blob: 2be4cf6a95af170cb1386604cc150c32494fb11b [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_scale_rtcd.h"
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp10/common/blockd.h"
#include "vp10/common/reconinter.h"
#include "vp10/common/reconintra.h"
#if CONFIG_OBMC
#include "vp10/common/onyxc_int.h"
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
static int get_masked_weight(int m) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return (1 << WEDGE_WEIGHT_BITS);
else
return smoothfn[m + SMOOTHER_LEN];
}
// [negative][transpose][reverse]
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_obl[2][2][2][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
// [negative][transpose]
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_str[2][2][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
void vp10_init_wedge_masks() {
int i, j;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
const int a[4] = {2, 1, 2, 2};
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (2 * j + 1 - (a[2] * w) / 2);
int y = (2 * i + 1 - (a[3] * h) / 2);
int m = (a[0] * x + a[1] * y) / 2;
wedge_mask_obl[0][0][0][i * stride + j] =
wedge_mask_obl[0][1][0][j * stride + i] =
wedge_mask_obl[0][0][1][i * stride + w - 1 - j] =
wedge_mask_obl[0][1][1][(w - 1 - j) * stride + i] =
get_masked_weight(m);
wedge_mask_obl[1][0][0][i * stride + j] =
wedge_mask_obl[1][1][0][j * stride + i] =
wedge_mask_obl[1][0][1][i * stride + w - 1 - j] =
wedge_mask_obl[1][1][1][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m);
wedge_mask_str[0][0][i * stride + j] =
wedge_mask_str[0][1][j * stride + i] =
get_masked_weight(x);
wedge_mask_str[1][0][i * stride + j] =
wedge_mask_str[1][1][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - get_masked_weight(x);
}
}
static const uint8_t *get_wedge_mask_inplace(const int *a,
int h, int w) {
const int woff = (a[2] * w) >> 2;
const int hoff = (a[3] * h) >> 2;
const int oblique = (abs(a[0]) + abs(a[1]) == 3);
const uint8_t *master;
int transpose, reverse, negative;
if (oblique) {
negative = (a[0] < 0);
transpose = (abs(a[0]) == 1);
reverse = (a[0] < 0) ^ (a[1] < 0);
} else {
negative = (a[0] < 0 || a[1] < 0);
transpose = (a[0] == 0);
reverse = 0;
}
master = (oblique ?
wedge_mask_obl[negative][transpose][reverse] :
wedge_mask_str[negative][transpose]) +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0
// The soft mask is obtained by computing f(x, y) and then calling
// get_masked_weight(f(x, y)).
static const int wedge_params_sml[1 << WEDGE_BITS_SML][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
};
static const int wedge_params_med_hgtw[1 << WEDGE_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{-1, -2, 2, 1},
{ 1, 2, 2, 1},
{-1, -2, 2, 3},
{ 1, 2, 2, 3},
};
static const int wedge_params_med_hltw[1 << WEDGE_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{-2, -1, 1, 2},
{ 2, 1, 1, 2},
{-2, -1, 3, 2},
{ 2, 1, 3, 2},
};
static const int wedge_params_med_heqw[1 << WEDGE_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{ 0, -2, 0, 1},
{ 0, 2, 0, 1},
{ 0, -2, 0, 3},
{ 0, 2, 0, 3},
{-2, 0, 1, 0},
{ 2, 0, 1, 0},
{-2, 0, 3, 0},
{ 2, 0, 3, 0},
};
static const int wedge_params_big_hgtw[1 << WEDGE_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{-1, -2, 2, 1},
{ 1, 2, 2, 1},
{-1, -2, 2, 3},
{ 1, 2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{-2, -1, 1, 2},
{ 2, 1, 1, 2},
{-2, -1, 3, 2},
{ 2, 1, 3, 2},
{ 0, -2, 0, 1},
{ 0, 2, 0, 1},
{ 0, -2, 0, 2},
{ 0, 2, 0, 2},
{ 0, -2, 0, 3},
{ 0, 2, 0, 3},
{-2, 0, 2, 0},
{ 2, 0, 2, 0},
};
static const int wedge_params_big_hltw[1 << WEDGE_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{-1, -2, 2, 1},
{ 1, 2, 2, 1},
{-1, -2, 2, 3},
{ 1, 2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{-2, -1, 1, 2},
{ 2, 1, 1, 2},
{-2, -1, 3, 2},
{ 2, 1, 3, 2},
{ 0, -2, 0, 2},
{ 0, 2, 0, 2},
{-2, 0, 1, 0},
{ 2, 0, 1, 0},
{-2, 0, 2, 0},
{ 2, 0, 2, 0},
{-2, 0, 3, 0},
{ 2, 0, 3, 0},
};
static const int wedge_params_big_heqw[1 << WEDGE_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{-2, -1, 2, 2},
{ 2, 1, 2, 2},
{-1, -2, 2, 2},
{ 1, 2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{-1, -2, 2, 1},
{ 1, 2, 2, 1},
{-1, -2, 2, 3},
{ 1, 2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{-2, -1, 1, 2},
{ 2, 1, 1, 2},
{-2, -1, 3, 2},
{ 2, 1, 3, 2},
{ 0, -2, 0, 1},
{ 0, 2, 0, 1},
{ 0, -2, 0, 3},
{ 0, 2, 0, 3},
{-2, 0, 1, 0},
{ 2, 0, 1, 0},
{-2, 0, 3, 0},
{ 2, 0, 3, 0},
};
static const int *get_wedge_params(int wedge_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a = NULL;
const int wedge_bits = get_wedge_bits(sb_type);
if (wedge_index == WEDGE_NONE)
return NULL;
if (wedge_bits == WEDGE_BITS_SML) {
a = wedge_params_sml[wedge_index];
} else if (wedge_bits == WEDGE_BITS_MED) {
if (h > w)
a = wedge_params_med_hgtw[wedge_index];
else if (h < w)
a = wedge_params_med_hltw[wedge_index];
else
a = wedge_params_med_heqw[wedge_index];
} else if (wedge_bits == WEDGE_BITS_BIG) {
if (h > w)
a = wedge_params_big_hgtw[wedge_index];
else if (h < w)
a = wedge_params_big_hltw[wedge_index];
else
a = wedge_params_big_heqw[wedge_index];
} else {
assert(0);
}
return a;
}
const uint8_t *vp10_get_soft_mask(int wedge_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a = get_wedge_params(wedge_index, sb_type, h, w);
if (a) {
return get_wedge_mask_inplace(a, h, w);
} else {
return NULL;
}
}
#if CONFIG_SUPERTX
const uint8_t *get_soft_mask_extend(int wedge_index, int plane,
BLOCK_SIZE sb_type,
int wedge_offset_y,
int wedge_offset_x) {
int subh = (plane ? 2 : 4) << b_height_log2_lookup[sb_type];
int subw = (plane ? 2 : 4) << b_width_log2_lookup[sb_type];
const int *a = get_wedge_params(wedge_index, sb_type, subh, subw);
if (a) {
const uint8_t *mask = get_wedge_mask_inplace(a, subh, subw);
mask -= (wedge_offset_x + wedge_offset_y * MASK_MASTER_STRIDE);
return mask;
} else {
return NULL;
}
}
static void build_masked_compound_extend(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int wedge_index, BLOCK_SIZE sb_type,
int wedge_offset_y, int wedge_offset_x,
int h, int w) {
int i, j;
const uint8_t *mask = get_soft_mask_extend(
wedge_index, plane, sb_type, wedge_offset_y, wedge_offset_x);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >>
WEDGE_WEIGHT_BITS;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void build_masked_compound_extend_highbd(
uint8_t *dst_8, int dst_stride,
uint8_t *dst2_8, int dst2_stride, int plane,
int wedge_index, BLOCK_SIZE sb_type,
int wedge_offset_y, int wedge_offset_x,
int h, int w) {
int i, j;
const uint8_t *mask = get_soft_mask_extend(
wedge_index, plane, sb_type, wedge_offset_y, wedge_offset_x);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);
uint16_t *dst2 = CONVERT_TO_SHORTPTR(dst2_8);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >>
WEDGE_WEIGHT_BITS;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#else // CONFIG_SUPERTX
static void build_masked_compound(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int wedge_index, BLOCK_SIZE sb_type,
int h, int w) {
int i, j;
const uint8_t *mask = vp10_get_soft_mask(wedge_index, sb_type, h, w);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >>
WEDGE_WEIGHT_BITS;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void build_masked_compound_highbd(uint8_t *dst_8, int dst_stride,
uint8_t *dst2_8, int dst2_stride,
int wedge_index, BLOCK_SIZE sb_type,
int h, int w) {
int i, j;
const uint8_t *mask = vp10_get_soft_mask(wedge_index, sb_type, h, w);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);
uint16_t *dst2 = CONVERT_TO_SHORTPTR(dst2_8);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >>
WEDGE_WEIGHT_BITS;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_SUPERTX
void vp10_make_masked_inter_predictor(
const uint8_t *pre,
int pre_stride,
uint8_t *dst,
int dst_stride,
const int subpel_x,
const int subpel_y,
const struct scale_factors *sf,
int w, int h,
const INTERP_FILTER interp_filter,
int xs, int ys,
#if CONFIG_SUPERTX
int plane, int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
const MACROBLOCKD *xd) {
const MODE_INFO *mi = xd->mi[0];
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t tmp_dst_[2 * MAX_SB_SQUARE];
uint8_t *tmp_dst =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_;
vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE,
subpel_x, subpel_y, sf, w, h, 0,
interp_filter, xs, ys, xd);
#if CONFIG_SUPERTX
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_extend_highbd(
dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
else
build_masked_compound_extend(
dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
#else
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type, h, w);
else
build_masked_compound(
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type, h, w);
#endif // CONFIG_SUPERTX
#else // CONFIG_VP9_HIGHBITDEPTH
uint8_t tmp_dst[MAX_SB_SQUARE];
vp10_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE,
subpel_x, subpel_y, sf, w, h, 0,
interp_filter, xs, ys, xd);
#if CONFIG_SUPERTX
build_masked_compound_extend(
dst, dst_stride, tmp_dst, MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
#else
build_masked_compound(
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type, h, w);
#endif // CONFIG_SUPERTX
#endif // CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_EXT_INTER
#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *src_mv,
const struct scale_factors *sf,
int w, int h, int ref,
const INTERP_FILTER interp_filter,
enum mv_precision precision,
int x, int y, int bd) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, ref, interp_filter, sf->x_step_q4,
sf->y_step_q4, bd);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp10_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *src_mv,
const struct scale_factors *sf,
int w, int h, int ref,
const INTERP_FILTER interp_filter,
enum mv_precision precision,
int x, int y) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4);
}
void build_inter_predictors(MACROBLOCKD *xd, int plane,
#if CONFIG_OBMC
int mi_col_offset, int mi_row_offset,
#endif // CONFIG_OBMC
int block,
int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_OBMC
const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset];
#else
const MODE_INFO *mi = xd->mi[0];
#endif // CONFIG_OBMC
const int is_compound = has_second_ref(&mi->mbmi);
const INTERP_FILTER interp_filter = mi->mbmi.interp_filter;
int ref;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? average_split_mvs(pd, mi, ref, block)
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
uint8_t *pre;
MV32 scaled_mv;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = vp10_is_scaled(sf);
if (is_scaled) {
pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
pre = pre_buf->buf + (y * pre_buf->stride + x);
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
+ (scaled_mv.col >> SUBPEL_BITS);
#if CONFIG_EXT_INTER
if (ref && get_wedge_bits(mi->mbmi.sb_type) &&
mi->mbmi.use_wedge_interinter)
vp10_make_masked_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride,
subpel_x, subpel_y, sf, w, h,
interp_filter, xs, ys,
#if CONFIG_SUPERTX
plane, wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
xd);
else
#endif // CONFIG_EXT_INTER
vp10_make_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
subpel_x, subpel_y, sf, w, h, ref,
interp_filter, xs, ys, xd);
}
}
void vp10_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane,
int i, int ir, int ic,
int mi_row, int mi_col) {
struct macroblockd_plane *const pd = &xd->plane[plane];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize];
uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2];
int ref;
const int is_compound = has_second_ref(&mi->mbmi);
const INTERP_FILTER interp_filter = mi->mbmi.interp_filter;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const uint8_t *pre =
&pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp10_highbd_build_inter_predictor(pre, pd->pre[ref].stride,
dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height,
ref, interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * ic,
mi_row * MI_SIZE + 4 * ir, xd->bd);
} else {
vp10_build_inter_predictor(pre, pd->pre[ref].stride,
dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height, ref,
interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * ic,
mi_row * MI_SIZE + 4 * ir);
}
#else
vp10_build_inter_predictor(pre, pd->pre[ref].stride,
dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv,
&xd->block_refs[ref]->sf, width, height, ref,
interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * ic,
mi_row * MI_SIZE + 4 * ir);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize] >> pd->subsampling_x;
const int bh = 4 * num_4x4_blocks_high_lookup[bsize] >> pd->subsampling_y;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
const int pw = 8 >> (have_vsplit | pd->subsampling_x);
const int ph = 8 >> (have_hsplit | pd->subsampling_y);
int x, y;
assert(bp != PARTITION_NONE && bp < PARTITION_TYPES);
assert(bsize == BLOCK_8X8);
assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane,
#if CONFIG_OBMC
0, 0,
#endif // CONFIG_OBMC
y * 2 + x, bw, bh,
4 * x, 4 * y, pw, ph,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
} else {
build_inter_predictors(xd, plane,
#if CONFIG_OBMC
0, 0,
#endif // CONFIG_OBMC
0, bw, bh,
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
}
}
void vp10_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi))
vp10_build_interintra_predictors_sby(xd,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
bsize);
#endif // CONFIG_EXT_INTER
}
void vp10_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
if (plane == 0) {
vp10_build_interintra_predictors_sby(xd,
xd->plane[0].dst.buf,
xd->plane[0].dst.stride,
bsize);
} else {
vp10_build_interintra_predictors_sbc(xd,
xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride,
plane, bsize);
}
}
#endif // CONFIG_EXT_INTER
}
void vp10_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi))
vp10_build_interintra_predictors_sbuv(xd,
xd->plane[1].dst.buf,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride,
bsize);
#endif // CONFIG_EXT_INTER
}
void vp10_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi))
vp10_build_interintra_predictors(xd,
xd->plane[0].dst.buf,
xd->plane[1].dst.buf,
xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride,
bsize);
#endif // CONFIG_EXT_INTER
}
void vp10_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
src->v_buffer};
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride};
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &planes[i];
setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL,
pd->subsampling_x, pd->subsampling_y);
}
}
void vp10_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col,
const struct scale_factors *sf) {
if (src != NULL) {
int i;
uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
src->v_buffer};
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride};
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col,
sf, pd->subsampling_x, pd->subsampling_y);
}
}
}
#if CONFIG_SUPERTX
static const uint8_t mask_8[8] = {
64, 64, 62, 52, 12, 2, 0, 0
};
static const uint8_t mask_16[16] = {
63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1
};
static const uint8_t mask_32[32] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36,
28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint8_t mask_8_uv[8] = {
64, 64, 62, 52, 12, 2, 0, 0
};
static const uint8_t mask_16_uv[16] = {
64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0
};
static const uint8_t mask_32_uv[32] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36,
28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static void generate_1dmask(int length, uint8_t *mask, int plane) {
switch (length) {
case 8:
memcpy(mask, plane ? mask_8_uv : mask_8, length);
break;
case 16:
memcpy(mask, plane ? mask_16_uv : mask_16, length);
break;
case 32:
memcpy(mask, plane ? mask_32_uv : mask_32, length);
break;
default:
assert(0);
}
}
void vp10_build_masked_inter_predictor_complex(
MACROBLOCKD *xd,
uint8_t *dst, int dst_stride, uint8_t *dst2, int dst2_stride,
const struct macroblockd_plane *pd, int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
PARTITION_TYPE partition, int plane) {
int i, j;
uint8_t mask[MAX_TX_SIZE];
int top_w = 4 << b_width_log2_lookup[top_bsize];
int top_h = 4 << b_height_log2_lookup[top_bsize];
int w = 4 << b_width_log2_lookup[bsize];
int h = 4 << b_height_log2_lookup[bsize];
int w_offset = (mi_col - mi_col_ori) * MI_SIZE;
int h_offset = (mi_row - mi_row_ori) * MI_SIZE;
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *dst16= CONVERT_TO_SHORTPTR(dst);
uint16_t *dst216 = CONVERT_TO_SHORTPTR(dst2);
int b_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_VP9_HIGHBITDEPTH
assert(bsize <= BLOCK_32X32);
top_w >>= pd->subsampling_x;
top_h >>= pd->subsampling_y;
w >>= pd->subsampling_x;
h >>= pd->subsampling_y;
w_offset >>= pd->subsampling_x;
h_offset >>= pd->subsampling_y;
switch (partition) {
case PARTITION_HORZ:
{
#if CONFIG_VP9_HIGHBITDEPTH
if (b_hdb) {
uint16_t *dst_tmp = dst16 + h_offset * dst_stride;
uint16_t *dst2_tmp = dst216 + h_offset * dst2_stride;
generate_1dmask(h, mask + h_offset,
plane && xd->plane[plane].subsampling_y);
for (i = h_offset; i < h_offset + h; i++) {
for (j = 0; j < top_w; j++) {
const int m = mask[i]; assert(m >= 0 && m <= 64);
if (m == 64)
continue;
if (m == 0)
dst_tmp[j] = dst2_tmp[j];
else
dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m +
dst2_tmp[j] * (64 - m), 6);
}
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
for (; i < top_h; i ++) {
memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint16_t));
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *dst_tmp = dst + h_offset * dst_stride;
uint8_t *dst2_tmp = dst2 + h_offset * dst2_stride;
generate_1dmask(h, mask + h_offset,
plane && xd->plane[plane].subsampling_y);
for (i = h_offset; i < h_offset + h; i++) {
for (j = 0; j < top_w; j++) {
const int m = mask[i]; assert(m >= 0 && m <= 64);
if (m == 64)
continue;
if (m == 0)
dst_tmp[j] = dst2_tmp[j];
else
dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m +
dst2_tmp[j] * (64 - m), 6);
}
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
for (; i < top_h; i ++) {
memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint8_t));
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
break;
case PARTITION_VERT:
{
#if CONFIG_VP9_HIGHBITDEPTH
if (b_hdb) {
uint16_t *dst_tmp = dst16;
uint16_t *dst2_tmp = dst216;
generate_1dmask(w, mask + w_offset,
plane && xd->plane[plane].subsampling_x);
for (i = 0; i < top_h; i++) {
for (j = w_offset; j < w_offset + w; j++) {
const int m = mask[j]; assert(m >= 0 && m <= 64);
if (m == 64)
continue;
if (m == 0)
dst_tmp[j] = dst2_tmp[j];
else
dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m +
dst2_tmp[j] * (64 - m), 6);
}
memcpy(dst_tmp + j, dst2_tmp + j,
(top_w - w_offset - w) * sizeof(uint16_t));
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
uint8_t *dst_tmp = dst;
uint8_t *dst2_tmp = dst2;
generate_1dmask(w, mask + w_offset,
plane && xd->plane[plane].subsampling_x);
for (i = 0; i < top_h; i++) {
for (j = w_offset; j < w_offset + w; j++) {
const int m = mask[j]; assert(m >= 0 && m <= 64);
if (m == 64)
continue;
if (m == 0)
dst_tmp[j] = dst2_tmp[j];
else
dst_tmp[j] = ROUND_POWER_OF_TWO(dst_tmp[j] * m +
dst2_tmp[j] * (64 - m), 6);
}
memcpy(dst_tmp + j, dst2_tmp + j,
(top_w - w_offset - w) * sizeof(uint8_t));
dst_tmp += dst_stride;
dst2_tmp += dst2_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
break;
default:
assert(0);
}
(void) xd;
}
void vp10_build_inter_predictors_sb_sub8x8_extend(
MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize, int block) {
// Prediction function used in supertx:
// Use the mv at current block (which is less than 8x8)
// to get prediction of a block located at (mi_row, mi_col) at size of bsize
// bsize can be larger than 8x8.
// block (0-3): the sub8x8 location of current block
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
#endif // CONFIG_EXT_INTER
// For sub8x8 uv:
// Skip uv prediction in supertx except the first block (block = 0)
int max_plane = block ? 1 : MAX_MB_PLANE;
for (plane = 0; plane < max_plane; plane++) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
build_inter_predictors(xd, plane,
#if CONFIG_OBMC
0, 0,
#endif // CONFIG_OBMC
block, bw, bh,
0, 0, bw, bh,
#if CONFIG_EXT_INTER
wedge_offset_x >> (xd->plane[plane].subsampling_x),
wedge_offset_y >> (xd->plane[plane].subsampling_y),
#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi))
vp10_build_interintra_predictors(xd,
xd->plane[0].dst.buf,
xd->plane[1].dst.buf,
xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride,
bsize);
#endif // CONFIG_EXT_INTER
}
void vp10_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
#endif // CONFIG_EXT_INTER
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(
bsize, &xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(
xd, plane,
#if CONFIG_OBMC
0, 0,
#endif // CONFIG_OBMC
y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4,
#if CONFIG_EXT_INTER
wedge_offset_x >> (xd->plane[plane].subsampling_x),
wedge_offset_y >> (xd->plane[plane].subsampling_y),
#endif // CONFIG_EXT_INTER
mi_x, mi_y);
} else {
build_inter_predictors(
xd, plane,
#if CONFIG_OBMC
0, 0,
#endif // CONFIG_OBMC
0, bw, bh, 0, 0, bw, bh,
#if CONFIG_EXT_INTER
wedge_offset_x >> (xd->plane[plane].subsampling_x),
wedge_offset_y >> (xd->plane[plane].subsampling_y),
#endif // CONFIG_EXT_INTER
mi_x, mi_y);
}
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_OBMC
// obmc_mask_N[is_neighbor_predictor][overlap_position]
static const uint8_t obmc_mask_1[2][1] = {
{ 55},
{ 9}
};
static const uint8_t obmc_mask_2[2][2] = {
{ 45, 62},
{ 19, 2}
};
static const uint8_t obmc_mask_4[2][4] = {
{ 39, 50, 59, 64},
{ 25, 14, 5, 0}
};
static const uint8_t obmc_mask_8[2][8] = {
{ 36, 42, 48, 53, 57, 61, 63, 64},
{ 28, 22, 16, 11, 7, 3, 1, 0}
};
static const uint8_t obmc_mask_16[2][16] = {
{ 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 63, 64, 64, 64},
{ 30, 27, 24, 21, 18, 15, 12, 10, 8, 6, 4, 3, 1, 0, 0, 0}
};
static const uint8_t obmc_mask_32[2][32] = {
{ 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
62, 63, 63, 64, 64, 64, 64, 64 },
{ 31, 29, 28, 26, 24, 23, 21, 20,
19, 17, 16, 14, 13, 12, 11, 9,
8, 7, 6, 5, 4, 4, 3, 2,
2, 1, 1, 0, 0, 0, 0, 0 }
};
#if CONFIG_EXT_PARTITION
static const uint8_t obmc_mask_64[2][64] = {
{
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
}, {
31, 30, 29, 29, 28, 27, 26, 25, 24, 24, 23, 22, 21, 20, 20, 20,
19, 18, 17, 17, 16, 15, 14, 13, 13, 13, 12, 12, 11, 10, 9, 8,
8, 8, 7, 7, 6, 6, 5, 4, 4, 4, 4, 4, 3, 2, 2, 2,
2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}
};
#endif // CONFIG_EXT_PARTITION
void setup_obmc_mask(int length, const uint8_t *mask[2]) {
switch (length) {
case 1:
mask[0] = obmc_mask_1[0];
mask[1] = obmc_mask_1[1];
break;
case 2:
mask[0] = obmc_mask_2[0];
mask[1] = obmc_mask_2[1];
break;
case 4:
mask[0] = obmc_mask_4[0];
mask[1] = obmc_mask_4[1];
break;
case 8:
mask[0] = obmc_mask_8[0];
mask[1] = obmc_mask_8[1];
break;
case 16:
mask[0] = obmc_mask_16[0];
mask[1] = obmc_mask_16[1];
break;
case 32:
mask[0] = obmc_mask_32[0];
mask[1] = obmc_mask_32[1];
break;
#if CONFIG_EXT_PARTITION
case 64:
mask[0] = obmc_mask_64[0];
mask[1] = obmc_mask_64[1];
break;
#endif // CONFIG_EXT_PARTITION
default:
mask[0] = NULL;
mask[1] = NULL;
assert(0);
break;
}
}
// This function combines motion compensated predictions that is generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void vp10_build_obmc_inter_prediction(VP10_COMMON *cm,
MACROBLOCKD *xd, int mi_row, int mi_col,
int use_tmp_dst_buf,
uint8_t *final_buf[MAX_MB_PLANE],
int final_stride[MAX_MB_PLANE],
uint8_t *tmp_buf1[MAX_MB_PLANE],
int tmp_stride1[MAX_MB_PLANE],
uint8_t *tmp_buf2[MAX_MB_PLANE],
int tmp_stride2[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int plane, i, mi_step;
#if CONFIG_VP9_HIGHBITDEPTH
int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_VP9_HIGHBITDEPTH
if (use_tmp_dst_buf) {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int bw = (xd->n8_w * 8) >> pd->subsampling_x;
int bh = (xd->n8_h * 8) >> pd->subsampling_y;
int row;
#if CONFIG_VP9_HIGHBITDEPTH
if (is_hbd) {
uint16_t *final_buf16 = CONVERT_TO_SHORTPTR(final_buf[plane]);
uint16_t *bmc_buf16 = CONVERT_TO_SHORTPTR(pd->dst.buf);
for (row = 0; row < bh; ++row)
memcpy(final_buf16 + row * final_stride[plane],
bmc_buf16 + row * pd->dst.stride, bw * sizeof(uint16_t));
} else {
#endif
for (row = 0; row < bh; ++row)
memcpy(final_buf[plane] + row * final_stride[plane],
pd->dst.buf + row * pd->dst.stride, bw);
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
// handle above row
for (i = 0; mi_row > 0 && i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col);
i += mi_step) {
int mi_row_offset = -1;
int mi_col_offset = i;
int overlap;
MODE_INFO *above_mi = xd->mi[mi_col_offset +
mi_row_offset * xd->mi_stride];
MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
mi_step = VPXMIN(xd->n8_w,
num_8x8_blocks_wide_lookup[above_mbmi->sb_type]);
if (!is_neighbor_overlappable(above_mbmi))
continue;
overlap = (above_mbmi->skip) ?
num_4x4_blocks_high_lookup[bsize] << 1 :
VPXMIN(num_4x4_blocks_high_lookup[bsize],
num_4x4_blocks_high_lookup[above_mbmi->sb_type]) << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
int bh = overlap >> pd->subsampling_y;
int row, col;
int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride;
uint8_t *dst = use_tmp_dst_buf ?
&final_buf[plane][(i * MI_SIZE) >> pd->subsampling_x] :
&pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x];
int tmp_stride = tmp_stride1[plane];
uint8_t *tmp = &tmp_buf1[plane][(i * MI_SIZE) >> pd->subsampling_x];
const uint8_t *mask[2];
setup_obmc_mask(bh, mask);
#if CONFIG_VP9_HIGHBITDEPTH
if (is_hbd) {
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col)
dst16[col] = ROUND_POWER_OF_TWO(mask[0][row] * dst16[col] +
mask[1][row] * tmp16[col], 6);
dst16 += dst_stride;
tmp16 += tmp_stride;
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col)
dst[col] = ROUND_POWER_OF_TWO(mask[0][row] * dst[col] +
mask[1][row] * tmp[col], 6);
dst += dst_stride;
tmp += tmp_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
} // each mi in the above row
if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start) ||
(mi_col - 1) >= tile->mi_col_end)
return;
// handle left column
for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row);
i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = -1;
int overlap;
MODE_INFO *left_mi = xd->mi[mi_col_offset +
mi_row_offset * xd->mi_stride];
MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
mi_step = VPXMIN(xd->n8_h,
num_8x8_blocks_high_lookup[left_mbmi->sb_type]);
if (!is_neighbor_overlappable(left_mbmi))
continue;
overlap = (left_mbmi->skip) ?
num_4x4_blocks_wide_lookup[bsize] << 1 :
VPXMIN(num_4x4_blocks_wide_lookup[bsize],
num_4x4_blocks_wide_lookup[left_mbmi->sb_type]) << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int bw = overlap >> pd->subsampling_x;
int bh = (mi_step * MI_SIZE) >> pd->subsampling_y;
int row, col;
int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride;
uint8_t *dst = use_tmp_dst_buf ?
&final_buf[plane][(i * MI_SIZE * dst_stride) >> pd->subsampling_y] :
&pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y];
int tmp_stride = tmp_stride2[plane];
uint8_t *tmp = &tmp_buf2[plane]
[(i * MI_SIZE * tmp_stride) >> pd->subsampling_y];
const uint8_t *mask[2];
setup_obmc_mask(bw, mask);
#if CONFIG_VP9_HIGHBITDEPTH
if (is_hbd) {
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col)
dst16[col] = ROUND_POWER_OF_TWO(mask[0][col] * dst16[col] +
mask[1][col] * tmp16[col], 6);
dst16 += dst_stride;
tmp16 += tmp_stride;
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
for (row = 0; row < bh; ++row) {
for (col = 0; col < bw; ++col)
dst[col] = ROUND_POWER_OF_TWO(mask[0][col] * dst[col] +
mask[1][col] * tmp[col], 6);
dst += dst_stride;
tmp += tmp_stride;
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
} // each mi in the left column
}
void vp10_build_prediction_by_above_preds(VP10_COMMON *cm,
MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
if (mi_row == 0)
return;
for (i = 0; i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) {
int mi_row_offset = -1;
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
MODE_INFO *above_mi = xd->mi[mi_col_offset +
mi_row_offset * xd->mi_stride];
MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
mi_step = VPXMIN(xd->n8_w,
num_8x8_blocks_wide_lookup[above_mbmi->sb_type]);
if (!is_neighbor_overlappable(above_mbmi))
continue;
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst,
tmp_buf[j], tmp_stride[j],
0, i, NULL,
pd->subsampling_x, pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) {
MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!vp10_is_valid_scale(&ref_buf->sf)))
vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i,
&ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = mi_row << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (mi_step * 8) >> pd->subsampling_x;
bh = VPXMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y,
4);
if (above_mbmi->sb_type < BLOCK_8X8) {
const PARTITION_TYPE bp = BLOCK_8X8 - above_mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
const int pw = 8 >> (have_vsplit | pd->subsampling_x);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT)
&& y == 0 && !pd->subsampling_y)
continue;
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
y * 2 + x, bw, bh,
4 * x, 0, pw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
}
}
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
}
void vp10_build_prediction_by_left_preds(VP10_COMMON *cm,
MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start) ||
(mi_col - 1) >= tile->mi_col_end)
return;
for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = -1;
int mi_x, mi_y, bw, bh;
MODE_INFO *left_mi = xd->mi[mi_col_offset +
mi_row_offset * xd->mi_stride];
MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
const int is_compound = has_second_ref(left_mbmi);
mi_step = VPXMIN(xd->n8_h,
num_8x8_blocks_high_lookup[left_mbmi->sb_type]);
if (!is_neighbor_overlappable(left_mbmi))
continue;
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst,
tmp_buf[j], tmp_stride[j],
i, 0, NULL,
pd->subsampling_x, pd->subsampling_y);
}
for (ref = 0; ref < 1 + is_compound; ++ref) {
MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!vp10_is_valid_scale(&ref_buf->sf)))
vpx_internal_error(xd->error_info, VPX_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
vp10_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col,
&ref_buf->sf);
}
xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
mi_x = mi_col << MI_SIZE_LOG2;
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = VPXMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x,
4);
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
if (left_mbmi->sb_type < BLOCK_8X8) {
const PARTITION_TYPE bp = BLOCK_8X8 - left_mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
const int ph = 8 >> (have_hsplit | pd->subsampling_y);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT)
&& x == 0 && !pd->subsampling_x)
continue;
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
y * 2 + x, bw, bh,
0, 4 * y, bw, ph,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0,
bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
}
}
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
}
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
static const int ii_weights1d[MAX_SB_SIZE] = {
128, 127, 125, 124, 123, 122, 120, 119,
118, 117, 116, 115, 113, 112, 111, 110,
109, 108, 107, 106, 105, 104, 103, 103,
102, 101, 100, 99, 98, 97, 97, 96,
95, 94, 94, 93, 92, 91, 91, 90,
89, 89, 88, 87, 87, 86, 86, 85,
84, 84, 83, 83, 82, 82, 81, 81,
80, 80, 79, 79, 78, 78, 77, 77,
76, 76, 75, 75, 75, 74, 74, 73,
73, 73, 72, 72, 72, 71, 71, 70,
70, 70, 69, 69, 69, 69, 68, 68,
68, 67, 67, 67, 67, 66, 66, 66,
66, 65, 65, 65, 65, 64, 64, 64,
64, 63, 63, 63, 63, 63, 62, 62,
62, 62, 62, 61, 61, 61, 61, 61,
61, 60, 60, 60, 60, 60, 60, 60,
};
static int ii_size_scales[BLOCK_SIZES] = {
32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1
};
#else
static const int ii_weights1d[MAX_SB_SIZE] = {
102, 100, 97, 95, 92, 90, 88, 86,
84, 82, 80, 78, 76, 74, 73, 71,
69, 68, 67, 65, 64, 62, 61, 60,
59, 58, 57, 55, 54, 53, 52, 52,
51, 50, 49, 48, 47, 47, 46, 45,
45, 44, 43, 43, 42, 41, 41, 40,
40, 39, 39, 38, 38, 38, 37, 37,
36, 36, 36, 35, 35, 35, 34, 34,
};
static int ii_size_scales[BLOCK_SIZES] = {
16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1
};
#endif // CONFIG_EXT_PARTITION
static void combine_interintra(INTERINTRA_MODE mode,
int use_wedge_interintra,
int wedge_index,
BLOCK_SIZE bsize,
BLOCK_SIZE plane_bsize,
uint8_t *comppred,
int compstride,
uint8_t *interpred,
int interstride,
uint8_t *intrapred,
int intrastride) {
static const int scale_bits = 8;
static const int scale_max = 256;
static const int scale_round = 127;
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
if (use_wedge_interintra) {
if (get_wedge_bits(bsize)) {
const uint8_t *mask = vp10_get_soft_mask(wedge_index, bsize, bh, bw);
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
comppred[i * compstride + j] =
(intrapred[i * intrastride + j] * m +
interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS;
}
}
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D63_PRED:
case II_D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] * 3 +
ii_weights1d[j * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D207_PRED:
case II_D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[j * size_scale] * 3 +
ii_weights1d[i * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] +
ii_weights1d[j * size_scale]) >> 1;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_TM_PRED:
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = (interpred[i * interstride + j] +
intrapred[i * intrastride + j]) >> 1;
}
}
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void combine_interintra_highbd(INTERINTRA_MODE mode,
int use_wedge_interintra,
int wedge_index,
BLOCK_SIZE bsize,
BLOCK_SIZE plane_bsize,
uint8_t *comppred8,
int compstride,
uint8_t *interpred8,
int interstride,
uint8_t *intrapred8,
int intrastride, int bd) {
static const int scale_bits = 8;
static const int scale_max = 256;
static const int scale_round = 127;
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8);
uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8);
uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8);
(void) bd;
if (use_wedge_interintra) {
if (get_wedge_bits(bsize)) {
const uint8_t *mask = vp10_get_soft_mask(wedge_index, bsize, bh, bw);
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int m = mask[i * MASK_MASTER_STRIDE + j];
comppred[i * compstride + j] =
(intrapred[i * intrastride + j] * m +
interpred[i * interstride + j] * ((1 << WEDGE_WEIGHT_BITS) - m) +
(1 << (WEDGE_WEIGHT_BITS - 1))) >> WEDGE_WEIGHT_BITS;
}
}
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D63_PRED:
case II_D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] * 3 +
ii_weights1d[j * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D207_PRED:
case II_D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[j * size_scale] * 3 +
ii_weights1d[i * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] +
ii_weights1d[j * size_scale]) >> 1;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case II_TM_PRED:
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = (interpred[i * interstride + j] +
intrapred[i * intrastride + j]) >> 1;
}
}
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
// Break down rectangular intra prediction for joint spatio-temporal prediction
// into two square intra predictions.
static void build_intra_predictors_for_interintra(
MACROBLOCKD *xd,
uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
PREDICTION_MODE mode,
BLOCK_SIZE bsize,
int plane) {
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
const int bwl = b_width_log2_lookup[plane_bsize];
const int bhl = b_height_log2_lookup[plane_bsize];
TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
if (bwl == bhl) {
vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode,
ref, ref_stride, dst, dst_stride,
0, 0, plane);
} else if (bwl < bhl) {
uint8_t *src_2 = ref + (4 << bwl)*ref_stride;
uint8_t *dst_2 = dst + (4 << bwl)*dst_stride;
vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode,
ref, ref_stride, dst, dst_stride,
0, 0, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2);
uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2);
memcpy(src_216 - ref_stride, dst_216 - dst_stride,
sizeof(*src_216) * (4 << bhl));
} else
#endif // CONFIG_VP9_HIGHBITDEPTH
{
memcpy(src_2 - ref_stride, dst_2 - dst_stride,
sizeof(*src_2) * (4 << bhl));
}
vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode,
src_2, ref_stride, dst_2, dst_stride,
0, 1 << bwl, plane);
} else {
int i;
uint8_t *src_2 = ref + (4 << bhl);
uint8_t *dst_2 = dst + (4 << bhl);
vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode,
ref, ref_stride, dst, dst_stride,
0, 0, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src_216 = CONVERT_TO_SHORTPTR(src_2);
uint16_t *dst_216 = CONVERT_TO_SHORTPTR(dst_2);
for (i = 0; i < (4 << bwl); ++i)
src_216[i * ref_stride - 1] = dst_216[i * dst_stride - 1];
} else
#endif // CONFIG_VP9_HIGHBITDEPTH
{
for (i = 0; i < (4 << bwl); ++i)
src_2[i * ref_stride - 1] = dst_2[i * dst_stride - 1];
}
vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode,
src_2, ref_stride, dst_2, dst_stride,
1 << bhl, 0, plane);
}
}
// Mapping of interintra to intra mode for use in the intra component
static const int interintra_to_intra_mode[INTERINTRA_MODES] = {
DC_PRED,
V_PRED,
H_PRED,
D45_PRED,
D135_PRED,
D117_PRED,
D153_PRED,
D207_PRED,
D63_PRED,
TM_PRED
};
void vp10_build_intra_predictors_for_interintra(
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
uint8_t *dst, int dst_stride) {
build_intra_predictors_for_interintra(
xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
dst, dst_stride,
interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode],
bsize, plane);
}
void vp10_combine_interintra(MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
uint8_t *inter_pred, int inter_stride,
uint8_t *intra_pred, int intra_stride) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
combine_interintra_highbd(xd->mi[0]->mbmi.interintra_mode,
xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
bsize,
plane_bsize,
xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride,
inter_pred, inter_stride,
intra_pred, intra_stride,
xd->bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
combine_interintra(xd->mi[0]->mbmi.interintra_mode,
xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
bsize,
plane_bsize,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride,
intra_pred, intra_stride);
}
void vp10_build_interintra_predictors_sby(MACROBLOCKD *xd,
uint8_t *ypred,
int ystride,
BLOCK_SIZE bsize) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t,
intrapredictor[MAX_SB_SQUARE]);
vp10_build_intra_predictors_for_interintra(
xd, bsize, 0, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
vp10_combine_interintra(xd, bsize, 0, ypred, ystride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
{
uint8_t intrapredictor[MAX_SB_SQUARE];
vp10_build_intra_predictors_for_interintra(
xd, bsize, 0, intrapredictor, MAX_SB_SIZE);
vp10_combine_interintra(xd, bsize, 0, ypred, ystride,
intrapredictor, MAX_SB_SIZE);
}
}
void vp10_build_interintra_predictors_sbc(MACROBLOCKD *xd,
uint8_t *upred,
int ustride,
int plane,
BLOCK_SIZE bsize) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t,
uintrapredictor[MAX_SB_SQUARE]);
vp10_build_intra_predictors_for_interintra(
xd, bsize, plane, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE);
vp10_combine_interintra(xd, bsize, plane, upred, ustride,
CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
{
uint8_t uintrapredictor[MAX_SB_SQUARE];
vp10_build_intra_predictors_for_interintra(
xd, bsize, plane, uintrapredictor, MAX_SB_SIZE);
vp10_combine_interintra(xd, bsize, plane, upred, ustride,
uintrapredictor, MAX_SB_SIZE);
}
}
void vp10_build_interintra_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *upred,
uint8_t *vpred,
int ustride, int vstride,
BLOCK_SIZE bsize) {
vp10_build_interintra_predictors_sbc(xd, upred, ustride, 1, bsize);
vp10_build_interintra_predictors_sbc(xd, vpred, vstride, 2, bsize);
}
void vp10_build_interintra_predictors(MACROBLOCKD *xd,
uint8_t *ypred,
uint8_t *upred,
uint8_t *vpred,
int ystride, int ustride, int vstride,
BLOCK_SIZE bsize) {
vp10_build_interintra_predictors_sby(xd, ypred, ystride, bsize);
vp10_build_interintra_predictors_sbuv(xd, upred, vpred,
ustride, vstride, bsize);
}
// Builds the inter-predictor for the single ref case
// for use in the encoder to search the wedges efficiently.
static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
int block,
int bw, int bh,
int x, int y, int w, int h,
int mi_x, int mi_y,
int ref,
uint8_t *const ext_dst,
int ext_dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
const INTERP_FILTER interp_filter = mi->mbmi.interp_filter;
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t *const dst =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ?
CONVERT_TO_BYTEPTR(ext_dst) : ext_dst) + ext_dst_stride * y + x;
#else
uint8_t *const dst = ext_dst + ext_dst_stride * y + x;
#endif
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? average_split_mvs(pd, mi, ref, block)
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
uint8_t *pre;
MV32 scaled_mv;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = vp10_is_scaled(sf);
if (is_scaled) {
pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
pre = pre_buf->buf + (y * pre_buf->stride + x);
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
+ (scaled_mv.col >> SUBPEL_BITS);
vp10_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride,
subpel_x, subpel_y, sf, w, h, 0,
interp_filter, xs, ys, xd);
}
void vp10_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col, int ref,
uint8_t *ext_dst[3], int ext_dst_stride[3]) {
const int plane_from = 0;
const int plane_to = 2;
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors_single_buf(xd, plane,
y * 2 + x, bw, bh,
4 * x, 4 * y, 4, 4,
mi_x, mi_y, ref,
ext_dst[plane],
ext_dst_stride[plane]);
} else {
build_inter_predictors_single_buf(xd, plane,
0, bw, bh,
0, 0, bw, bh,
mi_x, mi_y, ref,
ext_dst[plane],
ext_dst_stride[plane]);
}
}
}
static void build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, int plane,
int block, int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX
int wedge_offset_x,
int wedge_offset_y,
#endif // CONFIG_SUPERTX
int mi_x, int mi_y,
uint8_t *ext_dst0,
int ext_dst_stride0,
uint8_t *ext_dst1,
int ext_dst_stride1) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
(void) block;
(void) bw;
(void) bh;
(void) mi_x;
(void) mi_y;
for (ref = 0; ref < 1 + is_compound; ++ref) {
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
if (ref && get_wedge_bits(mi->mbmi.sb_type)
&& mi->mbmi.use_wedge_interinter) {
#if CONFIG_VP9_HIGHBITDEPTH
uint8_t tmp_dst_[2 * MAX_SB_SQUARE];
uint8_t *tmp_dst =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
CONVERT_TO_BYTEPTR(tmp_dst_) : tmp_dst_;
#else
uint8_t tmp_dst[MAX_SB_SQUARE];
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int k;
for (k = 0; k < h; ++k)
memcpy(tmp_dst_ + 2 * MAX_SB_SIZE * k, ext_dst1 +
ext_dst_stride1 * 2 * k, w * 2);
} else {
int k;
for (k = 0; k < h; ++k)
memcpy(tmp_dst_ + MAX_SB_SIZE * k, ext_dst1 +
ext_dst_stride1 * k, w);
}
#else
{
int k;
for (k = 0; k < h; ++k)
memcpy(tmp_dst + MAX_SB_SIZE * k, ext_dst1 +
ext_dst_stride1 * k, w);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_SUPERTX
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_masked_compound_extend_highbd(
dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
} else {
build_masked_compound_extend(
dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
}
#else
build_masked_compound_extend(dst, dst_buf->stride, tmp_dst,
MAX_SB_SIZE, plane,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type,
wedge_offset_y, wedge_offset_x, h, w);
#endif // CONFIG_VP9_HIGHBITDEPTH
#else // CONFIG_SUPERTX
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(dst, dst_buf->stride, tmp_dst,
MAX_SB_SIZE,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type, h, w);
else
#endif // CONFIG_VP9_HIGHBITDEPTH
build_masked_compound(dst, dst_buf->stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.interinter_wedge_index,
mi->mbmi.sb_type, h, w);
#endif // CONFIG_SUPERTX
} else {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int k;
for (k = 0; k < h; ++k)
memcpy(CONVERT_TO_SHORTPTR(dst + dst_buf->stride * k),
ext_dst0 + ext_dst_stride0 * 2 * k, w * 2);
} else {
int k;
for (k = 0; k < h; ++k)
memcpy(dst + dst_buf->stride * k,
ext_dst0 + ext_dst_stride0 * k, w);
}
#else
{
int k;
for (k = 0; k < h; ++k)
memcpy(dst + dst_buf->stride * k,
ext_dst0 + ext_dst_stride0 * k, w);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
}
void vp10_build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
uint8_t *ext_dst0[3], int ext_dst_stride0[3],
uint8_t *ext_dst1[3], int ext_dst_stride1[3]) {
const int plane_from = 0;
const int plane_to = 2;
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_wedge_inter_predictor_from_buf(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX
0, 0,
#endif
mi_x, mi_y,
ext_dst0[plane],
ext_dst_stride0[plane],
ext_dst1[plane],
ext_dst_stride1[plane]);
} else {
build_wedge_inter_predictor_from_buf(xd, plane, 0, bw, bh,
0, 0, bw, bh,
#if CONFIG_SUPERTX
0, 0,
#endif
mi_x, mi_y,
ext_dst0[plane],
ext_dst_stride0[plane],
ext_dst1[plane],
ext_dst_stride1[plane]);
}
}
}
#endif // CONFIG_EXT_INTER