip_txfm(x, rd_stats, bs, dist); | 
|  | // Save the RD search results into tx_rd_record. | 
|  | if (mb_rd_record) { | 
|  | save_tx_rd_info(num_blks, hash, x, rd_stats, mb_rd_record); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (xd->lossless[mbmi->segment_id]) { | 
|  | // Lossless mode can only pick the smallest (4x4) transform size. | 
|  | choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); | 
|  | } else if (tx_params->tx_size_search_method == USE_LARGESTALL) { | 
|  | choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); | 
|  | } else { | 
|  | choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); | 
|  | } | 
|  |  | 
|  | // Save the RD search results into tx_rd_record for possible reuse in future. | 
|  | if (mb_rd_record) { | 
|  | save_tx_rd_info(num_blks, hash, x, rd_stats, mb_rd_record); | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats, | 
|  | BLOCK_SIZE bsize, int64_t ref_best_rd) { | 
|  | av1_init_rd_stats(rd_stats); | 
|  | if (ref_best_rd < 0) return 0; | 
|  | if (!x->e_mbd.is_chroma_ref) return 1; | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | int64_t this_rd = 0, skip_txfm_rd = 0; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); | 
|  |  | 
|  | if (is_inter) { | 
|  | for (int plane = 1; plane < MAX_MB_PLANE; ++plane) | 
|  | av1_subtract_plane(x, plane_bsize, plane); | 
|  | } | 
|  |  | 
|  | const int skip_trellis = 0; | 
|  | const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); | 
|  | int is_cost_valid = 1; | 
|  | for (int plane = 1; plane < MAX_MB_PLANE; ++plane) { | 
|  | RD_STATS this_rd_stats; | 
|  | int64_t chroma_ref_best_rd = ref_best_rd; | 
|  | // For inter blocks, refined ref_best_rd is used for early exit | 
|  | // For intra blocks, even though current rd crosses ref_best_rd, early | 
|  | // exit is not recommended as current rd is used for gating subsequent | 
|  | // modes as well (say, for angular modes) | 
|  | // TODO(any): Extend the early exit mechanism for intra modes as well | 
|  | if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter && | 
|  | chroma_ref_best_rd != INT64_MAX) | 
|  | chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd); | 
|  | av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane, | 
|  | plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis); | 
|  | if (this_rd_stats.rate == INT_MAX) { | 
|  | is_cost_valid = 0; | 
|  | break; | 
|  | } | 
|  | av1_merge_rd_stats(rd_stats, &this_rd_stats); | 
|  | this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); | 
|  | skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse); | 
|  | if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) { | 
|  | is_cost_valid = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!is_cost_valid) { | 
|  | // reset cost value | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | } | 
|  |  | 
|  | return is_cost_valid; | 
|  | } | 
|  |  | 
|  | void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, | 
|  | RD_STATS *rd_stats, int64_t ref_best_rd, | 
|  | int64_t current_rd, int plane, BLOCK_SIZE plane_bsize, | 
|  | TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode, | 
|  | int skip_trellis) { | 
|  | assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size)); | 
|  |  | 
|  | if (!cpi->oxcf.txfm_cfg.enable_tx64 && | 
|  | txsize_sqr_up_map[tx_size] == TX_64X64) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (current_rd > ref_best_rd) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
|  | struct rdcost_block_args args; | 
|  | av1_zero(args); | 
|  | args.x = x; | 
|  | args.cpi = cpi; | 
|  | args.best_rd = ref_best_rd; | 
|  | args.current_rd = current_rd; | 
|  | args.ftxs_mode = ftxs_mode; | 
|  | args.skip_trellis = skip_trellis; | 
|  | av1_init_rd_stats(&args.rd_stats); | 
|  |  | 
|  | av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left); | 
|  | av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm, | 
|  | &args); | 
|  |  | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int is_inter = is_inter_block(mbmi); | 
|  | const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early; | 
|  |  | 
|  | if (invalid_rd) { | 
|  | av1_invalid_rd_stats(rd_stats); | 
|  | } else { | 
|  | *rd_stats = args.rd_stats; | 
|  | } | 
|  | } | 
|  |  | 
|  | int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | RD_STATS *rd_stats, RD_STATS *rd_stats_y, | 
|  | RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | TxfmSearchParams *txfm_params = &x->txfm_search_params; | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  | const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0], | 
|  | x->mode_costs.skip_txfm_cost[skip_ctx][1] }; | 
|  | const int64_t min_header_rate = | 
|  | mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]); | 
|  | // Account for minimum skip and non_skip rd. | 
|  | // Eventually either one of them will be added to mode_rate | 
|  | const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0); | 
|  | if (min_header_rd_possible > ref_best_rd) { | 
|  | av1_invalid_rd_stats(rd_stats_y); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0); | 
|  | const int64_t rd_thresh = | 
|  | ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd; | 
|  | av1_init_rd_stats(rd_stats); | 
|  | av1_init_rd_stats(rd_stats_y); | 
|  | rd_stats->rate = mode_rate; | 
|  |  | 
|  | // cost and distortion | 
|  | av1_subtract_plane(x, bsize, 0); | 
|  | if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && | 
|  | !xd->lossless[mbmi->segment_id]) { | 
|  | av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); | 
|  | #if CONFIG_COLLECT_RD_STATS == 2 | 
|  | PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize); | 
|  | #endif  // CONFIG_COLLECT_RD_STATS == 2 | 
|  | } else { | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); | 
|  | memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); | 
|  | for (int i = 0; i < xd->height * xd->width; ++i) | 
|  | set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm); | 
|  | } | 
|  |  | 
|  | if (rd_stats_y->rate == INT_MAX) return 0; | 
|  |  | 
|  | av1_merge_rd_stats(rd_stats, rd_stats_y); | 
|  |  | 
|  | const int64_t non_skip_txfm_rdcosty = | 
|  | RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist); | 
|  | const int64_t skip_txfm_rdcosty = | 
|  | RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse); | 
|  | const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty); | 
|  | if (min_rdcosty > ref_best_rd) return 0; | 
|  |  | 
|  | av1_init_rd_stats(rd_stats_uv); | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | if (num_planes > 1) { | 
|  | int64_t ref_best_chroma_rd = ref_best_rd; | 
|  | // Calculate best rd cost possible for chroma | 
|  | if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && | 
|  | (ref_best_chroma_rd != INT64_MAX)) { | 
|  | ref_best_chroma_rd = (ref_best_chroma_rd - | 
|  | AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty)); | 
|  | } | 
|  | const int is_cost_valid_uv = | 
|  | av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd); | 
|  | if (!is_cost_valid_uv) return 0; | 
|  | av1_merge_rd_stats(rd_stats, rd_stats_uv); | 
|  | } | 
|  |  | 
|  | int choose_skip_txfm = rd_stats->skip_txfm; | 
|  | if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) { | 
|  | const int64_t rdcost_no_skip_txfm = RDCOST( | 
|  | x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0], | 
|  | rd_stats->dist); | 
|  | const int64_t rdcost_skip_txfm = | 
|  | RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse); | 
|  | if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1; | 
|  | } | 
|  | if (choose_skip_txfm) { | 
|  | rd_stats_y->rate = 0; | 
|  | rd_stats_uv->rate = 0; | 
|  | rd_stats->rate = mode_rate + skip_txfm_cost[1]; | 
|  | rd_stats->dist = rd_stats->sse; | 
|  | rd_stats_y->dist = rd_stats_y->sse; | 
|  | rd_stats_uv->dist = rd_stats_uv->sse; | 
|  | mbmi->skip_txfm = 1; | 
|  | if (rd_stats->skip_txfm) { | 
|  | const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); | 
|  | if (tmprd > ref_best_rd) return 0; | 
|  | } | 
|  | } else { | 
|  | rd_stats->rate += skip_txfm_cost[0]; | 
|  | mbmi->skip_txfm = 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } |