blob: 900f09188652b6bcc114eb0cb5ced2d48bf94879 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_dsp/x86/inv_txfm_sse2.h"
#include "vpx_dsp/x86/txfm_common_sse2.h"
#include "vpx_ports/mem.h"
#include "vp10/common/enums.h"
#if CONFIG_EXT_TX
// Reverse the 8 16 bit words in __m128i
static INLINE __m128i mm_reverse_epi16(const __m128i x) {
const __m128i a = _mm_shufflelo_epi16(x, 0x1b);
const __m128i b = _mm_shufflehi_epi16(a, 0x1b);
return _mm_shuffle_epi32(b, 0x4e);
}
static INLINE void fliplr_4x4(__m128i in[2]) {
in[0] = _mm_shufflelo_epi16(in[0], 0x1b);
in[0] = _mm_shufflehi_epi16(in[0], 0x1b);
in[1] = _mm_shufflelo_epi16(in[1], 0x1b);
in[1] = _mm_shufflehi_epi16(in[1], 0x1b);
}
static INLINE void fliplr_8x8(__m128i in[8]) {
in[0] = mm_reverse_epi16(in[0]);
in[1] = mm_reverse_epi16(in[1]);
in[2] = mm_reverse_epi16(in[2]);
in[3] = mm_reverse_epi16(in[3]);
in[4] = mm_reverse_epi16(in[4]);
in[5] = mm_reverse_epi16(in[5]);
in[6] = mm_reverse_epi16(in[6]);
in[7] = mm_reverse_epi16(in[7]);
}
static INLINE void fliplr_16x8(__m128i in[16]) {
fliplr_8x8(&in[0]);
fliplr_8x8(&in[8]);
}
#define FLIPLR_16x16(in0, in1) do { \
__m128i *tmp; \
fliplr_16x8(in0); \
fliplr_16x8(in1); \
tmp = (in0); \
(in0) = (in1); \
(in1) = tmp; \
} while (0)
#define FLIPUD_PTR(dest, stride, size) do { \
(dest) = (dest) + ((size) - 1) * (stride); \
(stride) = - (stride); \
} while (0)
#endif
void vp10_iht4x4_16_add_sse2(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
__m128i in[2];
const __m128i zero = _mm_setzero_si128();
const __m128i eight = _mm_set1_epi16(8);
in[0] = load_input_data(input);
in[1] = load_input_data(input + 8);
switch (tx_type) {
case DCT_DCT:
idct4_sse2(in);
idct4_sse2(in);
break;
case ADST_DCT:
idct4_sse2(in);
iadst4_sse2(in);
break;
case DCT_ADST:
iadst4_sse2(in);
idct4_sse2(in);
break;
case ADST_ADST:
iadst4_sse2(in);
iadst4_sse2(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
idct4_sse2(in);
iadst4_sse2(in);
FLIPUD_PTR(dest, stride, 4);
break;
case DCT_FLIPADST:
iadst4_sse2(in);
idct4_sse2(in);
fliplr_4x4(in);
break;
case FLIPADST_FLIPADST:
iadst4_sse2(in);
iadst4_sse2(in);
FLIPUD_PTR(dest, stride, 4);
fliplr_4x4(in);
break;
case ADST_FLIPADST:
iadst4_sse2(in);
iadst4_sse2(in);
fliplr_4x4(in);
break;
case FLIPADST_ADST:
iadst4_sse2(in);
iadst4_sse2(in);
FLIPUD_PTR(dest, stride, 4);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
// Final round and shift
in[0] = _mm_add_epi16(in[0], eight);
in[1] = _mm_add_epi16(in[1], eight);
in[0] = _mm_srai_epi16(in[0], 4);
in[1] = _mm_srai_epi16(in[1], 4);
// Reconstruction and Store
{
__m128i d0 = _mm_cvtsi32_si128(*(const int *)(dest + stride * 0));
__m128i d1 = _mm_cvtsi32_si128(*(const int *)(dest + stride * 1));
__m128i d2 = _mm_cvtsi32_si128(*(const int *)(dest + stride * 2));
__m128i d3 = _mm_cvtsi32_si128(*(const int *)(dest + stride * 3));
d0 = _mm_unpacklo_epi32(d0, d1);
d2 = _mm_unpacklo_epi32(d2, d3);
d0 = _mm_unpacklo_epi8(d0, zero);
d2 = _mm_unpacklo_epi8(d2, zero);
d0 = _mm_add_epi16(d0, in[0]);
d2 = _mm_add_epi16(d2, in[1]);
d0 = _mm_packus_epi16(d0, d2);
// store result[0]
*(int *)dest = _mm_cvtsi128_si32(d0);
// store result[1]
d0 = _mm_srli_si128(d0, 4);
*(int *)(dest + stride) = _mm_cvtsi128_si32(d0);
// store result[2]
d0 = _mm_srli_si128(d0, 4);
*(int *)(dest + stride * 2) = _mm_cvtsi128_si32(d0);
// store result[3]
d0 = _mm_srli_si128(d0, 4);
*(int *)(dest + stride * 3) = _mm_cvtsi128_si32(d0);
}
}
void vp10_iht8x8_64_add_sse2(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
__m128i in[8];
const __m128i zero = _mm_setzero_si128();
const __m128i final_rounding = _mm_set1_epi16(1 << 4);
// load input data
in[0] = load_input_data(input);
in[1] = load_input_data(input + 8 * 1);
in[2] = load_input_data(input + 8 * 2);
in[3] = load_input_data(input + 8 * 3);
in[4] = load_input_data(input + 8 * 4);
in[5] = load_input_data(input + 8 * 5);
in[6] = load_input_data(input + 8 * 6);
in[7] = load_input_data(input + 8 * 7);
switch (tx_type) {
case DCT_DCT:
idct8_sse2(in);
idct8_sse2(in);
break;
case ADST_DCT:
idct8_sse2(in);
iadst8_sse2(in);
break;
case DCT_ADST:
iadst8_sse2(in);
idct8_sse2(in);
break;
case ADST_ADST:
iadst8_sse2(in);
iadst8_sse2(in);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
idct8_sse2(in);
iadst8_sse2(in);
FLIPUD_PTR(dest, stride, 8);
break;
case DCT_FLIPADST:
iadst8_sse2(in);
idct8_sse2(in);
fliplr_8x8(in);
break;
case FLIPADST_FLIPADST:
iadst8_sse2(in);
iadst8_sse2(in);
FLIPUD_PTR(dest, stride, 8);
fliplr_8x8(in);
break;
case ADST_FLIPADST:
iadst8_sse2(in);
iadst8_sse2(in);
fliplr_8x8(in);
break;
case FLIPADST_ADST:
iadst8_sse2(in);
iadst8_sse2(in);
FLIPUD_PTR(dest, stride, 8);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
// Final rounding and shift
in[0] = _mm_adds_epi16(in[0], final_rounding);
in[1] = _mm_adds_epi16(in[1], final_rounding);
in[2] = _mm_adds_epi16(in[2], final_rounding);
in[3] = _mm_adds_epi16(in[3], final_rounding);
in[4] = _mm_adds_epi16(in[4], final_rounding);
in[5] = _mm_adds_epi16(in[5], final_rounding);
in[6] = _mm_adds_epi16(in[6], final_rounding);
in[7] = _mm_adds_epi16(in[7], final_rounding);
in[0] = _mm_srai_epi16(in[0], 5);
in[1] = _mm_srai_epi16(in[1], 5);
in[2] = _mm_srai_epi16(in[2], 5);
in[3] = _mm_srai_epi16(in[3], 5);
in[4] = _mm_srai_epi16(in[4], 5);
in[5] = _mm_srai_epi16(in[5], 5);
in[6] = _mm_srai_epi16(in[6], 5);
in[7] = _mm_srai_epi16(in[7], 5);
RECON_AND_STORE(dest + 0 * stride, in[0]);
RECON_AND_STORE(dest + 1 * stride, in[1]);
RECON_AND_STORE(dest + 2 * stride, in[2]);
RECON_AND_STORE(dest + 3 * stride, in[3]);
RECON_AND_STORE(dest + 4 * stride, in[4]);
RECON_AND_STORE(dest + 5 * stride, in[5]);
RECON_AND_STORE(dest + 6 * stride, in[6]);
RECON_AND_STORE(dest + 7 * stride, in[7]);
}
void vp10_iht16x16_256_add_sse2(const tran_low_t *input, uint8_t *dest,
int stride, int tx_type) {
__m128i in[32];
__m128i *in0 = &in[0];
__m128i *in1 = &in[16];
load_buffer_8x16(input, in0);
input += 8;
load_buffer_8x16(input, in1);
switch (tx_type) {
case DCT_DCT:
idct16_sse2(in0, in1);
idct16_sse2(in0, in1);
break;
case ADST_DCT:
idct16_sse2(in0, in1);
iadst16_sse2(in0, in1);
break;
case DCT_ADST:
iadst16_sse2(in0, in1);
idct16_sse2(in0, in1);
break;
case ADST_ADST:
iadst16_sse2(in0, in1);
iadst16_sse2(in0, in1);
break;
#if CONFIG_EXT_TX
case FLIPADST_DCT:
idct16_sse2(in0, in1);
iadst16_sse2(in0, in1);
FLIPUD_PTR(dest, stride, 16);
break;
case DCT_FLIPADST:
iadst16_sse2(in0, in1);
idct16_sse2(in0, in1);
FLIPLR_16x16(in0, in1);
break;
case FLIPADST_FLIPADST:
iadst16_sse2(in0, in1);
iadst16_sse2(in0, in1);
FLIPUD_PTR(dest, stride, 16);
FLIPLR_16x16(in0, in1);
break;
case ADST_FLIPADST:
iadst16_sse2(in0, in1);
iadst16_sse2(in0, in1);
FLIPLR_16x16(in0, in1);
break;
case FLIPADST_ADST:
iadst16_sse2(in0, in1);
iadst16_sse2(in0, in1);
FLIPUD_PTR(dest, stride, 16);
break;
#endif // CONFIG_EXT_TX
default:
assert(0);
break;
}
write_buffer_8x16(dest, in0, stride);
dest += 8;
write_buffer_8x16(dest, in1, stride);
}