| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| |
| static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { |
| { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, |
| { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, |
| { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } |
| }; |
| |
| static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { |
| { 0, 1 }, { 2, 2 }, { 3, 3 } |
| }; |
| |
| enum { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } UENUM1BYTE(EDGE_DIR); |
| |
| static const int mode_lf_lut[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES |
| 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) |
| 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) |
| }; |
| |
| // 256 bit masks (64x64 / 4x4) for left transform size for Y plane. |
| // We use 4 uint64_t to represent the 256 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the left border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this (-- and | are used for better view) |
| // |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // ----------------- |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // 10101010|10101010 |
| // |
| // A loopfilter should be applied to every other 4x4 horizontally. |
| |
| // 256 bit masks (64x64 / 4x4) for above transform size for Y plane. |
| // We use 4 uint64_t to represent the 256 bit. |
| // Each 1 represents a position where we should apply a loop filter |
| // across the top border of an 4x4 block boundary. |
| // |
| // In the case of TX_8x8-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // ----------------- |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // 11111111|11111111 |
| // 00000000|00000000 |
| // |
| // A loopfilter should be applied to every other 4x4 horizontally. |
| |
| const int mask_id_table_tx_4x4[BLOCK_SIZES_ALL] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, 13, 14, 15, 16, 17, 18 |
| }; |
| |
| const int mask_id_table_tx_8x8[BLOCK_SIZES_ALL] = { |
| -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, 10, 11, 12, 13 |
| }; |
| |
| const int mask_id_table_tx_16x16[BLOCK_SIZES_ALL] = { |
| -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, 7, 8 |
| }; |
| |
| const int mask_id_table_tx_32x32[BLOCK_SIZES_ALL] = { -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, 0, 1, 2, |
| 3, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1 }; |
| const int mask_id_table_vert_border[BLOCK_SIZES_ALL] = { 0, 47, 49, 19, 51, 53, |
| 33, 55, 57, 42, 59, 60, |
| 46, -1, -1, -1, 61, 62, |
| 63, 64, 65, 66 }; |
| |
| const FilterMask left_mask_univariant_reordered[67] = { |
| // TX_4X4 |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X4, TX_4X4 |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X8, TX_4X4 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X4, TX_4X4 |
| { { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X8, TX_4X4 |
| { { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_4X4 |
| { { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, |
| 0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4 |
| { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_4X4 |
| { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL, |
| 0xffffffffffffffffULL } }, // block size 64X64, TX_4X4 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X4 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_4X4 |
| { { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_4X4 |
| { { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL, |
| 0x000f000f000f000fULL } }, // block size 16X64, TX_4X4 |
| { { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_4X4 |
| // TX_8X8 |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X8, TX_8X8 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_8X8 |
| { { 0x0000000000050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_8X8 |
| { { 0x0005000500050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_8X8 |
| { { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_8X8 |
| { { 0x0055005500550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_8X8 |
| { { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_8X8 |
| { { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0055005500550055ULL, |
| 0x0055005500550055ULL } }, // block size 32X64, TX_8X8 |
| { { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_8X8 |
| { { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL, |
| 0x5555555555555555ULL } }, // block size 64X64, TX_8X8 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X8 |
| { { 0x0000000000550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_8X8 |
| { { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0005000500050005ULL, |
| 0x0005000500050005ULL } }, // block size 16X64, TX_8X8 |
| { { 0x5555555555555555ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_8X8 |
| // TX_16X16 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_16X16 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_16X16 |
| { { 0x0011001100110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_16X16 |
| { { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_16X16 |
| { { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0011001100110011ULL, |
| 0x0011001100110011ULL } }, // block size 32X64, TX_16X16 |
| { { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_16X16 |
| { { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL, |
| 0x1111111111111111ULL } }, // block size 64X64, TX_16X16 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, |
| 0x0001000100010001ULL } }, // block size 16X64, TX_16X16 |
| { { 0x1111111111111111ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_16X16 |
| // TX_32X32 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_32X32 |
| { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL, |
| 0x0101010101010101ULL } }, // block size 32X64, TX_32X32 |
| { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_32X32 |
| { { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL, |
| 0x0101010101010101ULL } }, // block size 64X64, TX_32X32 |
| // TX_64X64 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, |
| 0x0001000100010001ULL } }, // block size 64X64, TX_64X64 |
| // 2:1, 1:2 transform sizes. |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X8, TX_4X8 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X8 |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X4, TX_8X4 |
| { { 0x0000000000000005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_8X4 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_8X16 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X16 |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_16X8 |
| { { 0x0000000000110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_16X8 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_16X32 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, |
| 0x0001000100010001ULL } }, // block size 16X64, TX_16X32 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_32X16 |
| { { 0x0101010101010101ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_32X16 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, |
| 0x0001000100010001ULL } }, // block size 32X64, TX_32X64 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_64X32 |
| // 4:1, 1:4 transform sizes. |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X16 |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_16X4 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X32 |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_32X8 |
| { { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL, |
| 0x0001000100010001ULL } }, // block size 16X64, TX_16X64 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_64X16 |
| }; |
| |
| const FilterMask above_mask_univariant_reordered[67] = { |
| // TX_4X4 |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X4, TX_4X4 |
| { { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X8, TX_4X4 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X4, TX_4X4 |
| { { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X8, TX_4X4 |
| { { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_4X4 |
| { { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_4X4 |
| { { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, |
| 0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4 |
| { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_4X4 |
| { { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL, |
| 0xffffffffffffffffULL } }, // block size 64X64, TX_4x4 |
| { { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X4 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_4X4 |
| { { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_4X4 |
| { { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_4X4 |
| { { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL, |
| 0x000f000f000f000fULL } }, // block size 16X64, TX_4X4 |
| { { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_4X4 |
| // TX_8X8 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X8, TX_8X8 |
| { { 0x0000000300000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_8X8 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_8X8 |
| { { 0x0000000f0000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_8X8 |
| { { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_8X8 |
| { { 0x000000ff000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_8X8 |
| { { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_8X8 |
| { { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x000000ff000000ffULL, |
| 0x000000ff000000ffULL } }, // block size 32X64, TX_8X8 |
| { { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_8X8 |
| { { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, |
| 0x0000ffff0000ffffULL } }, // block size 64X64, TX_8X8 |
| { { 0x0000000300000003ULL, 0x0000000300000003ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X8 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_8X8 |
| { { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000f0000000fULL, |
| 0x0000000f0000000fULL } }, // block size 16X64, TX_8X8 |
| { { 0x0000ffff0000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_8X8 |
| // TX_16X16 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X16, TX_16X16 |
| { { 0x000000000000000fULL, 0x000000000000000fULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_16X16 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_16X16 |
| { { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_16X16 |
| { { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x00000000000000ffULL, |
| 0x00000000000000ffULL } }, // block size 32X64, TX_16X16 |
| { { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_16X16 |
| { { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL, |
| 0x000000000000ffffULL } }, // block size 64X64, TX_16X16 |
| { { 0x000000000000000fULL, 0x000000000000000fULL, 0x000000000000000fULL, |
| 0x000000000000000fULL } }, // block size 16X64, TX_16X16 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_16X16 |
| // TX_32X32 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X32, TX_32X32 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x00000000000000ffULL, |
| 0x0000000000000000ULL } }, // block size 32X64, TX_32X32 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_32X32 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x000000000000ffffULL, |
| 0x0000000000000000ULL } }, // block size 64X64, TX_32X32 |
| // TX_64X64 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X64, TX_64X64 |
| // 2:1, 1:2 transform sizes. |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X8, TX_4X8 |
| { { 0x0000000100000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X8 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X4, TX_8X4 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_8X4 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X16, TX_8X16 |
| { { 0x0000000000000003ULL, 0x0000000000000003ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X16 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X8, TX_16X8 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_16X8 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X32, TX_16X32 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x000000000000000fULL, |
| 0x0000000000000000ULL } }, // block size 16X64, TX_16X32 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X16, TX_32X16 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_32X16 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X64, TX_32X64 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X32, TX_64X32 |
| // 4:1, 1:4 transform sizes. |
| { { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 4X16, TX_4X16 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X4, TX_16X4 |
| { { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 8X32, TX_8X32 |
| { { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 32X8, TX_32X8 |
| { { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 16X64, TX_16X64 |
| { { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL, |
| 0x0000000000000000ULL } }, // block size 64X16, TX_64X16 |
| }; |
| |
| #if LOOP_FILTER_BITMASK |
| LoopFilterMask *get_loop_filter_mask(const AV1_COMMON *const cm, int mi_row, |
| int mi_col) { |
| assert(cm->lf.lfm != NULL); |
| const int row = mi_row >> MIN_MIB_SIZE_LOG2; // 64x64 |
| const int col = mi_col >> MIN_MIB_SIZE_LOG2; |
| return &cm->lf.lfm[row * cm->lf.lfm_stride + col]; |
| } |
| |
| typedef void (*LpfFunc)(uint8_t *s, int p, const uint8_t *blimit, |
| const uint8_t *limit, const uint8_t *thresh); |
| |
| typedef void (*LpfDualFunc)(uint8_t *s, int p, const uint8_t *blimit0, |
| const uint8_t *limit0, const uint8_t *thresh0, |
| const uint8_t *blimit1, const uint8_t *limit1, |
| const uint8_t *thresh1); |
| |
| typedef void (*HbdLpfFunc)(uint16_t *s, int p, const uint8_t *blimit, |
| const uint8_t *limit, const uint8_t *thresh, int bd); |
| |
| typedef void (*HbdLpfDualFunc)(uint16_t *s, int p, const uint8_t *blimit0, |
| const uint8_t *limit0, const uint8_t *thresh0, |
| const uint8_t *blimit1, const uint8_t *limit1, |
| const uint8_t *thresh1, int bd); |
| #endif // LOOP_FILTER_BITMASK |
| |
| static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { |
| int lvl; |
| |
| // For each possible value for the loop filter fill out limits |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { |
| // Set loop filter parameters that control sharpness. |
| int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); |
| |
| if (sharpness_lvl > 0) { |
| if (block_inside_limit > (9 - sharpness_lvl)) |
| block_inside_limit = (9 - sharpness_lvl); |
| } |
| |
| if (block_inside_limit < 1) block_inside_limit = 1; |
| |
| memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); |
| memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), |
| SIMD_WIDTH); |
| } |
| } |
| |
| uint8_t get_filter_level(const AV1_COMMON *cm, const loop_filter_info_n *lfi_n, |
| const int dir_idx, int plane, |
| const MB_MODE_INFO *mbmi) { |
| const int segment_id = mbmi->segment_id; |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| int delta_lf; |
| if (cm->delta_q_info.delta_lf_multi) { |
| const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; |
| delta_lf = mbmi->delta_lf[delta_lf_idx]; |
| } else { |
| delta_lf = mbmi->delta_lf_from_base; |
| } |
| int base_level; |
| if (plane == 0) |
| base_level = cm->lf.filter_level[dir_idx]; |
| else if (plane == 1) |
| base_level = cm->lf.filter_level_u; |
| else |
| base_level = cm->lf.filter_level_v; |
| int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER); |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; |
| if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (cm->lf.mode_ref_delta_enabled) { |
| const int scale = 1 << (lvl_seg >> 5); |
| lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; |
| if (mbmi->ref_frame[0] > INTRA_FRAME) |
| lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; |
| lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); |
| } |
| return lvl_seg; |
| } else { |
| return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]] |
| [mode_lf_lut[mbmi->mode]]; |
| } |
| } |
| |
| void av1_loop_filter_init(AV1_COMMON *cm) { |
| assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); |
| loop_filter_info_n *lfi = &cm->lf_info; |
| struct loopfilter *lf = &cm->lf; |
| int lvl; |
| |
| lf->combine_vert_horz_lf = 1; |
| |
| // init limits for given sharpness |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| // init hev threshold const vectors |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) |
| memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); |
| } |
| |
| // Update the loop filter for the current frame. |
| // This should be called before loop_filter_rows(), |
| // av1_loop_filter_frame() calls this function directly. |
| void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start, |
| int plane_end) { |
| int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE]; |
| int plane; |
| int seg_id; |
| // n_shift is the multiplier for lf_deltas |
| // the multiplier is 1 for when filter_lvl is between 0 and 31; |
| // 2 when filter_lvl is between 32 and 63 |
| loop_filter_info_n *const lfi = &cm->lf_info; |
| struct loopfilter *const lf = &cm->lf; |
| const struct segmentation *const seg = &cm->seg; |
| |
| // update sharpness limits |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| filt_lvl[0] = cm->lf.filter_level[0]; |
| filt_lvl[1] = cm->lf.filter_level_u; |
| filt_lvl[2] = cm->lf.filter_level_v; |
| |
| filt_lvl_r[0] = cm->lf.filter_level[1]; |
| filt_lvl_r[1] = cm->lf.filter_level_u; |
| filt_lvl_r[2] = cm->lf.filter_level_v; |
| |
| assert(plane_start >= AOM_PLANE_Y); |
| assert(plane_end <= MAX_MB_PLANE); |
| |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0]) |
| break; |
| else if (plane == 1 && !filt_lvl[1]) |
| continue; |
| else if (plane == 2 && !filt_lvl[2]) |
| continue; |
| |
| for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { |
| for (int dir = 0; dir < 2; ++dir) { |
| int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane]; |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; |
| if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (!lf->mode_ref_delta_enabled) { |
| // we could get rid of this if we assume that deltas are set to |
| // zero when not in use; encoder always uses deltas |
| memset(lfi->lvl[plane][seg_id][dir], lvl_seg, |
| sizeof(lfi->lvl[plane][seg_id][dir])); |
| } else { |
| int ref, mode; |
| const int scale = 1 << (lvl_seg >> 5); |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] = |
| clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + |
| lf->mode_deltas[mode] * scale; |
| lfi->lvl[plane][seg_id][dir][ref][mode] = |
| clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| #if LOOP_FILTER_BITMASK |
| // A 64x64 tx block requires 256 bits to represent each 4x4 tx block. |
| // Every 4 rows is represented by one uint64_t mask. Hence, |
| // there are 4 uint64_t bitmask[4] to represent the 64x64 block. |
| // |
| // Given a location by (mi_col, mi_row), This function returns the index |
| // 0, 1, 2, 3 to select which bitmask[] to use, and the shift value. |
| // |
| // For example, mi_row is the offset of pixels in mi size (4), |
| // (mi_row / 4) returns which uint64_t. |
| // After locating which uint64_t, mi_row % 4 is the |
| // row offset, and each row has 16 = 1 << stride_log2 4x4 units. |
| // Therefore, shift = (row << stride_log2) + mi_col; |
| int get_index_shift(int mi_col, int mi_row, int *index) { |
| // *index = mi_row >> 2; |
| // rows = mi_row % 4; |
| // stride_log2 = 4; |
| // shift = (rows << stride_log2) + mi_col; |
| *index = mi_row >> 2; |
| return ((mi_row & 3) << 4) | mi_col; |
| } |
| |
| static void check_mask(const FilterMask *lfm) { |
| #ifndef NDEBUG |
| for (int i = 0; i < 4; ++i) { |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_8X8].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_16X16].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_4X4].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_16X16].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_8X8].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_16X16].bits[i] & lfm[TX_32X32].bits[i])); |
| assert(!(lfm[TX_16X16].bits[i] & lfm[TX_64X64].bits[i])); |
| assert(!(lfm[TX_32X32].bits[i] & lfm[TX_64X64].bits[i])); |
| } |
| #else |
| (void)lfm; |
| #endif |
| } |
| |
| static void check_loop_filter_masks(const LoopFilterMask *lfm, int plane) { |
| if (plane == 0) { |
| // Assert if we try to apply 2 different loop filters at the same |
| // position. |
| check_mask(lfm->left_y); |
| check_mask(lfm->above_y); |
| } else if (plane == 1) { |
| check_mask(lfm->left_u); |
| check_mask(lfm->above_u); |
| } else { |
| check_mask(lfm->left_v); |
| check_mask(lfm->above_v); |
| } |
| } |
| |
| static void update_masks(EDGE_DIR dir, int plane, uint64_t *mask, |
| TX_SIZE sqr_tx_size, LoopFilterMask *lfm) { |
| if (dir == VERT_EDGE) { |
| switch (plane) { |
| case 0: |
| for (int i = 0; i < 4; ++i) lfm->left_y[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| case 1: |
| for (int i = 0; i < 4; ++i) lfm->left_u[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| case 2: |
| for (int i = 0; i < 4; ++i) lfm->left_v[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| default: assert(plane <= 2); |
| } |
| } else { |
| switch (plane) { |
| case 0: |
| for (int i = 0; i < 4; ++i) |
| lfm->above_y[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| case 1: |
| for (int i = 0; i < 4; ++i) |
| lfm->above_u[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| case 2: |
| for (int i = 0; i < 4; ++i) |
| lfm->above_v[sqr_tx_size].bits[i] |= mask[i]; |
| break; |
| default: assert(plane <= 2); |
| } |
| } |
| } |
| |
| static int is_frame_boundary(AV1_COMMON *const cm, int plane, int mi_row, |
| int mi_col, int ssx, int ssy, EDGE_DIR dir) { |
| if (plane && (ssx || ssy)) { |
| if (ssx && ssy) { // format 420 |
| if ((mi_row << MI_SIZE_LOG2) > cm->height || |
| (mi_col << MI_SIZE_LOG2) > cm->width) |
| return 1; |
| } else if (ssx) { // format 422 |
| if ((mi_row << MI_SIZE_LOG2) >= cm->height || |
| (mi_col << MI_SIZE_LOG2) > cm->width) |
| return 1; |
| } |
| } else { |
| if ((mi_row << MI_SIZE_LOG2) >= cm->height || |
| (mi_col << MI_SIZE_LOG2) >= cm->width) |
| return 1; |
| } |
| |
| int row_or_col; |
| if (plane == 0) { |
| row_or_col = dir == VERT_EDGE ? mi_col : mi_row; |
| } else { |
| // chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block. |
| // So if mi_col == 1, it is actually the frame boundary. |
| if (dir == VERT_EDGE) { |
| row_or_col = ssx ? (mi_col & 0x0FFFFFFE) : mi_col; |
| } else { |
| row_or_col = ssy ? (mi_row & 0x0FFFFFFE) : mi_row; |
| } |
| } |
| return row_or_col == 0; |
| } |
| |
| static void setup_masks(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, |
| int ssx, int ssy, TX_SIZE tx_size) { |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); |
| const int x = (mi_col << (MI_SIZE_LOG2 - ssx)); |
| const int y = (mi_row << (MI_SIZE_LOG2 - ssy)); |
| // decide whether current vertical/horizontal edge needs loop filtering |
| for (EDGE_DIR dir = VERT_EDGE; dir <= HORZ_EDGE; ++dir) { |
| // chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block. |
| mi_row |= ssy; |
| mi_col |= ssx; |
| |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| const int curr_skip = mbmi->skip && is_inter_block(mbmi); |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy); |
| const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy]; |
| const uint8_t level = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi); |
| const int prediction_masks = dir == VERT_EDGE |
| ? block_size_wide[plane_bsize] - 1 |
| : block_size_high[plane_bsize] - 1; |
| const int is_coding_block_border = |
| dir == VERT_EDGE ? !(x & prediction_masks) : !(y & prediction_masks); |
| |
| // TODO(chengchen): step can be optimized. |
| const int row_step = mi_size_high[TX_4X4] << ssy; |
| const int col_step = mi_size_wide[TX_4X4] << ssx; |
| const int mi_height = |
| dir == VERT_EDGE ? tx_size_high_unit[tx_size] << ssy : row_step; |
| const int mi_width = |
| dir == VERT_EDGE ? col_step : tx_size_wide_unit[tx_size] << ssx; |
| |
| // assign filter levels |
| for (int r = mi_row; r < mi_row + mi_height; r += row_step) { |
| for (int c = mi_col; c < mi_col + mi_width; c += col_step) { |
| // do not filter frame boundary |
| // Note: when chroma planes' size are half of luma plane, |
| // chroma plane mi corresponds to even position. |
| // If frame size is not even, we still need to filter this chroma |
| // position. Therefore the boundary condition check needs to be |
| // separated to two cases. |
| if (plane && (ssx || ssy)) { |
| if (ssx && ssy) { // format 420 |
| if ((r << MI_SIZE_LOG2) > cm->height || |
| (c << MI_SIZE_LOG2) > cm->width) |
| continue; |
| } else if (ssx) { // format 422 |
| if ((r << MI_SIZE_LOG2) >= cm->height || |
| (c << MI_SIZE_LOG2) > cm->width) |
| continue; |
| } |
| } else { |
| if ((r << MI_SIZE_LOG2) >= cm->height || |
| (c << MI_SIZE_LOG2) >= cm->width) |
| continue; |
| } |
| |
| const int row = r % MI_SIZE_64X64; |
| const int col = c % MI_SIZE_64X64; |
| if (plane == 0) { |
| if (dir == VERT_EDGE) |
| lfm->lfl_y_ver[row][col] = level; |
| else |
| lfm->lfl_y_hor[row][col] = level; |
| } else if (plane == 1) { |
| lfm->lfl_u_ver[row][col] = level; |
| lfm->lfl_u_hor[row][col] = level; |
| } else { |
| lfm->lfl_v_ver[row][col] = level; |
| lfm->lfl_v_hor[row][col] = level; |
| } |
| } |
| } |
| |
| for (int r = mi_row; r < mi_row + mi_height; r += row_step) { |
| for (int c = mi_col; c < mi_col + mi_width; c += col_step) { |
| // do not filter frame boundary |
| if (is_frame_boundary(cm, plane, r, c, ssx, ssy, dir)) continue; |
| |
| uint64_t mask[4] = { 0 }; |
| const int prev_row = dir == VERT_EDGE ? r : r - (1 << ssy); |
| const int prev_col = dir == VERT_EDGE ? c - (1 << ssx) : c; |
| MB_MODE_INFO **mi_prev = |
| cm->mi_grid_visible + prev_row * cm->mi_stride + prev_col; |
| const MB_MODE_INFO *const mbmi_prev = mi_prev[0]; |
| const int prev_skip = mbmi_prev->skip && is_inter_block(mbmi_prev); |
| const uint8_t level_prev = |
| get_filter_level(cm, &cm->lf_info, dir, plane, mbmi_prev); |
| const int is_edge = |
| (level || level_prev) && |
| (!curr_skip || !prev_skip || is_coding_block_border); |
| |
| if (is_edge) { |
| const TX_SIZE prev_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi_prev->sb_type, ssx, ssy) |
| : mbmi_prev->tx_size; |
| TX_SIZE min_tx_size = (dir == VERT_EDGE) |
| ? AOMMIN(txsize_horz_map[tx_size], |
| txsize_horz_map[prev_tx_size]) |
| : AOMMIN(txsize_vert_map[tx_size], |
| txsize_vert_map[prev_tx_size]); |
| min_tx_size = AOMMIN(min_tx_size, TX_16X16); |
| assert(min_tx_size < TX_SIZES); |
| const int row = r % MI_SIZE_64X64; |
| const int col = c % MI_SIZE_64X64; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| assert(index < 4 && index >= 0); |
| mask[index] |= ((uint64_t)1 << shift); |
| // set mask on corresponding bit |
| update_masks(dir, plane, mask, min_tx_size, lfm); |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_tx_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| int plane, int ssx, int ssy) { |
| blk_row <<= ssy; |
| blk_col <<= ssx; |
| if (((mi_row + blk_row) << MI_SIZE_LOG2) >= cm->height || |
| ((mi_col + blk_col) << MI_SIZE_LOG2) >= cm->width) |
| return; |
| |
| // U/V plane, tx_size is always the largest size |
| if (plane) { |
| assert(tx_size_wide[tx_size] <= 32 && tx_size_high[tx_size] <= 32); |
| setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy, |
| tx_size); |
| return; |
| } |
| |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| // For Y plane: |
| // If intra block, tx size is univariant. |
| // If inter block, tx size follows inter_tx_size. |
| TX_SIZE plane_tx_size = tx_size; |
| const int is_inter = is_inter_block(mbmi); |
| |
| if (plane == 0) { |
| if (is_inter) { |
| if (mbmi->skip) { |
| // TODO(chengchen): change av1_get_transform_size() to be consistant. |
| // plane_tx_size = get_max_rect_tx_size(plane_bsize); |
| plane_tx_size = mbmi->tx_size; |
| } else { |
| plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( |
| plane_bsize, blk_row, blk_col)]; |
| } |
| } else { |
| MB_MODE_INFO **mi_this = cm->mi_grid_visible + |
| (mi_row + blk_row) * cm->mi_stride + mi_col + |
| blk_col; |
| const MB_MODE_INFO *const mbmi_this = mi_this[0]; |
| plane_tx_size = mbmi_this->tx_size; |
| } |
| } |
| |
| assert(txsize_to_bsize[plane_tx_size] <= plane_bsize); |
| |
| if (plane || plane_tx_size == tx_size) { |
| setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy, |
| tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| setup_tx_block_mask(cm, mi_row, mi_col, offsetr, offsetc, plane_bsize, |
| sub_txs, plane, ssx, ssy); |
| } |
| } |
| } |
| } |
| |
| static void setup_fix_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| int plane, int ssx, int ssy) { |
| MB_MODE_INFO **mi = |
| cm->mi_grid_visible + (mi_row | ssy) * cm->mi_stride + (mi_col | ssx); |
| const MB_MODE_INFO *const mbmi = mi[0]; |
| |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy); |
| const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy]; |
| |
| const int block_width = mi_size_wide[plane_bsize]; |
| const int block_height = mi_size_high[plane_bsize]; |
| |
| TX_SIZE max_txsize = max_txsize_rect_lookup[plane_bsize]; |
| // The decoder is designed so that it can process 64x64 luma pixels at a |
| // time. If this is a chroma plane with subsampling and bsize corresponds to |
| // a subsampled BLOCK_128X128 then the lookup above will give TX_64X64. That |
| // mustn't be used for the subsampled plane (because it would be bigger than |
| // a 64x64 luma block) so we round down to TX_32X32. |
| if (plane && txsize_sqr_up_map[max_txsize] == TX_64X64) { |
| if (max_txsize == TX_16X64) |
| max_txsize = TX_16X32; |
| else if (max_txsize == TX_64X16) |
| max_txsize = TX_32X16; |
| else |
| max_txsize = TX_32X32; |
| } |
| |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize]; |
| const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; |
| const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; |
| const BLOCK_SIZE max_unit_bsize = ss_size_lookup[BLOCK_64X64][ssx][ssy]; |
| int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; |
| int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; |
| |
| mu_blocks_wide = AOMMIN(block_width, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(block_height, mu_blocks_high); |
| |
| // Y: Largest tx_size is 64x64, while superblock size can be 128x128. |
| // Here we ensure that setup_tx_block_mask process at most a 64x64 block. |
| // U/V: largest tx size is 32x32. |
| for (int idy = 0; idy < block_height; idy += mu_blocks_high) { |
| for (int idx = 0; idx < block_width; idx += mu_blocks_wide) { |
| const int unit_height = AOMMIN(mu_blocks_high + idy, block_height); |
| const int unit_width = AOMMIN(mu_blocks_wide + idx, block_width); |
| for (int blk_row = idy; blk_row < unit_height; blk_row += bh) { |
| for (int blk_col = idx; blk_col < unit_width; blk_col += bw) { |
| setup_tx_block_mask(cm, mi_row, mi_col, blk_row, blk_col, plane_bsize, |
| max_txsize, plane, ssx, ssy); |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int plane, int ssx, int ssy) { |
| if ((mi_row << MI_SIZE_LOG2) >= cm->height || |
| (mi_col << MI_SIZE_LOG2) >= cm->width) |
| return; |
| |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| const int allow_sub8x8 = (ssx || ssy) ? bsize > BLOCK_8X8 : 1; |
| const int has_next_row = |
| (((mi_row + hbs) << MI_SIZE_LOG2) < cm->height) & allow_sub8x8; |
| const int has_next_col = |
| (((mi_col + hbs) << MI_SIZE_LOG2) < cm->width) & allow_sub8x8; |
| int i; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| break; |
| case PARTITION_HORZ: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); |
| break; |
| case PARTITION_VERT: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_col) |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); |
| break; |
| case PARTITION_SPLIT: |
| setup_block_mask(cm, mi_row, mi_col, subsize, plane, ssx, ssy); |
| if (has_next_col) |
| setup_block_mask(cm, mi_row, mi_col + hbs, subsize, plane, ssx, ssy); |
| if (has_next_row) |
| setup_block_mask(cm, mi_row + hbs, mi_col, subsize, plane, ssx, ssy); |
| if (has_next_col & has_next_row) |
| setup_block_mask(cm, mi_row + hbs, mi_col + hbs, subsize, plane, ssx, |
| ssy); |
| break; |
| case PARTITION_HORZ_A: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_col) |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); |
| if (has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); |
| break; |
| case PARTITION_HORZ_B: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); |
| if (has_next_col & has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy); |
| break; |
| case PARTITION_VERT_A: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy); |
| if (has_next_col) |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); |
| break; |
| case PARTITION_VERT_B: |
| setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy); |
| if (has_next_col) |
| setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy); |
| if (has_next_row) |
| setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && (this_mi_row << MI_SIZE_LOG2) >= cm->height) break; |
| // chroma plane filter the odd location |
| if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue; |
| |
| setup_fix_block_mask(cm, this_mi_row, mi_col, plane, ssx, ssy); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| // chroma plane filter the odd location |
| if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue; |
| |
| setup_fix_block_mask(cm, mi_row, this_mi_col, plane, ssx, ssy); |
| } |
| break; |
| default: assert(0); |
| } |
| } |
| |
| // TODO(chengchen): if lossless, do not need to setup mask. But when |
| // segments enabled, each segment has different lossless settings. |
| void av1_setup_bitmask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane, |
| int subsampling_x, int subsampling_y, int row_end, |
| int col_end) { |
| const int num_64x64 = cm->seq_params.mib_size >> MIN_MIB_SIZE_LOG2; |
| for (int y = 0; y < num_64x64; ++y) { |
| for (int x = 0; x < num_64x64; ++x) { |
| const int row = mi_row + y * MI_SIZE_64X64; |
| const int col = mi_col + x * MI_SIZE_64X64; |
| if (row >= row_end || col >= col_end) continue; |
| if ((row << MI_SIZE_LOG2) >= cm->height || |
| (col << MI_SIZE_LOG2) >= cm->width) |
| continue; |
| |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col); |
| if (lfm == NULL) return; |
| |
| // init mask to zero |
| if (plane == 0) { |
| av1_zero(lfm->left_y); |
| av1_zero(lfm->above_y); |
| av1_zero(lfm->lfl_y_ver); |
| av1_zero(lfm->lfl_y_hor); |
| } else if (plane == 1) { |
| av1_zero(lfm->left_u); |
| av1_zero(lfm->above_u); |
| av1_zero(lfm->lfl_u_ver); |
| av1_zero(lfm->lfl_u_hor); |
| } else { |
| av1_zero(lfm->left_v); |
| av1_zero(lfm->above_v); |
| av1_zero(lfm->lfl_v_ver); |
| av1_zero(lfm->lfl_v_hor); |
| } |
| } |
| } |
| |
| // set up bitmask for each superblock |
| setup_block_mask(cm, mi_row, mi_col, cm->seq_params.sb_size, plane, |
| subsampling_x, subsampling_y); |
| |
| for (int y = 0; y < num_64x64; ++y) { |
| for (int x = 0; x < num_64x64; ++x) { |
| const int row = mi_row + y * MI_SIZE_64X64; |
| const int col = mi_col + x * MI_SIZE_64X64; |
| if (row >= row_end || col >= col_end) continue; |
| if ((row << MI_SIZE_LOG2) >= cm->height || |
| (col << MI_SIZE_LOG2) >= cm->width) |
| continue; |
| |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col); |
| if (lfm == NULL) return; |
| |
| // check if the mask is valid |
| check_loop_filter_masks(lfm, plane); |
| |
| { |
| // Let 16x16 hold 32x32 (Y/U/V) and 64x64(Y only). |
| // Even tx size is greater, we only apply max length filter, which |
| // is 16. |
| if (plane == 0) { |
| for (int j = 0; j < 4; ++j) { |
| lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_32X32].bits[j]; |
| lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_64X64].bits[j]; |
| lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_32X32].bits[j]; |
| lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_64X64].bits[j]; |
| |
| // set 32x32 and 64x64 to 0 |
| lfm->left_y[TX_32X32].bits[j] = 0; |
| lfm->left_y[TX_64X64].bits[j] = 0; |
| lfm->above_y[TX_32X32].bits[j] = 0; |
| lfm->above_y[TX_64X64].bits[j] = 0; |
| } |
| } else if (plane == 1) { |
| for (int j = 0; j < 4; ++j) { |
| lfm->left_u[TX_16X16].bits[j] |= lfm->left_u[TX_32X32].bits[j]; |
| lfm->above_u[TX_16X16].bits[j] |= lfm->above_u[TX_32X32].bits[j]; |
| |
| // set 32x32 to 0 |
| lfm->left_u[TX_32X32].bits[j] = 0; |
| lfm->above_u[TX_32X32].bits[j] = 0; |
| } |
| } else { |
| for (int j = 0; j < 4; ++j) { |
| lfm->left_v[TX_16X16].bits[j] |= lfm->left_v[TX_32X32].bits[j]; |
| lfm->above_v[TX_16X16].bits[j] |= lfm->above_v[TX_32X32].bits[j]; |
| |
| // set 32x32 to 0 |
| lfm->left_v[TX_32X32].bits[j] = 0; |
| lfm->above_v[TX_32X32].bits[j] = 0; |
| } |
| } |
| } |
| |
| // check if the mask is valid |
| check_loop_filter_masks(lfm, plane); |
| } |
| } |
| } |
| |
| static void filter_selectively_vert_row2( |
| int subsampling_factor, uint8_t *s, int pitch, int plane, |
| uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0, |
| uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1, |
| const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2) { |
| uint64_t mask; |
| const int step = 1 << subsampling_factor; |
| |
| for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 | |
| mask_8x8_1 | mask_4x4_1; |
| mask; mask >>= step) { |
| const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; |
| const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2; |
| |
| if (mask & 1) { |
| if ((mask_16x16_0 | mask_16x16_1) & 1) { |
| // chroma plane filters less pixels introduced in deblock_13tap |
| // experiment |
| LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_14; |
| |
| if ((mask_16x16_0 & mask_16x16_1) & 1) { |
| if (plane) { |
| aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else { |
| aom_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } else if (mask_16x16_0 & 1) { |
| lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| |
| if ((mask_8x8_0 | mask_8x8_1) & 1) { |
| // chroma plane filters less pixels introduced in deblock_13tap |
| // experiment |
| LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_8; |
| |
| if ((mask_8x8_0 & mask_8x8_1) & 1) { |
| if (plane) { |
| aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else { |
| aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } else if (mask_8x8_0 & 1) { |
| lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| |
| if ((mask_4x4_0 | mask_4x4_1) & 1) { |
| if ((mask_4x4_0 & mask_4x4_1) & 1) { |
| aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } else if (mask_4x4_0 & 1) { |
| aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr); |
| } else { |
| aom_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr); |
| } |
| } |
| } |
| |
| s += 4; |
| lfl += step; |
| lfl2 += step; |
| mask_16x16_0 >>= step; |
| mask_8x8_0 >>= step; |
| mask_4x4_0 >>= step; |
| mask_16x16_1 >>= step; |
| mask_8x8_1 >>= step; |
| mask_4x4_1 >>= step; |
| } |
| } |
| |
| static void highbd_filter_selectively_vert_row2( |
| int subsampling_factor, uint16_t *s, int pitch, int plane, |
| uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0, |
| uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1, |
| const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2, int bd) { |
| uint64_t mask; |
| const int step = 1 << subsampling_factor; |
| |
| for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 | |
| mask_8x8_1 | mask_4x4_1; |
| mask; mask >>= step) { |
| const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl; |
| const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2; |
| |
| if (mask & 1) { |
| if ((mask_16x16_0 | mask_16x16_1) & 1) { |
| // chroma plane filters less pixels introduced in deblock_13tap |
| // experiment |
| HbdLpfFunc highbd_lpf_vertical = |
| plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_14; |
| |
| if ((mask_16x16_0 & mask_16x16_1) & 1) { |
| if (plane) { |
| aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } else if (mask_16x16_0 & 1) { |
| highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, |
| bd); |
| } else { |
| highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } |
| } |
| |
| if ((mask_8x8_0 | mask_8x8_1) & 1) { |
| HbdLpfFunc highbd_lpf_vertical = |
| plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_8; |
| |
| if ((mask_8x8_0 & mask_8x8_1) & 1) { |
| if (plane) { |
| aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } else if (mask_8x8_0 & 1) { |
| highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr, |
| bd); |
| } else { |
| highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } |
| } |
| |
| if ((mask_4x4_0 | mask_4x4_1) & 1) { |
| if ((mask_4x4_0 & mask_4x4_1) & 1) { |
| aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, lfi1->mblim, lfi1->lim, |
| lfi1->hev_thr, bd); |
| } else if (mask_4x4_0 & 1) { |
| aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, |
| lfi0->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim, |
| lfi1->lim, lfi1->hev_thr, bd); |
| } |
| } |
| } |
| |
| s += 4; |
| lfl += step; |
| lfl2 += step; |
| mask_16x16_0 >>= step; |
| mask_8x8_0 >>= step; |
| mask_4x4_0 >>= step; |
| mask_16x16_1 >>= step; |
| mask_8x8_1 >>= step; |
| mask_4x4_1 >>= step; |
| } |
| } |
| |
| static void filter_selectively_horiz(uint8_t *s, int pitch, int plane, |
| int subsampling, uint64_t mask_16x16, |
| uint64_t mask_8x8, uint64_t mask_4x4, |
| const loop_filter_info_n *lfi_n, |
| const uint8_t *lfl) { |
| uint64_t mask; |
| int count; |
| const int step = 1 << subsampling; |
| const unsigned int two_block_mask = subsampling ? 5 : 3; |
| int offset = 0; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| // Next block's thresholds, when it is within current 64x64 block. |
| // If it is out of bound, its mask is zero, and it points to current edge's |
| // filter parameters, instead of next edge's. |
| int next_edge = step; |
| if (offset + next_edge >= MI_SIZE_64X64) next_edge = 0; |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + next_edge); |
| |
| count = 1; |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| // chroma plane filters less pixels introduced in deblock_13tap |
| // experiment |
| LpfFunc lpf_horizontal = |
| plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_14; |
| |
| if ((mask_16x16 & two_block_mask) == two_block_mask) { |
| if (plane) { |
| aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| } else { |
| aom_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } |
| } else if (mask_8x8 & 1) { |
| // chroma plane filters less pixels introduced in deblock_13tap |
| // experiment |
| LpfFunc lpf_horizontal = |
| plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_8; |
| |
| if ((mask_8x8 & two_block_mask) == two_block_mask) { |
| if (plane) { |
| aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| } else { |
| aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & two_block_mask) == two_block_mask) { |
| aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| count = 2; |
| } else { |
| aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } |
| } |
| } |
| |
| s += 4 * count; |
| lfl += step * count; |
| mask_16x16 >>= step * count; |
| mask_8x8 >>= step * count; |
| mask_4x4 >>= step * count; |
| offset += step * count; |
| } |
| } |
| |
| static void highbd_filter_selectively_horiz( |
| uint16_t *s, int pitch, int plane, int subsampling, uint64_t mask_16x16, |
| uint64_t mask_8x8, uint64_t mask_4x4, const loop_filter_info_n *lfi_n, |
| uint8_t *lfl, int bd) { |
| uint64_t mask; |
| int count; |
| const int step = 1 << subsampling; |
| const unsigned int two_block_mask = subsampling ? 5 : 3; |
| int offset = 0; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) { |
| const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl; |
| // Next block's thresholds, when it is within current 64x64 block. |
| // If it is out of bound, its mask is zero, and it points to current edge's |
| // filter parameters, instead of next edge's. |
| int next_edge = step; |
| if (offset + next_edge >= MI_SIZE_64X64) next_edge = 0; |
| const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + next_edge); |
| |
| count = 1; |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| HbdLpfFunc highbd_lpf_horizontal = |
| plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_14; |
| |
| if ((mask_16x16 & two_block_mask) == two_block_mask) { |
| if (plane) { |
| aom_highbd_lpf_horizontal_6_dual_c(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| count = 2; |
| } else { |
| highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| bd); |
| } |
| } else if (mask_8x8 & 1) { |
| HbdLpfFunc highbd_lpf_horizontal = |
| plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_8; |
| |
| if ((mask_8x8 & two_block_mask) == two_block_mask) { |
| if (plane) { |
| aom_highbd_lpf_horizontal_6_dual_c(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } else { |
| aom_highbd_lpf_horizontal_8_dual_c(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| count = 2; |
| } else { |
| highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, |
| bd); |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & two_block_mask) == two_block_mask) { |
| aom_highbd_lpf_horizontal_4_dual_c(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| count = 2; |
| } else { |
| aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } |
| } |
| |
| s += 4 * count; |
| lfl += step * count; |
| mask_16x16 >>= step * count; |
| mask_8x8 >>= step * count; |
| mask_4x4 >>= step * count; |
| offset += step * count; |
| } |
| } |
| |
| void av1_build_bitmask_vert_info( |
| AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr, |
| int plane) { |
| const int subsampling_x = plane_ptr->subsampling_x; |
| const int subsampling_y = plane_ptr->subsampling_y; |
| const int row_step = (MI_SIZE >> MI_SIZE_LOG2); |
| const int is_uv = plane > 0; |
| TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16; |
| uint8_t level, prev_level = 1; |
| uint64_t skip, prev_skip = 0; |
| uint64_t is_coding_block_border; |
| |
| for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height; r += row_step) { |
| const int mi_row = r << subsampling_y; |
| const int row = mi_row % MI_SIZE_64X64; |
| const int row_uv = row | subsampling_y; |
| int index = 0; |
| const int shift = get_index_shift(0, row, &index); |
| |
| for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width; |
| c += (tx_size_wide_unit[TX_64X64] >> subsampling_x)) { |
| const int mi_col = c << subsampling_x; |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); |
| |
| for (int col_in_unit = 0; |
| col_in_unit < (tx_size_wide_unit[TX_64X64] >> subsampling_x);) { |
| const int x = (c + col_in_unit) << MI_SIZE_LOG2; |
| if (x >= plane_ptr->dst.width) break; |
| const int col = col_in_unit << subsampling_x; |
| const int col_uv = col | subsampling_x; |
| const uint64_t mask = ((uint64_t)1 << (shift | col)); |
| skip = lfm->skip.bits[index] & mask; |
| is_coding_block_border = lfm->is_vert_border.bits[index] & mask; |
| switch (plane) { |
| case 0: level = lfm->lfl_y_ver[row_uv][col_uv]; break; |
| case 1: level = lfm->lfl_u_ver[row_uv][col_uv]; break; |
| case 2: level = lfm->lfl_v_ver[row_uv][col_uv]; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) { |
| if (is_uv && ts == TX_64X64) continue; |
| if (lfm->tx_size_ver[is_uv][ts].bits[index] & mask) { |
| tx_size = ts; |
| break; |
| } |
| } |
| if ((c + col_in_unit > 0) && (level || prev_level) && |
| (!prev_skip || !skip || is_coding_block_border)) { |
| const TX_SIZE min_tx_size = |
| AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size)); |
| const int shift_1 = get_index_shift(col_uv, row_uv, &index); |
| const uint64_t mask_1 = ((uint64_t)1 << shift_1); |
| switch (plane) { |
| case 0: lfm->left_y[min_tx_size].bits[index] |= mask_1; break; |
| case 1: lfm->left_u[min_tx_size].bits[index] |= mask_1; break; |
| case 2: lfm->left_v[min_tx_size].bits[index] |= mask_1; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| if (level == 0 && prev_level != 0) { |
| switch (plane) { |
| case 0: lfm->lfl_y_ver[row_uv][col_uv] = prev_level; break; |
| case 1: lfm->lfl_u_ver[row_uv][col_uv] = prev_level; break; |
| case 2: lfm->lfl_v_ver[row_uv][col_uv] = prev_level; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| } |
| } |
| |
| // update prev info |
| prev_level = level; |
| prev_skip = skip; |
| prev_tx_size = tx_size; |
| // advance |
| col_in_unit += tx_size_wide_unit[tx_size]; |
| } |
| } |
| } |
| } |
| |
| void av1_build_bitmask_horz_info( |
| AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr, |
| int plane) { |
| const int subsampling_x = plane_ptr->subsampling_x; |
| const int subsampling_y = plane_ptr->subsampling_y; |
| const int col_step = (MI_SIZE >> MI_SIZE_LOG2); |
| const int is_uv = plane > 0; |
| TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16; |
| uint8_t level, prev_level = 1; |
| uint64_t skip, prev_skip = 0; |
| uint64_t is_coding_block_border; |
| |
| for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width; c += col_step) { |
| const int mi_col = c << subsampling_x; |
| const int col = mi_col % MI_SIZE_64X64; |
| const int col_uv = col | subsampling_x; |
| |
| for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height; |
| r += (tx_size_high_unit[TX_64X64] >> subsampling_y)) { |
| const int mi_row = r << subsampling_y; |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); |
| |
| for (int r_in_unit = 0; |
| r_in_unit < (tx_size_high_unit[TX_64X64] >> subsampling_y);) { |
| const int y = (r + r_in_unit) << MI_SIZE_LOG2; |
| if (y >= plane_ptr->dst.height) break; |
| const int row = r_in_unit << subsampling_y; |
| const int row_uv = row | subsampling_y; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| const uint64_t mask = ((uint64_t)1 << shift); |
| skip = lfm->skip.bits[index] & mask; |
| is_coding_block_border = lfm->is_horz_border.bits[index] & mask; |
| switch (plane) { |
| case 0: level = lfm->lfl_y_hor[row_uv][col_uv]; break; |
| case 1: level = lfm->lfl_u_hor[row_uv][col_uv]; break; |
| case 2: level = lfm->lfl_v_hor[row_uv][col_uv]; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) { |
| if (is_uv && ts == TX_64X64) continue; |
| if (lfm->tx_size_hor[is_uv][ts].bits[index] & mask) { |
| tx_size = ts; |
| break; |
| } |
| } |
| if ((r + r_in_unit > 0) && (level || prev_level) && |
| (!prev_skip || !skip || is_coding_block_border)) { |
| const TX_SIZE min_tx_size = |
| AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size)); |
| const int shift_1 = get_index_shift(col_uv, row_uv, &index); |
| const uint64_t mask_1 = ((uint64_t)1 << shift_1); |
| |
| switch (plane) { |
| case 0: lfm->above_y[min_tx_size].bits[index] |= mask_1; break; |
| case 1: lfm->above_u[min_tx_size].bits[index] |= mask_1; break; |
| case 2: lfm->above_v[min_tx_size].bits[index] |= mask_1; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| if (level == 0 && prev_level != 0) { |
| switch (plane) { |
| case 0: lfm->lfl_y_hor[row_uv][col_uv] = prev_level; break; |
| case 1: lfm->lfl_u_hor[row_uv][col_uv] = prev_level; break; |
| case 2: lfm->lfl_v_hor[row_uv][col_uv] = prev_level; break; |
| default: assert(plane >= 0 && plane <= 2); return; |
| } |
| } |
| } |
| |
| // update prev info |
| prev_level = level; |
| prev_skip = skip; |
| prev_tx_size = tx_size; |
| // advance |
| r_in_unit += tx_size_high_unit[tx_size]; |
| } |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_bitmask_vert( |
| AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, |
| int mi_row, int mi_col) { |
| struct buf_2d *const dst = &plane_ptr->dst; |
| uint8_t *const buf0 = dst->buf; |
| const int ssx = plane_ptr->subsampling_x; |
| const int ssy = plane_ptr->subsampling_y; |
| const int mask_cutoff = 0xffff; |
| const int row_step = 1 << ssy; |
| const int two_row_step = 2 << ssy; |
| const int row_stride = dst->stride << MI_SIZE_LOG2; |
| const int two_row_stride = row_stride << 1; |
| uint64_t mask_16x16 = 0; |
| uint64_t mask_8x8 = 0; |
| uint64_t mask_4x4 = 0; |
| uint8_t *lfl; |
| uint8_t *lfl2; |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); |
| assert(lfm); |
| |
| // 1. vertical filtering. filter two rows at a time |
| for (int r = 0; |
| ((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64; |
| r += two_row_step) { |
| const int row = r | ssy; |
| const int row_next = row + row_step; |
| const int col = ssx; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| int index_next = 0; |
| const int shift_next = get_index_shift(col, row_next, &index_next); |
| const int has_next_row = row_next < cm->mi_rows; |
| switch (pl) { |
| case 0: |
| mask_16x16 = lfm->left_y[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_y[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_y[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_y_ver[row][col]; |
| lfl2 = &lfm->lfl_y_ver[row_next][col]; |
| break; |
| case 1: |
| mask_16x16 = lfm->left_u[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_u[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_u[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_u_ver[row][col]; |
| lfl2 = &lfm->lfl_u_ver[row_next][col]; |
| break; |
| case 2: |
| mask_16x16 = lfm->left_v[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_v[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_v[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_v_ver[row][col]; |
| lfl2 = &lfm->lfl_v_ver[row_next][col]; |
| break; |
| default: assert(pl >= 0 && pl <= 2); return; |
| } |
| uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff; |
| uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff; |
| uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff; |
| uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff; |
| uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff; |
| uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff; |
| if (!has_next_row) { |
| mask_16x16_1 = 0; |
| mask_8x8_1 = 0; |
| mask_4x4_1 = 0; |
| } |
| |
| if (cm->seq_params.use_highbitdepth) |
| highbd_filter_selectively_vert_row2( |
| ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0, |
| mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, |
| &cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth); |
| else |
| filter_selectively_vert_row2( |
| ssx, dst->buf, dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0, |
| mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2); |
| dst->buf += two_row_stride; |
| } |
| // reset buf pointer for horizontal filtering |
| dst->buf = buf0; |
| } |
| |
| void av1_filter_block_plane_bitmask_horz( |
| AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl, |
| int mi_row, int mi_col) { |
| struct buf_2d *const dst = &plane_ptr->dst; |
| uint8_t *const buf0 = dst->buf; |
| const int ssx = plane_ptr->subsampling_x; |
| const int ssy = plane_ptr->subsampling_y; |
| const int mask_cutoff = 0xffff; |
| const int row_step = 1 << ssy; |
| const int row_stride = dst->stride << MI_SIZE_LOG2; |
| uint64_t mask_16x16 = 0; |
| uint64_t mask_8x8 = 0; |
| uint64_t mask_4x4 = 0; |
| uint8_t *lfl; |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); |
| assert(lfm); |
| for (int r = 0; |
| ((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64; |
| r += row_step) { |
| if (mi_row + r == 0) { |
| dst->buf += row_stride; |
| continue; |
| } |
| const int row = r | ssy; |
| const int col = ssx; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| switch (pl) { |
| case 0: |
| mask_16x16 = lfm->above_y[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_y[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_y[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_y_hor[row][col]; |
| break; |
| case 1: |
| mask_16x16 = lfm->above_u[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_u[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_u[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_u_hor[row][col]; |
| break; |
| case 2: |
| mask_16x16 = lfm->above_v[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_v[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_v[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_v_hor[row][col]; |
| break; |
| default: assert(pl >= 0 && pl <= 2); return; |
| } |
| mask_16x16 = (mask_16x16 >> shift) & mask_cutoff; |
| mask_8x8 = (mask_8x8 >> shift) & mask_cutoff; |
| mask_4x4 = (mask_4x4 >> shift) & mask_cutoff; |
| |
| if (cm->seq_params.use_highbitdepth) |
| highbd_filter_selectively_horiz( |
| CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, ssx, mask_16x16, |
| mask_8x8, mask_4x4, &cm->lf_info, lfl, (int)cm->seq_params.bit_depth); |
| else |
| filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16, |
| mask_8x8, mask_4x4, &cm->lf_info, lfl); |
| dst->buf += row_stride; |
| } |
| // reset buf pointer for next block |
| dst->buf = buf0; |
| } |
| |
| void av1_filter_block_plane_ver(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane_ptr, |
| int pl, int mi_row, int mi_col) { |
| struct buf_2d *const dst = &plane_ptr->dst; |
| int r, c; |
| const int ssx = plane_ptr->subsampling_x; |
| const int ssy = plane_ptr->subsampling_y; |
| const int mask_cutoff = 0xffff; |
| const int single_step = 1 << ssy; |
| const int r_step = 2 << ssy; |
| uint64_t mask_16x16 = 0; |
| uint64_t mask_8x8 = 0; |
| uint64_t mask_4x4 = 0; |
| uint8_t *lfl; |
| uint8_t *lfl2; |
| |
| // filter two rows at a time |
| for (r = 0; r < cm->seq_params.mib_size && |
| ((mi_row + r) << MI_SIZE_LOG2 < cm->height); |
| r += r_step) { |
| for (c = 0; c < cm->seq_params.mib_size && |
| ((mi_col + c) << MI_SIZE_LOG2 < cm->width); |
| c += MI_SIZE_64X64) { |
| dst->buf += ((c << MI_SIZE_LOG2) >> ssx); |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c); |
| assert(lfm); |
| const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64; |
| const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| // current and next row should belong to the same mask_idx and index |
| // next row's shift |
| const int row_next = row + single_step; |
| int index_next = 0; |
| const int shift_next = get_index_shift(col, row_next, &index_next); |
| switch (pl) { |
| case 0: |
| mask_16x16 = lfm->left_y[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_y[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_y[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_y_ver[row][col]; |
| lfl2 = &lfm->lfl_y_ver[row_next][col]; |
| break; |
| case 1: |
| mask_16x16 = lfm->left_u[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_u[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_u[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_u_ver[row][col]; |
| lfl2 = &lfm->lfl_u_ver[row_next][col]; |
| break; |
| case 2: |
| mask_16x16 = lfm->left_v[TX_16X16].bits[index]; |
| mask_8x8 = lfm->left_v[TX_8X8].bits[index]; |
| mask_4x4 = lfm->left_v[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_v_ver[row][col]; |
| lfl2 = &lfm->lfl_v_ver[row_next][col]; |
| break; |
| default: assert(pl >= 0 && pl <= 2); return; |
| } |
| uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff; |
| uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff; |
| uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff; |
| uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff; |
| uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff; |
| uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff; |
| |
| if (cm->seq_params.use_highbitdepth) |
| highbd_filter_selectively_vert_row2( |
| ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0, |
| mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1, |
| &cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth); |
| else |
| filter_selectively_vert_row2(ssx, dst->buf, dst->stride, pl, |
| mask_16x16_0, mask_8x8_0, mask_4x4_0, |
| mask_16x16_1, mask_8x8_1, mask_4x4_1, |
| &cm->lf_info, lfl, lfl2); |
| dst->buf -= ((c << MI_SIZE_LOG2) >> ssx); |
| } |
| dst->buf += 2 * MI_SIZE * dst->stride; |
| } |
| } |
| |
| void av1_filter_block_plane_hor(AV1_COMMON *const cm, |
| struct macroblockd_plane *const plane_ptr, |
| int pl, int mi_row, int mi_col) { |
| struct buf_2d *const dst = &plane_ptr->dst; |
| int r, c; |
| const int ssx = plane_ptr->subsampling_x; |
| const int ssy = plane_ptr->subsampling_y; |
| const int mask_cutoff = 0xffff; |
| const int r_step = 1 << ssy; |
| uint64_t mask_16x16 = 0; |
| uint64_t mask_8x8 = 0; |
| uint64_t mask_4x4 = 0; |
| uint8_t *lfl; |
| |
| for (r = 0; r < cm->seq_params.mib_size && |
| ((mi_row + r) << MI_SIZE_LOG2 < cm->height); |
| r += r_step) { |
| for (c = 0; c < cm->seq_params.mib_size && |
| ((mi_col + c) << MI_SIZE_LOG2 < cm->width); |
| c += MI_SIZE_64X64) { |
| if (mi_row + r == 0) continue; |
| |
| dst->buf += ((c << MI_SIZE_LOG2) >> ssx); |
| LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c); |
| assert(lfm); |
| const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64; |
| const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64; |
| int index = 0; |
| const int shift = get_index_shift(col, row, &index); |
| switch (pl) { |
| case 0: |
| mask_16x16 = lfm->above_y[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_y[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_y[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_y_hor[row][col]; |
| break; |
| case 1: |
| mask_16x16 = lfm->above_u[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_u[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_u[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_u_hor[row][col]; |
| break; |
| case 2: |
| mask_16x16 = lfm->above_v[TX_16X16].bits[index]; |
| mask_8x8 = lfm->above_v[TX_8X8].bits[index]; |
| mask_4x4 = lfm->above_v[TX_4X4].bits[index]; |
| lfl = &lfm->lfl_v_hor[row][col]; |
| break; |
| default: assert(pl >= 0 && pl <= 2); return; |
| } |
| mask_16x16 = (mask_16x16 >> shift) & mask_cutoff; |
| mask_8x8 = (mask_8x8 >> shift) & mask_cutoff; |
| mask_4x4 = (mask_4x4 >> shift) & mask_cutoff; |
| |
| if (cm->seq_params.use_highbitdepth) |
| highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, pl, ssx, mask_16x16, |
| mask_8x8, mask_4x4, &cm->lf_info, lfl, |
| (int)cm->seq_params.bit_depth); |
| else |
| filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16, |
| mask_8x8, mask_4x4, &cm->lf_info, lfl); |
| dst->buf -= ((c << MI_SIZE_LOG2) >> ssx); |
| } |
| dst->buf += MI_SIZE * dst->stride; |
| } |
| } |
| #endif // LOOP_FILTER_BITMASK |
| |
| static TX_SIZE get_transform_size(const MACROBLOCKD *const xd, |
| const MB_MODE_INFO *const mbmi, |
| const EDGE_DIR edge_dir, const int mi_row, |
| const int mi_col, const int plane, |
| const struct macroblockd_plane *plane_ptr) { |
| assert(mbmi != NULL); |
| if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4; |
| |
| TX_SIZE tx_size = |
| (plane == AOM_PLANE_Y) |
| ? mbmi->tx_size |
| : av1_get_max_uv_txsize(mbmi->sb_type, plane_ptr->subsampling_x, |
| plane_ptr->subsampling_y); |
| assert(tx_size < TX_SIZES_ALL); |
| if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) { |
| const BLOCK_SIZE sb_type = mbmi->sb_type; |
| const int blk_row = mi_row & (mi_size_high[sb_type] - 1); |
| const int blk_col = mi_col & (mi_size_wide[sb_type] - 1); |
| const TX_SIZE mb_tx_size = |
| mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)]; |
| assert(mb_tx_size < TX_SIZES_ALL); |
| tx_size = mb_tx_size; |
| } |
| |
| // since in case of chrominance or non-square transorm need to convert |
| // transform size into transform size in particular direction. |
| // for vertical edge, filter direction is horizontal, for horizontal |
| // edge, filter direction is vertical. |
| tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size] |
| : txsize_vert_map[tx_size]; |
| return tx_size; |
| } |
| |
| typedef struct AV1_DEBLOCKING_PARAMETERS { |
| // length of the filter applied to the outer edge |
| uint32_t filter_length; |
| // deblocking limits |
| const uint8_t *lim; |
| const uint8_t *mblim; |
| const uint8_t *hev_thr; |
| } AV1_DEBLOCKING_PARAMETERS; |
| |
| // Return TX_SIZE from get_transform_size(), so it is plane and direction |
| // awared |
| static TX_SIZE set_lpf_parameters( |
| AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, |
| const AV1_COMMON *const cm, const MACROBLOCKD *const xd, |
| const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y, |
| const int plane, const struct macroblockd_plane *const plane_ptr) { |
| // reset to initial values |
| params->filter_length = 0; |
| |
| // no deblocking is required |
| const uint32_t width = plane_ptr->dst.width; |
| const uint32_t height = plane_ptr->dst.height; |
| if ((width <= x) || (height <= y)) { |
| // just return the smallest transform unit size |
| return TX_4X4; |
| } |
| |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| // for sub8x8 block, chroma prediction mode is obtained from the bottom/right |
| // mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row |
| // and mi_col should map to the bottom/right mi structure, i.e, both mi_row |
| // and mi_col should be odd number for chroma plane. |
| const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2); |
| const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2); |
| MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *mbmi = mi[0]; |
| // If current mbmi is not correctly setup, return an invalid value to stop |
| // filtering. One example is that if this tile is not coded, then its mbmi |
| // it not set up. |
| if (mbmi == NULL) return TX_INVALID; |
| |
| const TX_SIZE ts = |
| get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr); |
| |
| { |
| const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); |
| const uint32_t transform_masks = |
| edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; |
| const int32_t tu_edge = (coord & transform_masks) ? (0) : (1); |
| |
| if (!tu_edge) return ts; |
| |
| // prepare outer edge parameters. deblock the edge if it's an edge of a TU |
| { |
| const uint32_t curr_level = |
| get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); |
| const int curr_skipped = mbmi->skip && is_inter_block(mbmi); |
| uint32_t level = curr_level; |
| if (coord) { |
| { |
| const MB_MODE_INFO *const mi_prev = *(mi - mode_step); |
| if (mi_prev == NULL) return TX_INVALID; |
| const int pv_row = |
| (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); |
| const int pv_col = |
| (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); |
| const TX_SIZE pv_ts = get_transform_size( |
| xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr); |
| |
| const uint32_t pv_lvl = |
| get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); |
| |
| const int pv_skip = mi_prev->skip && is_inter_block(mi_prev); |
| const BLOCK_SIZE bsize = |
| get_plane_block_size(mbmi->sb_type, plane_ptr->subsampling_x, |
| plane_ptr->subsampling_y); |
| const int prediction_masks = edge_dir == VERT_EDGE |
| ? block_size_wide[bsize] - 1 |
| : block_size_high[bsize] - 1; |
| const int32_t pu_edge = !(coord & prediction_masks); |
| // if the current and the previous blocks are skipped, |
| // deblock the edge if the edge belongs to a PU's edge only. |
| if ((curr_level || pv_lvl) && |
| (!pv_skip || !curr_skipped || pu_edge)) { |
| const TX_SIZE min_ts = AOMMIN(ts, pv_ts); |
| if (TX_4X4 >= min_ts) { |
| params->filter_length = 4; |
| } else if (TX_8X8 == min_ts) { |
| if (plane != 0) |
| params->filter_length = 6; |
| else |
| params->filter_length = 8; |
| } else { |
| params->filter_length = 14; |
| // No wide filtering for chroma plane |
| if (plane != 0) { |
| params->filter_length = 6; |
| } |
| } |
| |
| // update the level if the current block is skipped, |
| // but the previous one is not |
| level = (curr_level) ? (curr_level) : (pv_lvl); |
| } |
| } |
| } |
| // prepare common parameters |
| if (params->filter_length) { |
| const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; |
| params->lim = limits->lim; |
| params->mblim = limits->mblim; |
| params->hev_thr = limits->hev_thr; |
| } |
| } |
| } |
| |
| return ts; |
| } |
| |
| void av1_filter_block_plane_vert(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, const uint32_t mi_col) { |
| const int row_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| const int use_highbitdepth = cm->seq_params.use_highbitdepth; |
| const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; |
| for (int y = 0; y < y_range; y += row_step) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 trasnform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, |
| VERT_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| case 6: // apply 6-tap filter for chroma plane only |
| assert(plane != 0); |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| // advance the destination pointer |
| advance_units = tx_size_wide_unit[tx_size]; |
| x += advance_units; |
| p += advance_units * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_horz(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, const uint32_t mi_col) { |
| const int col_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| const int use_highbitdepth = cm->seq_params.use_highbitdepth; |
| const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; |
| for (int x = 0; x < x_range; x += col_step) { |
| uint8_t *p = dst_ptr + x * MI_SIZE; |
| for (int y = 0; y < y_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 trasnform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, |
| HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 6-tap filtering |
| case 6: |
| assert(plane != 0); |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_high_unit[tx_size]; |
| y += advance_units; |
| p += advance_units * dst_stride * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_vert_test(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int row_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = cm->mi_rows >> scale_vert; |
| const int x_range = cm->mi_cols >> scale_horz; |
| for (int y = 0; y < y_range; y += row_step) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 trasnform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, |
| VERT_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_wide_unit[tx_size]; |
| x += advance_units; |
| p += advance_units * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_horz_test(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const int col_step = MI_SIZE >> MI_SIZE_LOG2; |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = cm->mi_rows >> scale_vert; |
| const int x_range = cm->mi_cols >> scale_horz; |
| for (int x = 0; x < x_range; x += col_step) { |
| uint8_t *p = dst_ptr + x * MI_SIZE; |
| for (int y = 0; y < y_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 trasnform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, |
| HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_high_unit[tx_size]; |
| y += advance_units; |
| p += advance_units * dst_stride * MI_SIZE; |
| } |
| } |
| } |
| |
| static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| #if LOOP_FILTER_BITMASK |
| int is_decoding, |
| #endif |
| int plane_start, int plane_end) { |
| struct macroblockd_plane *pd = xd->plane; |
| const int col_start = 0; |
| const int col_end = cm->mi_cols; |
| int mi_row, mi_col; |
| int plane; |
| |
| #if LOOP_FILTER_
|