blob: 0aa1f9b9079f60cfa4fe409b4f389c073e79e302 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
static const int delta_lf_id_lut[MAX_MB_PLANE][2] = {
{ 0, 1 }, { 2, 2 }, { 3, 3 }
};
enum { VERT_EDGE = 0, HORZ_EDGE = 1, NUM_EDGE_DIRS } UENUM1BYTE(EDGE_DIR);
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0)
1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
};
// 256 bit masks (64x64 / 4x4) for left transform size for Y plane.
// We use 4 uint64_t to represent the 256 bit.
// Each 1 represents a position where we should apply a loop filter
// across the left border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this (-- and | are used for better view)
//
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// -----------------
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
// 10101010|10101010
//
// A loopfilter should be applied to every other 4x4 horizontally.
// 256 bit masks (64x64 / 4x4) for above transform size for Y plane.
// We use 4 uint64_t to represent the 256 bit.
// Each 1 represents a position where we should apply a loop filter
// across the top border of an 4x4 block boundary.
//
// In the case of TX_8x8-> ( in low order byte first we end up with
// a mask that looks like this
//
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// -----------------
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
// 11111111|11111111
// 00000000|00000000
//
// A loopfilter should be applied to every other 4x4 horizontally.
const int mask_id_table_tx_4x4[BLOCK_SIZES_ALL] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, -1, 13, 14, 15, 16, 17, 18
};
const int mask_id_table_tx_8x8[BLOCK_SIZES_ALL] = {
-1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, 10, 11, 12, 13
};
const int mask_id_table_tx_16x16[BLOCK_SIZES_ALL] = {
-1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, 7, 8
};
const int mask_id_table_tx_32x32[BLOCK_SIZES_ALL] = { -1, -1, -1, -1, -1, -1,
-1, -1, -1, 0, 1, 2,
3, -1, -1, -1, -1, -1,
-1, -1, -1, -1 };
const int mask_id_table_vert_border[BLOCK_SIZES_ALL] = { 0, 47, 49, 19, 51, 53,
33, 55, 57, 42, 59, 60,
46, -1, -1, -1, 61, 62,
63, 64, 65, 66 };
const FilterMask left_mask_univariant_reordered[67] = {
// TX_4X4
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X4, TX_4X4
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X8, TX_4X4
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X4, TX_4X4
{ { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X8, TX_4X4
{ { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_4X4
{ { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_4X4
{ { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_4X4
{ { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL,
0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4
{ { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_4X4
{ { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL,
0xffffffffffffffffULL } }, // block size 64X64, TX_4X4
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X4
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_4X4
{ { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_4X4
{ { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_4X4
{ { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL,
0x000f000f000f000fULL } }, // block size 16X64, TX_4X4
{ { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_4X4
// TX_8X8
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X8, TX_8X8
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_8X8
{ { 0x0000000000050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_8X8
{ { 0x0005000500050005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_8X8
{ { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_8X8
{ { 0x0055005500550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_8X8
{ { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_8X8
{ { 0x0055005500550055ULL, 0x0055005500550055ULL, 0x0055005500550055ULL,
0x0055005500550055ULL } }, // block size 32X64, TX_8X8
{ { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_8X8
{ { 0x5555555555555555ULL, 0x5555555555555555ULL, 0x5555555555555555ULL,
0x5555555555555555ULL } }, // block size 64X64, TX_8X8
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X8
{ { 0x0000000000550055ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_8X8
{ { 0x0005000500050005ULL, 0x0005000500050005ULL, 0x0005000500050005ULL,
0x0005000500050005ULL } }, // block size 16X64, TX_8X8
{ { 0x5555555555555555ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_8X8
// TX_16X16
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_16X16
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_16X16
{ { 0x0011001100110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_16X16
{ { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_16X16
{ { 0x0011001100110011ULL, 0x0011001100110011ULL, 0x0011001100110011ULL,
0x0011001100110011ULL } }, // block size 32X64, TX_16X16
{ { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_16X16
{ { 0x1111111111111111ULL, 0x1111111111111111ULL, 0x1111111111111111ULL,
0x1111111111111111ULL } }, // block size 64X64, TX_16X16
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL,
0x0001000100010001ULL } }, // block size 16X64, TX_16X16
{ { 0x1111111111111111ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_16X16
// TX_32X32
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_32X32
{ { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL,
0x0101010101010101ULL } }, // block size 32X64, TX_32X32
{ { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_32X32
{ { 0x0101010101010101ULL, 0x0101010101010101ULL, 0x0101010101010101ULL,
0x0101010101010101ULL } }, // block size 64X64, TX_32X32
// TX_64X64
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL,
0x0001000100010001ULL } }, // block size 64X64, TX_64X64
// 2:1, 1:2 transform sizes.
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X8, TX_4X8
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X8
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X4, TX_8X4
{ { 0x0000000000000005ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_8X4
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_8X16
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X16
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_16X8
{ { 0x0000000000110011ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_16X8
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_16X32
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL,
0x0001000100010001ULL } }, // block size 16X64, TX_16X32
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_32X16
{ { 0x0101010101010101ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_32X16
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL,
0x0001000100010001ULL } }, // block size 32X64, TX_32X64
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_64X32
// 4:1, 1:4 transform sizes.
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X16
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_16X4
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X32
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_32X8
{ { 0x0001000100010001ULL, 0x0001000100010001ULL, 0x0001000100010001ULL,
0x0001000100010001ULL } }, // block size 16X64, TX_16X64
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_64X16
};
const FilterMask above_mask_univariant_reordered[67] = {
// TX_4X4
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X4, TX_4X4
{ { 0x0000000000010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X8, TX_4X4
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X4, TX_4X4
{ { 0x0000000000030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X8, TX_4X4
{ { 0x0003000300030003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_4X4
{ { 0x00000000000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_4X4
{ { 0x000f000f000f000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_4X4
{ { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_4X4
{ { 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL,
0x00ff00ff00ff00ffULL } }, // block size 32X64, TX_4X4
{ { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_4X4
{ { 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL,
0xffffffffffffffffULL } }, // block size 64X64, TX_4x4
{ { 0x0001000100010001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X4
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_4X4
{ { 0x0003000300030003ULL, 0x0003000300030003ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_4X4
{ { 0x0000000000ff00ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_4X4
{ { 0x000f000f000f000fULL, 0x000f000f000f000fULL, 0x000f000f000f000fULL,
0x000f000f000f000fULL } }, // block size 16X64, TX_4X4
{ { 0xffffffffffffffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_4X4
// TX_8X8
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X8, TX_8X8
{ { 0x0000000300000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_8X8
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_8X8
{ { 0x0000000f0000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_8X8
{ { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_8X8
{ { 0x000000ff000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_8X8
{ { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_8X8
{ { 0x000000ff000000ffULL, 0x000000ff000000ffULL, 0x000000ff000000ffULL,
0x000000ff000000ffULL } }, // block size 32X64, TX_8X8
{ { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_8X8
{ { 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL, 0x0000ffff0000ffffULL,
0x0000ffff0000ffffULL } }, // block size 64X64, TX_8X8
{ { 0x0000000300000003ULL, 0x0000000300000003ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X8
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_8X8
{ { 0x0000000f0000000fULL, 0x0000000f0000000fULL, 0x0000000f0000000fULL,
0x0000000f0000000fULL } }, // block size 16X64, TX_8X8
{ { 0x0000ffff0000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_8X8
// TX_16X16
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X16, TX_16X16
{ { 0x000000000000000fULL, 0x000000000000000fULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_16X16
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_16X16
{ { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_16X16
{ { 0x00000000000000ffULL, 0x00000000000000ffULL, 0x00000000000000ffULL,
0x00000000000000ffULL } }, // block size 32X64, TX_16X16
{ { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_16X16
{ { 0x000000000000ffffULL, 0x000000000000ffffULL, 0x000000000000ffffULL,
0x000000000000ffffULL } }, // block size 64X64, TX_16X16
{ { 0x000000000000000fULL, 0x000000000000000fULL, 0x000000000000000fULL,
0x000000000000000fULL } }, // block size 16X64, TX_16X16
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_16X16
// TX_32X32
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X32, TX_32X32
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x00000000000000ffULL,
0x0000000000000000ULL } }, // block size 32X64, TX_32X32
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_32X32
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x000000000000ffffULL,
0x0000000000000000ULL } }, // block size 64X64, TX_32X32
// TX_64X64
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X64, TX_64X64
// 2:1, 1:2 transform sizes.
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X8, TX_4X8
{ { 0x0000000100000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X8
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X4, TX_8X4
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_8X4
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X16, TX_8X16
{ { 0x0000000000000003ULL, 0x0000000000000003ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X16
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X8, TX_16X8
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_16X8
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X32, TX_16X32
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x000000000000000fULL,
0x0000000000000000ULL } }, // block size 16X64, TX_16X32
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X16, TX_32X16
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_32X16
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X64, TX_32X64
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X32, TX_64X32
// 4:1, 1:4 transform sizes.
{ { 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 4X16, TX_4X16
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X4, TX_16X4
{ { 0x0000000000000003ULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 8X32, TX_8X32
{ { 0x00000000000000ffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 32X8, TX_32X8
{ { 0x000000000000000fULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 16X64, TX_16X64
{ { 0x000000000000ffffULL, 0x0000000000000000ULL, 0x0000000000000000ULL,
0x0000000000000000ULL } }, // block size 64X16, TX_64X16
};
#if LOOP_FILTER_BITMASK
LoopFilterMask *get_loop_filter_mask(const AV1_COMMON *const cm, int mi_row,
int mi_col) {
assert(cm->lf.lfm != NULL);
const int row = mi_row >> MIN_MIB_SIZE_LOG2; // 64x64
const int col = mi_col >> MIN_MIB_SIZE_LOG2;
return &cm->lf.lfm[row * cm->lf.lfm_stride + col];
}
typedef void (*LpfFunc)(uint8_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh);
typedef void (*LpfDualFunc)(uint8_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1);
typedef void (*HbdLpfFunc)(uint16_t *s, int p, const uint8_t *blimit,
const uint8_t *limit, const uint8_t *thresh, int bd);
typedef void (*HbdLpfDualFunc)(uint16_t *s, int p, const uint8_t *blimit0,
const uint8_t *limit0, const uint8_t *thresh0,
const uint8_t *blimit1, const uint8_t *limit1,
const uint8_t *thresh1, int bd);
#endif // LOOP_FILTER_BITMASK
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
uint8_t get_filter_level(const AV1_COMMON *cm, const loop_filter_info_n *lfi_n,
const int dir_idx, int plane,
const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
if (cm->delta_q_info.delta_lf_present_flag) {
int delta_lf;
if (cm->delta_q_info.delta_lf_multi) {
const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx];
delta_lf = mbmi->delta_lf[delta_lf_idx];
} else {
delta_lf = mbmi->delta_lf_from_base;
}
int base_level;
if (plane == 0)
base_level = cm->lf.filter_level[dir_idx];
else if (plane == 1)
base_level = cm->lf.filter_level_u;
else
base_level = cm->lf.filter_level_v;
int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER);
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx];
if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (cm->lf.mode_ref_delta_enabled) {
const int scale = 1 << (lvl_seg >> 5);
lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale;
if (mbmi->ref_frame[0] > INTRA_FRAME)
lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale;
lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER);
}
return lvl_seg;
} else {
return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]]
[mode_lf_lut[mbmi->mode]];
}
}
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
lf->combine_vert_horz_lf = 1;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
// Update the loop filter for the current frame.
// This should be called before loop_filter_rows(),
// av1_loop_filter_frame() calls this function directly.
void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start,
int plane_end) {
int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE];
int plane;
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update sharpness limits
update_sharpness(lfi, lf->sharpness_level);
filt_lvl[0] = cm->lf.filter_level[0];
filt_lvl[1] = cm->lf.filter_level_u;
filt_lvl[2] = cm->lf.filter_level_v;
filt_lvl_r[0] = cm->lf.filter_level[1];
filt_lvl_r[1] = cm->lf.filter_level_u;
filt_lvl_r[2] = cm->lf.filter_level_v;
assert(plane_start >= AOM_PLANE_Y);
assert(plane_end <= MAX_MB_PLANE);
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0])
break;
else if (plane == 1 && !filt_lvl[1])
continue;
else if (plane == 2 && !filt_lvl[2])
continue;
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane];
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[plane][seg_id][dir], lvl_seg,
sizeof(lfi->lvl[plane][seg_id][dir]));
} else {
int ref, mode;
const int scale = 1 << (lvl_seg >> 5);
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] =
clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[plane][seg_id][dir][ref][mode] =
clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
}
}
#if LOOP_FILTER_BITMASK
// A 64x64 tx block requires 256 bits to represent each 4x4 tx block.
// Every 4 rows is represented by one uint64_t mask. Hence,
// there are 4 uint64_t bitmask[4] to represent the 64x64 block.
//
// Given a location by (mi_col, mi_row), This function returns the index
// 0, 1, 2, 3 to select which bitmask[] to use, and the shift value.
//
// For example, mi_row is the offset of pixels in mi size (4),
// (mi_row / 4) returns which uint64_t.
// After locating which uint64_t, mi_row % 4 is the
// row offset, and each row has 16 = 1 << stride_log2 4x4 units.
// Therefore, shift = (row << stride_log2) + mi_col;
int get_index_shift(int mi_col, int mi_row, int *index) {
// *index = mi_row >> 2;
// rows = mi_row % 4;
// stride_log2 = 4;
// shift = (rows << stride_log2) + mi_col;
*index = mi_row >> 2;
return ((mi_row & 3) << 4) | mi_col;
}
static void check_mask(const FilterMask *lfm) {
#ifndef NDEBUG
for (int i = 0; i < 4; ++i) {
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_8X8].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_16X16].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_4X4].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_16X16].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_8X8].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_16X16].bits[i] & lfm[TX_32X32].bits[i]));
assert(!(lfm[TX_16X16].bits[i] & lfm[TX_64X64].bits[i]));
assert(!(lfm[TX_32X32].bits[i] & lfm[TX_64X64].bits[i]));
}
#else
(void)lfm;
#endif
}
static void check_loop_filter_masks(const LoopFilterMask *lfm, int plane) {
if (plane == 0) {
// Assert if we try to apply 2 different loop filters at the same
// position.
check_mask(lfm->left_y);
check_mask(lfm->above_y);
} else if (plane == 1) {
check_mask(lfm->left_u);
check_mask(lfm->above_u);
} else {
check_mask(lfm->left_v);
check_mask(lfm->above_v);
}
}
static void update_masks(EDGE_DIR dir, int plane, uint64_t *mask,
TX_SIZE sqr_tx_size, LoopFilterMask *lfm) {
if (dir == VERT_EDGE) {
switch (plane) {
case 0:
for (int i = 0; i < 4; ++i) lfm->left_y[sqr_tx_size].bits[i] |= mask[i];
break;
case 1:
for (int i = 0; i < 4; ++i) lfm->left_u[sqr_tx_size].bits[i] |= mask[i];
break;
case 2:
for (int i = 0; i < 4; ++i) lfm->left_v[sqr_tx_size].bits[i] |= mask[i];
break;
default: assert(plane <= 2);
}
} else {
switch (plane) {
case 0:
for (int i = 0; i < 4; ++i)
lfm->above_y[sqr_tx_size].bits[i] |= mask[i];
break;
case 1:
for (int i = 0; i < 4; ++i)
lfm->above_u[sqr_tx_size].bits[i] |= mask[i];
break;
case 2:
for (int i = 0; i < 4; ++i)
lfm->above_v[sqr_tx_size].bits[i] |= mask[i];
break;
default: assert(plane <= 2);
}
}
}
static int is_frame_boundary(AV1_COMMON *const cm, int plane, int mi_row,
int mi_col, int ssx, int ssy, EDGE_DIR dir) {
if (plane && (ssx || ssy)) {
if (ssx && ssy) { // format 420
if ((mi_row << MI_SIZE_LOG2) > cm->height ||
(mi_col << MI_SIZE_LOG2) > cm->width)
return 1;
} else if (ssx) { // format 422
if ((mi_row << MI_SIZE_LOG2) >= cm->height ||
(mi_col << MI_SIZE_LOG2) > cm->width)
return 1;
}
} else {
if ((mi_row << MI_SIZE_LOG2) >= cm->height ||
(mi_col << MI_SIZE_LOG2) >= cm->width)
return 1;
}
int row_or_col;
if (plane == 0) {
row_or_col = dir == VERT_EDGE ? mi_col : mi_row;
} else {
// chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block.
// So if mi_col == 1, it is actually the frame boundary.
if (dir == VERT_EDGE) {
row_or_col = ssx ? (mi_col & 0x0FFFFFFE) : mi_col;
} else {
row_or_col = ssy ? (mi_row & 0x0FFFFFFE) : mi_row;
}
}
return row_or_col == 0;
}
static void setup_masks(AV1_COMMON *const cm, int mi_row, int mi_col, int plane,
int ssx, int ssy, TX_SIZE tx_size) {
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col);
const int x = (mi_col << (MI_SIZE_LOG2 - ssx));
const int y = (mi_row << (MI_SIZE_LOG2 - ssy));
// decide whether current vertical/horizontal edge needs loop filtering
for (EDGE_DIR dir = VERT_EDGE; dir <= HORZ_EDGE; ++dir) {
// chroma sub8x8 block uses bottom/right mi of co-located 8x8 luma block.
mi_row |= ssy;
mi_col |= ssx;
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *const mbmi = mi[0];
const int curr_skip = mbmi->skip && is_inter_block(mbmi);
const BLOCK_SIZE bsize = mbmi->sb_type;
const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy);
const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy];
const uint8_t level = get_filter_level(cm, &cm->lf_info, dir, plane, mbmi);
const int prediction_masks = dir == VERT_EDGE
? block_size_wide[plane_bsize] - 1
: block_size_high[plane_bsize] - 1;
const int is_coding_block_border =
dir == VERT_EDGE ? !(x & prediction_masks) : !(y & prediction_masks);
// TODO(chengchen): step can be optimized.
const int row_step = mi_size_high[TX_4X4] << ssy;
const int col_step = mi_size_wide[TX_4X4] << ssx;
const int mi_height =
dir == VERT_EDGE ? tx_size_high_unit[tx_size] << ssy : row_step;
const int mi_width =
dir == VERT_EDGE ? col_step : tx_size_wide_unit[tx_size] << ssx;
// assign filter levels
for (int r = mi_row; r < mi_row + mi_height; r += row_step) {
for (int c = mi_col; c < mi_col + mi_width; c += col_step) {
// do not filter frame boundary
// Note: when chroma planes' size are half of luma plane,
// chroma plane mi corresponds to even position.
// If frame size is not even, we still need to filter this chroma
// position. Therefore the boundary condition check needs to be
// separated to two cases.
if (plane && (ssx || ssy)) {
if (ssx && ssy) { // format 420
if ((r << MI_SIZE_LOG2) > cm->height ||
(c << MI_SIZE_LOG2) > cm->width)
continue;
} else if (ssx) { // format 422
if ((r << MI_SIZE_LOG2) >= cm->height ||
(c << MI_SIZE_LOG2) > cm->width)
continue;
}
} else {
if ((r << MI_SIZE_LOG2) >= cm->height ||
(c << MI_SIZE_LOG2) >= cm->width)
continue;
}
const int row = r % MI_SIZE_64X64;
const int col = c % MI_SIZE_64X64;
if (plane == 0) {
if (dir == VERT_EDGE)
lfm->lfl_y_ver[row][col] = level;
else
lfm->lfl_y_hor[row][col] = level;
} else if (plane == 1) {
lfm->lfl_u_ver[row][col] = level;
lfm->lfl_u_hor[row][col] = level;
} else {
lfm->lfl_v_ver[row][col] = level;
lfm->lfl_v_hor[row][col] = level;
}
}
}
for (int r = mi_row; r < mi_row + mi_height; r += row_step) {
for (int c = mi_col; c < mi_col + mi_width; c += col_step) {
// do not filter frame boundary
if (is_frame_boundary(cm, plane, r, c, ssx, ssy, dir)) continue;
uint64_t mask[4] = { 0 };
const int prev_row = dir == VERT_EDGE ? r : r - (1 << ssy);
const int prev_col = dir == VERT_EDGE ? c - (1 << ssx) : c;
MB_MODE_INFO **mi_prev =
cm->mi_grid_visible + prev_row * cm->mi_stride + prev_col;
const MB_MODE_INFO *const mbmi_prev = mi_prev[0];
const int prev_skip = mbmi_prev->skip && is_inter_block(mbmi_prev);
const uint8_t level_prev =
get_filter_level(cm, &cm->lf_info, dir, plane, mbmi_prev);
const int is_edge =
(level || level_prev) &&
(!curr_skip || !prev_skip || is_coding_block_border);
if (is_edge) {
const TX_SIZE prev_tx_size =
plane ? av1_get_max_uv_txsize(mbmi_prev->sb_type, ssx, ssy)
: mbmi_prev->tx_size;
TX_SIZE min_tx_size = (dir == VERT_EDGE)
? AOMMIN(txsize_horz_map[tx_size],
txsize_horz_map[prev_tx_size])
: AOMMIN(txsize_vert_map[tx_size],
txsize_vert_map[prev_tx_size]);
min_tx_size = AOMMIN(min_tx_size, TX_16X16);
assert(min_tx_size < TX_SIZES);
const int row = r % MI_SIZE_64X64;
const int col = c % MI_SIZE_64X64;
int index = 0;
const int shift = get_index_shift(col, row, &index);
assert(index < 4 && index >= 0);
mask[index] |= ((uint64_t)1 << shift);
// set mask on corresponding bit
update_masks(dir, plane, mask, min_tx_size, lfm);
}
}
}
}
}
static void setup_tx_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int plane, int ssx, int ssy) {
blk_row <<= ssy;
blk_col <<= ssx;
if (((mi_row + blk_row) << MI_SIZE_LOG2) >= cm->height ||
((mi_col + blk_col) << MI_SIZE_LOG2) >= cm->width)
return;
// U/V plane, tx_size is always the largest size
if (plane) {
assert(tx_size_wide[tx_size] <= 32 && tx_size_high[tx_size] <= 32);
setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy,
tx_size);
return;
}
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *const mbmi = mi[0];
// For Y plane:
// If intra block, tx size is univariant.
// If inter block, tx size follows inter_tx_size.
TX_SIZE plane_tx_size = tx_size;
const int is_inter = is_inter_block(mbmi);
if (plane == 0) {
if (is_inter) {
if (mbmi->skip) {
// TODO(chengchen): change av1_get_transform_size() to be consistant.
// plane_tx_size = get_max_rect_tx_size(plane_bsize);
plane_tx_size = mbmi->tx_size;
} else {
plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
plane_bsize, blk_row, blk_col)];
}
} else {
MB_MODE_INFO **mi_this = cm->mi_grid_visible +
(mi_row + blk_row) * cm->mi_stride + mi_col +
blk_col;
const MB_MODE_INFO *const mbmi_this = mi_this[0];
plane_tx_size = mbmi_this->tx_size;
}
}
assert(txsize_to_bsize[plane_tx_size] <= plane_bsize);
if (plane || plane_tx_size == tx_size) {
setup_masks(cm, mi_row + blk_row, mi_col + blk_col, plane, ssx, ssy,
tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
setup_tx_block_mask(cm, mi_row, mi_col, offsetr, offsetc, plane_bsize,
sub_txs, plane, ssx, ssy);
}
}
}
}
static void setup_fix_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
int plane, int ssx, int ssy) {
MB_MODE_INFO **mi =
cm->mi_grid_visible + (mi_row | ssy) * cm->mi_stride + (mi_col | ssx);
const MB_MODE_INFO *const mbmi = mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const BLOCK_SIZE bsizec = scale_chroma_bsize(bsize, ssx, ssy);
const BLOCK_SIZE plane_bsize = ss_size_lookup[bsizec][ssx][ssy];
const int block_width = mi_size_wide[plane_bsize];
const int block_height = mi_size_high[plane_bsize];
TX_SIZE max_txsize = max_txsize_rect_lookup[plane_bsize];
// The decoder is designed so that it can process 64x64 luma pixels at a
// time. If this is a chroma plane with subsampling and bsize corresponds to
// a subsampled BLOCK_128X128 then the lookup above will give TX_64X64. That
// mustn't be used for the subsampled plane (because it would be bigger than
// a 64x64 luma block) so we round down to TX_32X32.
if (plane && txsize_sqr_up_map[max_txsize] == TX_64X64) {
if (max_txsize == TX_16X64)
max_txsize = TX_16X32;
else if (max_txsize == TX_64X16)
max_txsize = TX_32X16;
else
max_txsize = TX_32X32;
}
const BLOCK_SIZE txb_size = txsize_to_bsize[max_txsize];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
const BLOCK_SIZE max_unit_bsize = ss_size_lookup[BLOCK_64X64][ssx][ssy];
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(block_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(block_height, mu_blocks_high);
// Y: Largest tx_size is 64x64, while superblock size can be 128x128.
// Here we ensure that setup_tx_block_mask process at most a 64x64 block.
// U/V: largest tx size is 32x32.
for (int idy = 0; idy < block_height; idy += mu_blocks_high) {
for (int idx = 0; idx < block_width; idx += mu_blocks_wide) {
const int unit_height = AOMMIN(mu_blocks_high + idy, block_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, block_width);
for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
setup_tx_block_mask(cm, mi_row, mi_col, blk_row, blk_col, plane_bsize,
max_txsize, plane, ssx, ssy);
}
}
}
}
}
static void setup_block_mask(AV1_COMMON *const cm, int mi_row, int mi_col,
BLOCK_SIZE bsize, int plane, int ssx, int ssy) {
if ((mi_row << MI_SIZE_LOG2) >= cm->height ||
(mi_col << MI_SIZE_LOG2) >= cm->width)
return;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
const int hbs = mi_size_wide[bsize] / 2;
const int quarter_step = mi_size_wide[bsize] / 4;
const int allow_sub8x8 = (ssx || ssy) ? bsize > BLOCK_8X8 : 1;
const int has_next_row =
(((mi_row + hbs) << MI_SIZE_LOG2) < cm->height) & allow_sub8x8;
const int has_next_col =
(((mi_col + hbs) << MI_SIZE_LOG2) < cm->width) & allow_sub8x8;
int i;
switch (partition) {
case PARTITION_NONE:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
break;
case PARTITION_HORZ:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy);
break;
case PARTITION_VERT:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_col)
setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy);
break;
case PARTITION_SPLIT:
setup_block_mask(cm, mi_row, mi_col, subsize, plane, ssx, ssy);
if (has_next_col)
setup_block_mask(cm, mi_row, mi_col + hbs, subsize, plane, ssx, ssy);
if (has_next_row)
setup_block_mask(cm, mi_row + hbs, mi_col, subsize, plane, ssx, ssy);
if (has_next_col & has_next_row)
setup_block_mask(cm, mi_row + hbs, mi_col + hbs, subsize, plane, ssx,
ssy);
break;
case PARTITION_HORZ_A:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_col)
setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy);
if (has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy);
break;
case PARTITION_HORZ_B:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy);
if (has_next_col & has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy);
break;
case PARTITION_VERT_A:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col, plane, ssx, ssy);
if (has_next_col)
setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy);
break;
case PARTITION_VERT_B:
setup_fix_block_mask(cm, mi_row, mi_col, plane, ssx, ssy);
if (has_next_col)
setup_fix_block_mask(cm, mi_row, mi_col + hbs, plane, ssx, ssy);
if (has_next_row)
setup_fix_block_mask(cm, mi_row + hbs, mi_col + hbs, plane, ssx, ssy);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && (this_mi_row << MI_SIZE_LOG2) >= cm->height) break;
// chroma plane filter the odd location
if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue;
setup_fix_block_mask(cm, this_mi_row, mi_col, plane, ssx, ssy);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
// chroma plane filter the odd location
if (plane && bsize == BLOCK_16X16 && (i & 0x01)) continue;
setup_fix_block_mask(cm, mi_row, this_mi_col, plane, ssx, ssy);
}
break;
default: assert(0);
}
}
// TODO(chengchen): if lossless, do not need to setup mask. But when
// segments enabled, each segment has different lossless settings.
void av1_setup_bitmask(AV1_COMMON *const cm, int mi_row, int mi_col, int plane,
int subsampling_x, int subsampling_y, int row_end,
int col_end) {
const int num_64x64 = cm->seq_params.mib_size >> MIN_MIB_SIZE_LOG2;
for (int y = 0; y < num_64x64; ++y) {
for (int x = 0; x < num_64x64; ++x) {
const int row = mi_row + y * MI_SIZE_64X64;
const int col = mi_col + x * MI_SIZE_64X64;
if (row >= row_end || col >= col_end) continue;
if ((row << MI_SIZE_LOG2) >= cm->height ||
(col << MI_SIZE_LOG2) >= cm->width)
continue;
LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col);
if (lfm == NULL) return;
// init mask to zero
if (plane == 0) {
av1_zero(lfm->left_y);
av1_zero(lfm->above_y);
av1_zero(lfm->lfl_y_ver);
av1_zero(lfm->lfl_y_hor);
} else if (plane == 1) {
av1_zero(lfm->left_u);
av1_zero(lfm->above_u);
av1_zero(lfm->lfl_u_ver);
av1_zero(lfm->lfl_u_hor);
} else {
av1_zero(lfm->left_v);
av1_zero(lfm->above_v);
av1_zero(lfm->lfl_v_ver);
av1_zero(lfm->lfl_v_hor);
}
}
}
// set up bitmask for each superblock
setup_block_mask(cm, mi_row, mi_col, cm->seq_params.sb_size, plane,
subsampling_x, subsampling_y);
for (int y = 0; y < num_64x64; ++y) {
for (int x = 0; x < num_64x64; ++x) {
const int row = mi_row + y * MI_SIZE_64X64;
const int col = mi_col + x * MI_SIZE_64X64;
if (row >= row_end || col >= col_end) continue;
if ((row << MI_SIZE_LOG2) >= cm->height ||
(col << MI_SIZE_LOG2) >= cm->width)
continue;
LoopFilterMask *lfm = get_loop_filter_mask(cm, row, col);
if (lfm == NULL) return;
// check if the mask is valid
check_loop_filter_masks(lfm, plane);
{
// Let 16x16 hold 32x32 (Y/U/V) and 64x64(Y only).
// Even tx size is greater, we only apply max length filter, which
// is 16.
if (plane == 0) {
for (int j = 0; j < 4; ++j) {
lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_32X32].bits[j];
lfm->left_y[TX_16X16].bits[j] |= lfm->left_y[TX_64X64].bits[j];
lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_32X32].bits[j];
lfm->above_y[TX_16X16].bits[j] |= lfm->above_y[TX_64X64].bits[j];
// set 32x32 and 64x64 to 0
lfm->left_y[TX_32X32].bits[j] = 0;
lfm->left_y[TX_64X64].bits[j] = 0;
lfm->above_y[TX_32X32].bits[j] = 0;
lfm->above_y[TX_64X64].bits[j] = 0;
}
} else if (plane == 1) {
for (int j = 0; j < 4; ++j) {
lfm->left_u[TX_16X16].bits[j] |= lfm->left_u[TX_32X32].bits[j];
lfm->above_u[TX_16X16].bits[j] |= lfm->above_u[TX_32X32].bits[j];
// set 32x32 to 0
lfm->left_u[TX_32X32].bits[j] = 0;
lfm->above_u[TX_32X32].bits[j] = 0;
}
} else {
for (int j = 0; j < 4; ++j) {
lfm->left_v[TX_16X16].bits[j] |= lfm->left_v[TX_32X32].bits[j];
lfm->above_v[TX_16X16].bits[j] |= lfm->above_v[TX_32X32].bits[j];
// set 32x32 to 0
lfm->left_v[TX_32X32].bits[j] = 0;
lfm->above_v[TX_32X32].bits[j] = 0;
}
}
}
// check if the mask is valid
check_loop_filter_masks(lfm, plane);
}
}
}
static void filter_selectively_vert_row2(
int subsampling_factor, uint8_t *s, int pitch, int plane,
uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0,
uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1,
const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2) {
uint64_t mask;
const int step = 1 << subsampling_factor;
for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 |
mask_8x8_1 | mask_4x4_1;
mask; mask >>= step) {
const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2;
if (mask & 1) {
if ((mask_16x16_0 | mask_16x16_1) & 1) {
// chroma plane filters less pixels introduced in deblock_13tap
// experiment
LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_14;
if ((mask_16x16_0 & mask_16x16_1) & 1) {
if (plane) {
aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else {
aom_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
} else if (mask_16x16_0 & 1) {
lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
if ((mask_8x8_0 | mask_8x8_1) & 1) {
// chroma plane filters less pixels introduced in deblock_13tap
// experiment
LpfFunc lpf_vertical = plane ? aom_lpf_vertical_6 : aom_lpf_vertical_8;
if ((mask_8x8_0 & mask_8x8_1) & 1) {
if (plane) {
aom_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else {
aom_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
} else if (mask_8x8_0 & 1) {
lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
if ((mask_4x4_0 | mask_4x4_1) & 1) {
if ((mask_4x4_0 & mask_4x4_1) & 1) {
aom_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
} else if (mask_4x4_0 & 1) {
aom_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr);
} else {
aom_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr);
}
}
}
s += 4;
lfl += step;
lfl2 += step;
mask_16x16_0 >>= step;
mask_8x8_0 >>= step;
mask_4x4_0 >>= step;
mask_16x16_1 >>= step;
mask_8x8_1 >>= step;
mask_4x4_1 >>= step;
}
}
static void highbd_filter_selectively_vert_row2(
int subsampling_factor, uint16_t *s, int pitch, int plane,
uint64_t mask_16x16_0, uint64_t mask_8x8_0, uint64_t mask_4x4_0,
uint64_t mask_16x16_1, uint64_t mask_8x8_1, uint64_t mask_4x4_1,
const loop_filter_info_n *lfi_n, uint8_t *lfl, uint8_t *lfl2, int bd) {
uint64_t mask;
const int step = 1 << subsampling_factor;
for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_16x16_1 |
mask_8x8_1 | mask_4x4_1;
mask; mask >>= step) {
const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
const loop_filter_thresh *lfi1 = lfi_n->lfthr + *lfl2;
if (mask & 1) {
if ((mask_16x16_0 | mask_16x16_1) & 1) {
// chroma plane filters less pixels introduced in deblock_13tap
// experiment
HbdLpfFunc highbd_lpf_vertical =
plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_14;
if ((mask_16x16_0 & mask_16x16_1) & 1) {
if (plane) {
aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_14_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
} else if (mask_16x16_0 & 1) {
highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
bd);
} else {
highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
}
}
if ((mask_8x8_0 | mask_8x8_1) & 1) {
HbdLpfFunc highbd_lpf_vertical =
plane ? aom_highbd_lpf_vertical_6 : aom_highbd_lpf_vertical_8;
if ((mask_8x8_0 & mask_8x8_1) & 1) {
if (plane) {
aom_highbd_lpf_vertical_6_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
} else if (mask_8x8_0 & 1) {
highbd_lpf_vertical(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
bd);
} else {
highbd_lpf_vertical(s + 4 * pitch, pitch, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
}
}
if ((mask_4x4_0 | mask_4x4_1) & 1) {
if ((mask_4x4_0 & mask_4x4_1) & 1) {
aom_highbd_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, lfi1->mblim, lfi1->lim,
lfi1->hev_thr, bd);
} else if (mask_4x4_0 & 1) {
aom_highbd_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim,
lfi0->hev_thr, bd);
} else {
aom_highbd_lpf_vertical_4(s + 4 * pitch, pitch, lfi1->mblim,
lfi1->lim, lfi1->hev_thr, bd);
}
}
}
s += 4;
lfl += step;
lfl2 += step;
mask_16x16_0 >>= step;
mask_8x8_0 >>= step;
mask_4x4_0 >>= step;
mask_16x16_1 >>= step;
mask_8x8_1 >>= step;
mask_4x4_1 >>= step;
}
}
static void filter_selectively_horiz(uint8_t *s, int pitch, int plane,
int subsampling, uint64_t mask_16x16,
uint64_t mask_8x8, uint64_t mask_4x4,
const loop_filter_info_n *lfi_n,
const uint8_t *lfl) {
uint64_t mask;
int count;
const int step = 1 << subsampling;
const unsigned int two_block_mask = subsampling ? 5 : 3;
int offset = 0;
for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
// Next block's thresholds, when it is within current 64x64 block.
// If it is out of bound, its mask is zero, and it points to current edge's
// filter parameters, instead of next edge's.
int next_edge = step;
if (offset + next_edge >= MI_SIZE_64X64) next_edge = 0;
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + next_edge);
count = 1;
if (mask & 1) {
if (mask_16x16 & 1) {
// chroma plane filters less pixels introduced in deblock_13tap
// experiment
LpfFunc lpf_horizontal =
plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_14;
if ((mask_16x16 & two_block_mask) == two_block_mask) {
if (plane) {
aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
} else {
aom_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
}
count = 2;
} else {
lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
} else if (mask_8x8 & 1) {
// chroma plane filters less pixels introduced in deblock_13tap
// experiment
LpfFunc lpf_horizontal =
plane ? aom_lpf_horizontal_6 : aom_lpf_horizontal_8;
if ((mask_8x8 & two_block_mask) == two_block_mask) {
if (plane) {
aom_lpf_horizontal_6_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
} else {
aom_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
}
count = 2;
} else {
lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & two_block_mask) == two_block_mask) {
aom_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim, lfin->lim,
lfin->hev_thr);
count = 2;
} else {
aom_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
}
}
}
s += 4 * count;
lfl += step * count;
mask_16x16 >>= step * count;
mask_8x8 >>= step * count;
mask_4x4 >>= step * count;
offset += step * count;
}
}
static void highbd_filter_selectively_horiz(
uint16_t *s, int pitch, int plane, int subsampling, uint64_t mask_16x16,
uint64_t mask_8x8, uint64_t mask_4x4, const loop_filter_info_n *lfi_n,
uint8_t *lfl, int bd) {
uint64_t mask;
int count;
const int step = 1 << subsampling;
const unsigned int two_block_mask = subsampling ? 5 : 3;
int offset = 0;
for (mask = mask_16x16 | mask_8x8 | mask_4x4; mask; mask >>= step * count) {
const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
// Next block's thresholds, when it is within current 64x64 block.
// If it is out of bound, its mask is zero, and it points to current edge's
// filter parameters, instead of next edge's.
int next_edge = step;
if (offset + next_edge >= MI_SIZE_64X64) next_edge = 0;
const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + next_edge);
count = 1;
if (mask & 1) {
if (mask_16x16 & 1) {
HbdLpfFunc highbd_lpf_horizontal =
plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_14;
if ((mask_16x16 & two_block_mask) == two_block_mask) {
if (plane) {
aom_highbd_lpf_horizontal_6_dual_c(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
} else {
aom_highbd_lpf_horizontal_14_dual(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
count = 2;
} else {
highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
}
} else if (mask_8x8 & 1) {
HbdLpfFunc highbd_lpf_horizontal =
plane ? aom_highbd_lpf_horizontal_6 : aom_highbd_lpf_horizontal_8;
if ((mask_8x8 & two_block_mask) == two_block_mask) {
if (plane) {
aom_highbd_lpf_horizontal_6_dual_c(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
} else {
aom_highbd_lpf_horizontal_8_dual_c(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
}
count = 2;
} else {
highbd_lpf_horizontal(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr,
bd);
}
} else if (mask_4x4 & 1) {
if ((mask_4x4 & two_block_mask) == two_block_mask) {
aom_highbd_lpf_horizontal_4_dual_c(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, lfin->mblim,
lfin->lim, lfin->hev_thr, bd);
count = 2;
} else {
aom_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim,
lfi->hev_thr, bd);
}
}
}
s += 4 * count;
lfl += step * count;
mask_16x16 >>= step * count;
mask_8x8 >>= step * count;
mask_4x4 >>= step * count;
offset += step * count;
}
}
void av1_build_bitmask_vert_info(
AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr,
int plane) {
const int subsampling_x = plane_ptr->subsampling_x;
const int subsampling_y = plane_ptr->subsampling_y;
const int row_step = (MI_SIZE >> MI_SIZE_LOG2);
const int is_uv = plane > 0;
TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16;
uint8_t level, prev_level = 1;
uint64_t skip, prev_skip = 0;
uint64_t is_coding_block_border;
for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height; r += row_step) {
const int mi_row = r << subsampling_y;
const int row = mi_row % MI_SIZE_64X64;
const int row_uv = row | subsampling_y;
int index = 0;
const int shift = get_index_shift(0, row, &index);
for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width;
c += (tx_size_wide_unit[TX_64X64] >> subsampling_x)) {
const int mi_col = c << subsampling_x;
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col);
for (int col_in_unit = 0;
col_in_unit < (tx_size_wide_unit[TX_64X64] >> subsampling_x);) {
const int x = (c + col_in_unit) << MI_SIZE_LOG2;
if (x >= plane_ptr->dst.width) break;
const int col = col_in_unit << subsampling_x;
const int col_uv = col | subsampling_x;
const uint64_t mask = ((uint64_t)1 << (shift | col));
skip = lfm->skip.bits[index] & mask;
is_coding_block_border = lfm->is_vert_border.bits[index] & mask;
switch (plane) {
case 0: level = lfm->lfl_y_ver[row_uv][col_uv]; break;
case 1: level = lfm->lfl_u_ver[row_uv][col_uv]; break;
case 2: level = lfm->lfl_v_ver[row_uv][col_uv]; break;
default: assert(plane >= 0 && plane <= 2); return;
}
for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) {
if (is_uv && ts == TX_64X64) continue;
if (lfm->tx_size_ver[is_uv][ts].bits[index] & mask) {
tx_size = ts;
break;
}
}
if ((c + col_in_unit > 0) && (level || prev_level) &&
(!prev_skip || !skip || is_coding_block_border)) {
const TX_SIZE min_tx_size =
AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size));
const int shift_1 = get_index_shift(col_uv, row_uv, &index);
const uint64_t mask_1 = ((uint64_t)1 << shift_1);
switch (plane) {
case 0: lfm->left_y[min_tx_size].bits[index] |= mask_1; break;
case 1: lfm->left_u[min_tx_size].bits[index] |= mask_1; break;
case 2: lfm->left_v[min_tx_size].bits[index] |= mask_1; break;
default: assert(plane >= 0 && plane <= 2); return;
}
if (level == 0 && prev_level != 0) {
switch (plane) {
case 0: lfm->lfl_y_ver[row_uv][col_uv] = prev_level; break;
case 1: lfm->lfl_u_ver[row_uv][col_uv] = prev_level; break;
case 2: lfm->lfl_v_ver[row_uv][col_uv] = prev_level; break;
default: assert(plane >= 0 && plane <= 2); return;
}
}
}
// update prev info
prev_level = level;
prev_skip = skip;
prev_tx_size = tx_size;
// advance
col_in_unit += tx_size_wide_unit[tx_size];
}
}
}
}
void av1_build_bitmask_horz_info(
AV1_COMMON *const cm, const struct macroblockd_plane *const plane_ptr,
int plane) {
const int subsampling_x = plane_ptr->subsampling_x;
const int subsampling_y = plane_ptr->subsampling_y;
const int col_step = (MI_SIZE >> MI_SIZE_LOG2);
const int is_uv = plane > 0;
TX_SIZE tx_size = TX_16X16, prev_tx_size = TX_16X16;
uint8_t level, prev_level = 1;
uint64_t skip, prev_skip = 0;
uint64_t is_coding_block_border;
for (int c = 0; (c << MI_SIZE_LOG2) < plane_ptr->dst.width; c += col_step) {
const int mi_col = c << subsampling_x;
const int col = mi_col % MI_SIZE_64X64;
const int col_uv = col | subsampling_x;
for (int r = 0; (r << MI_SIZE_LOG2) < plane_ptr->dst.height;
r += (tx_size_high_unit[TX_64X64] >> subsampling_y)) {
const int mi_row = r << subsampling_y;
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col);
for (int r_in_unit = 0;
r_in_unit < (tx_size_high_unit[TX_64X64] >> subsampling_y);) {
const int y = (r + r_in_unit) << MI_SIZE_LOG2;
if (y >= plane_ptr->dst.height) break;
const int row = r_in_unit << subsampling_y;
const int row_uv = row | subsampling_y;
int index = 0;
const int shift = get_index_shift(col, row, &index);
const uint64_t mask = ((uint64_t)1 << shift);
skip = lfm->skip.bits[index] & mask;
is_coding_block_border = lfm->is_horz_border.bits[index] & mask;
switch (plane) {
case 0: level = lfm->lfl_y_hor[row_uv][col_uv]; break;
case 1: level = lfm->lfl_u_hor[row_uv][col_uv]; break;
case 2: level = lfm->lfl_v_hor[row_uv][col_uv]; break;
default: assert(plane >= 0 && plane <= 2); return;
}
for (TX_SIZE ts = TX_4X4; ts <= TX_64X64; ++ts) {
if (is_uv && ts == TX_64X64) continue;
if (lfm->tx_size_hor[is_uv][ts].bits[index] & mask) {
tx_size = ts;
break;
}
}
if ((r + r_in_unit > 0) && (level || prev_level) &&
(!prev_skip || !skip || is_coding_block_border)) {
const TX_SIZE min_tx_size =
AOMMIN(TX_16X16, AOMMIN(tx_size, prev_tx_size));
const int shift_1 = get_index_shift(col_uv, row_uv, &index);
const uint64_t mask_1 = ((uint64_t)1 << shift_1);
switch (plane) {
case 0: lfm->above_y[min_tx_size].bits[index] |= mask_1; break;
case 1: lfm->above_u[min_tx_size].bits[index] |= mask_1; break;
case 2: lfm->above_v[min_tx_size].bits[index] |= mask_1; break;
default: assert(plane >= 0 && plane <= 2); return;
}
if (level == 0 && prev_level != 0) {
switch (plane) {
case 0: lfm->lfl_y_hor[row_uv][col_uv] = prev_level; break;
case 1: lfm->lfl_u_hor[row_uv][col_uv] = prev_level; break;
case 2: lfm->lfl_v_hor[row_uv][col_uv] = prev_level; break;
default: assert(plane >= 0 && plane <= 2); return;
}
}
}
// update prev info
prev_level = level;
prev_skip = skip;
prev_tx_size = tx_size;
// advance
r_in_unit += tx_size_high_unit[tx_size];
}
}
}
}
void av1_filter_block_plane_bitmask_vert(
AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl,
int mi_row, int mi_col) {
struct buf_2d *const dst = &plane_ptr->dst;
uint8_t *const buf0 = dst->buf;
const int ssx = plane_ptr->subsampling_x;
const int ssy = plane_ptr->subsampling_y;
const int mask_cutoff = 0xffff;
const int row_step = 1 << ssy;
const int two_row_step = 2 << ssy;
const int row_stride = dst->stride << MI_SIZE_LOG2;
const int two_row_stride = row_stride << 1;
uint64_t mask_16x16 = 0;
uint64_t mask_8x8 = 0;
uint64_t mask_4x4 = 0;
uint8_t *lfl;
uint8_t *lfl2;
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col);
assert(lfm);
// 1. vertical filtering. filter two rows at a time
for (int r = 0;
((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64;
r += two_row_step) {
const int row = r | ssy;
const int row_next = row + row_step;
const int col = ssx;
int index = 0;
const int shift = get_index_shift(col, row, &index);
int index_next = 0;
const int shift_next = get_index_shift(col, row_next, &index_next);
const int has_next_row = row_next < cm->mi_rows;
switch (pl) {
case 0:
mask_16x16 = lfm->left_y[TX_16X16].bits[index];
mask_8x8 = lfm->left_y[TX_8X8].bits[index];
mask_4x4 = lfm->left_y[TX_4X4].bits[index];
lfl = &lfm->lfl_y_ver[row][col];
lfl2 = &lfm->lfl_y_ver[row_next][col];
break;
case 1:
mask_16x16 = lfm->left_u[TX_16X16].bits[index];
mask_8x8 = lfm->left_u[TX_8X8].bits[index];
mask_4x4 = lfm->left_u[TX_4X4].bits[index];
lfl = &lfm->lfl_u_ver[row][col];
lfl2 = &lfm->lfl_u_ver[row_next][col];
break;
case 2:
mask_16x16 = lfm->left_v[TX_16X16].bits[index];
mask_8x8 = lfm->left_v[TX_8X8].bits[index];
mask_4x4 = lfm->left_v[TX_4X4].bits[index];
lfl = &lfm->lfl_v_ver[row][col];
lfl2 = &lfm->lfl_v_ver[row_next][col];
break;
default: assert(pl >= 0 && pl <= 2); return;
}
uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff;
uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff;
uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff;
uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff;
uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff;
uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff;
if (!has_next_row) {
mask_16x16_1 = 0;
mask_8x8_1 = 0;
mask_4x4_1 = 0;
}
if (cm->seq_params.use_highbitdepth)
highbd_filter_selectively_vert_row2(
ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0,
mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1,
&cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth);
else
filter_selectively_vert_row2(
ssx, dst->buf, dst->stride, pl, mask_16x16_0, mask_8x8_0, mask_4x4_0,
mask_16x16_1, mask_8x8_1, mask_4x4_1, &cm->lf_info, lfl, lfl2);
dst->buf += two_row_stride;
}
// reset buf pointer for horizontal filtering
dst->buf = buf0;
}
void av1_filter_block_plane_bitmask_horz(
AV1_COMMON *const cm, struct macroblockd_plane *const plane_ptr, int pl,
int mi_row, int mi_col) {
struct buf_2d *const dst = &plane_ptr->dst;
uint8_t *const buf0 = dst->buf;
const int ssx = plane_ptr->subsampling_x;
const int ssy = plane_ptr->subsampling_y;
const int mask_cutoff = 0xffff;
const int row_step = 1 << ssy;
const int row_stride = dst->stride << MI_SIZE_LOG2;
uint64_t mask_16x16 = 0;
uint64_t mask_8x8 = 0;
uint64_t mask_4x4 = 0;
uint8_t *lfl;
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col);
assert(lfm);
for (int r = 0;
((mi_row + r) << MI_SIZE_LOG2) < cm->height && r < MI_SIZE_64X64;
r += row_step) {
if (mi_row + r == 0) {
dst->buf += row_stride;
continue;
}
const int row = r | ssy;
const int col = ssx;
int index = 0;
const int shift = get_index_shift(col, row, &index);
switch (pl) {
case 0:
mask_16x16 = lfm->above_y[TX_16X16].bits[index];
mask_8x8 = lfm->above_y[TX_8X8].bits[index];
mask_4x4 = lfm->above_y[TX_4X4].bits[index];
lfl = &lfm->lfl_y_hor[row][col];
break;
case 1:
mask_16x16 = lfm->above_u[TX_16X16].bits[index];
mask_8x8 = lfm->above_u[TX_8X8].bits[index];
mask_4x4 = lfm->above_u[TX_4X4].bits[index];
lfl = &lfm->lfl_u_hor[row][col];
break;
case 2:
mask_16x16 = lfm->above_v[TX_16X16].bits[index];
mask_8x8 = lfm->above_v[TX_8X8].bits[index];
mask_4x4 = lfm->above_v[TX_4X4].bits[index];
lfl = &lfm->lfl_v_hor[row][col];
break;
default: assert(pl >= 0 && pl <= 2); return;
}
mask_16x16 = (mask_16x16 >> shift) & mask_cutoff;
mask_8x8 = (mask_8x8 >> shift) & mask_cutoff;
mask_4x4 = (mask_4x4 >> shift) & mask_cutoff;
if (cm->seq_params.use_highbitdepth)
highbd_filter_selectively_horiz(
CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, ssx, mask_16x16,
mask_8x8, mask_4x4, &cm->lf_info, lfl, (int)cm->seq_params.bit_depth);
else
filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16,
mask_8x8, mask_4x4, &cm->lf_info, lfl);
dst->buf += row_stride;
}
// reset buf pointer for next block
dst->buf = buf0;
}
void av1_filter_block_plane_ver(AV1_COMMON *const cm,
struct macroblockd_plane *const plane_ptr,
int pl, int mi_row, int mi_col) {
struct buf_2d *const dst = &plane_ptr->dst;
int r, c;
const int ssx = plane_ptr->subsampling_x;
const int ssy = plane_ptr->subsampling_y;
const int mask_cutoff = 0xffff;
const int single_step = 1 << ssy;
const int r_step = 2 << ssy;
uint64_t mask_16x16 = 0;
uint64_t mask_8x8 = 0;
uint64_t mask_4x4 = 0;
uint8_t *lfl;
uint8_t *lfl2;
// filter two rows at a time
for (r = 0; r < cm->seq_params.mib_size &&
((mi_row + r) << MI_SIZE_LOG2 < cm->height);
r += r_step) {
for (c = 0; c < cm->seq_params.mib_size &&
((mi_col + c) << MI_SIZE_LOG2 < cm->width);
c += MI_SIZE_64X64) {
dst->buf += ((c << MI_SIZE_LOG2) >> ssx);
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c);
assert(lfm);
const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64;
const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64;
int index = 0;
const int shift = get_index_shift(col, row, &index);
// current and next row should belong to the same mask_idx and index
// next row's shift
const int row_next = row + single_step;
int index_next = 0;
const int shift_next = get_index_shift(col, row_next, &index_next);
switch (pl) {
case 0:
mask_16x16 = lfm->left_y[TX_16X16].bits[index];
mask_8x8 = lfm->left_y[TX_8X8].bits[index];
mask_4x4 = lfm->left_y[TX_4X4].bits[index];
lfl = &lfm->lfl_y_ver[row][col];
lfl2 = &lfm->lfl_y_ver[row_next][col];
break;
case 1:
mask_16x16 = lfm->left_u[TX_16X16].bits[index];
mask_8x8 = lfm->left_u[TX_8X8].bits[index];
mask_4x4 = lfm->left_u[TX_4X4].bits[index];
lfl = &lfm->lfl_u_ver[row][col];
lfl2 = &lfm->lfl_u_ver[row_next][col];
break;
case 2:
mask_16x16 = lfm->left_v[TX_16X16].bits[index];
mask_8x8 = lfm->left_v[TX_8X8].bits[index];
mask_4x4 = lfm->left_v[TX_4X4].bits[index];
lfl = &lfm->lfl_v_ver[row][col];
lfl2 = &lfm->lfl_v_ver[row_next][col];
break;
default: assert(pl >= 0 && pl <= 2); return;
}
uint64_t mask_16x16_0 = (mask_16x16 >> shift) & mask_cutoff;
uint64_t mask_8x8_0 = (mask_8x8 >> shift) & mask_cutoff;
uint64_t mask_4x4_0 = (mask_4x4 >> shift) & mask_cutoff;
uint64_t mask_16x16_1 = (mask_16x16 >> shift_next) & mask_cutoff;
uint64_t mask_8x8_1 = (mask_8x8 >> shift_next) & mask_cutoff;
uint64_t mask_4x4_1 = (mask_4x4 >> shift_next) & mask_cutoff;
if (cm->seq_params.use_highbitdepth)
highbd_filter_selectively_vert_row2(
ssx, CONVERT_TO_SHORTPTR(dst->buf), dst->stride, pl, mask_16x16_0,
mask_8x8_0, mask_4x4_0, mask_16x16_1, mask_8x8_1, mask_4x4_1,
&cm->lf_info, lfl, lfl2, (int)cm->seq_params.bit_depth);
else
filter_selectively_vert_row2(ssx, dst->buf, dst->stride, pl,
mask_16x16_0, mask_8x8_0, mask_4x4_0,
mask_16x16_1, mask_8x8_1, mask_4x4_1,
&cm->lf_info, lfl, lfl2);
dst->buf -= ((c << MI_SIZE_LOG2) >> ssx);
}
dst->buf += 2 * MI_SIZE * dst->stride;
}
}
void av1_filter_block_plane_hor(AV1_COMMON *const cm,
struct macroblockd_plane *const plane_ptr,
int pl, int mi_row, int mi_col) {
struct buf_2d *const dst = &plane_ptr->dst;
int r, c;
const int ssx = plane_ptr->subsampling_x;
const int ssy = plane_ptr->subsampling_y;
const int mask_cutoff = 0xffff;
const int r_step = 1 << ssy;
uint64_t mask_16x16 = 0;
uint64_t mask_8x8 = 0;
uint64_t mask_4x4 = 0;
uint8_t *lfl;
for (r = 0; r < cm->seq_params.mib_size &&
((mi_row + r) << MI_SIZE_LOG2 < cm->height);
r += r_step) {
for (c = 0; c < cm->seq_params.mib_size &&
((mi_col + c) << MI_SIZE_LOG2 < cm->width);
c += MI_SIZE_64X64) {
if (mi_row + r == 0) continue;
dst->buf += ((c << MI_SIZE_LOG2) >> ssx);
LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row + r, mi_col + c);
assert(lfm);
const int row = ((mi_row + r) | ssy) % MI_SIZE_64X64;
const int col = ((mi_col + c) | ssx) % MI_SIZE_64X64;
int index = 0;
const int shift = get_index_shift(col, row, &index);
switch (pl) {
case 0:
mask_16x16 = lfm->above_y[TX_16X16].bits[index];
mask_8x8 = lfm->above_y[TX_8X8].bits[index];
mask_4x4 = lfm->above_y[TX_4X4].bits[index];
lfl = &lfm->lfl_y_hor[row][col];
break;
case 1:
mask_16x16 = lfm->above_u[TX_16X16].bits[index];
mask_8x8 = lfm->above_u[TX_8X8].bits[index];
mask_4x4 = lfm->above_u[TX_4X4].bits[index];
lfl = &lfm->lfl_u_hor[row][col];
break;
case 2:
mask_16x16 = lfm->above_v[TX_16X16].bits[index];
mask_8x8 = lfm->above_v[TX_8X8].bits[index];
mask_4x4 = lfm->above_v[TX_4X4].bits[index];
lfl = &lfm->lfl_v_hor[row][col];
break;
default: assert(pl >= 0 && pl <= 2); return;
}
mask_16x16 = (mask_16x16 >> shift) & mask_cutoff;
mask_8x8 = (mask_8x8 >> shift) & mask_cutoff;
mask_4x4 = (mask_4x4 >> shift) & mask_cutoff;
if (cm->seq_params.use_highbitdepth)
highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf),
dst->stride, pl, ssx, mask_16x16,
mask_8x8, mask_4x4, &cm->lf_info, lfl,
(int)cm->seq_params.bit_depth);
else
filter_selectively_horiz(dst->buf, dst->stride, pl, ssx, mask_16x16,
mask_8x8, mask_4x4, &cm->lf_info, lfl);
dst->buf -= ((c << MI_SIZE_LOG2) >> ssx);
}
dst->buf += MI_SIZE * dst->stride;
}
}
#endif // LOOP_FILTER_BITMASK
static TX_SIZE get_transform_size(const MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
const EDGE_DIR edge_dir, const int mi_row,
const int mi_col, const int plane,
const struct macroblockd_plane *plane_ptr) {
assert(mbmi != NULL);
if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4;
TX_SIZE tx_size =
(plane == AOM_PLANE_Y)
? mbmi->tx_size
: av1_get_max_uv_txsize(mbmi->sb_type, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
assert(tx_size < TX_SIZES_ALL);
if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) {
const BLOCK_SIZE sb_type = mbmi->sb_type;
const int blk_row = mi_row & (mi_size_high[sb_type] - 1);
const int blk_col = mi_col & (mi_size_wide[sb_type] - 1);
const TX_SIZE mb_tx_size =
mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = mb_tx_size;
}
// since in case of chrominance or non-square transorm need to convert
// transform size into transform size in particular direction.
// for vertical edge, filter direction is horizontal, for horizontal
// edge, filter direction is vertical.
tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size]
: txsize_vert_map[tx_size];
return tx_size;
}
typedef struct AV1_DEBLOCKING_PARAMETERS {
// length of the filter applied to the outer edge
uint32_t filter_length;
// deblocking limits
const uint8_t *lim;
const uint8_t *mblim;
const uint8_t *hev_thr;
} AV1_DEBLOCKING_PARAMETERS;
// Return TX_SIZE from get_transform_size(), so it is plane and direction
// awared
static TX_SIZE set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y,
const int plane, const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
// just return the smallest transform unit size
return TX_4X4;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
// for sub8x8 block, chroma prediction mode is obtained from the bottom/right
// mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row
// and mi_col should map to the bottom/right mi structure, i.e, both mi_row
// and mi_col should be odd number for chroma plane.
const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2);
const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2);
MB_MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
// If current mbmi is not correctly setup, return an invalid value to stop
// filtering. One example is that if this tile is not coded, then its mbmi
// it not set up.
if (mbmi == NULL) return TX_INVALID;
const TX_SIZE ts =
get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr);
{
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
const uint32_t transform_masks =
edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = (coord & transform_masks) ? (0) : (1);
if (!tu_edge) return ts;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
{
const uint32_t curr_level =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
const int curr_skipped = mbmi->skip && is_inter_block(mbmi);
uint32_t level = curr_level;
if (coord) {
{
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
if (mi_prev == NULL) return TX_INVALID;
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts = get_transform_size(
xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr);
const uint32_t pv_lvl =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev);
const int pv_skip = mi_prev->skip && is_inter_block(mi_prev);
const BLOCK_SIZE bsize =
get_plane_block_size(mbmi->sb_type, plane_ptr->subsampling_x,
plane_ptr->subsampling_y);
const int prediction_masks = edge_dir == VERT_EDGE
? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int32_t pu_edge = !(coord & prediction_masks);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
if ((curr_level || pv_lvl) &&
(!pv_skip || !curr_skipped || pu_edge)) {
const TX_SIZE min_ts = AOMMIN(ts, pv_ts);
if (TX_4X4 >= min_ts) {
params->filter_length = 4;
} else if (TX_8X8 == min_ts) {
if (plane != 0)
params->filter_length = 6;
else
params->filter_length = 8;
} else {
params->filter_length = 14;
// No wide filtering for chroma plane
if (plane != 0) {
params->filter_length = 6;
}
}
// update the level if the current block is skipped,
// but the previous one is not
level = (curr_level) ? (curr_level) : (pv_lvl);
}
}
}
// prepare common parameters
if (params->filter_length) {
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lim = limits->lim;
params->mblim = limits->mblim;
params->hev_thr = limits->hev_thr;
}
}
}
return ts;
}
void av1_filter_block_plane_vert(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const int row_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
const int use_highbitdepth = cm->seq_params.use_highbitdepth;
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
for (int y = 0; y < y_range; y += row_step) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 trasnform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (use_highbitdepth)
aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
assert(plane != 0);
if (use_highbitdepth)
aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (use_highbitdepth)
aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (use_highbitdepth)
aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim, params.hev_thr,
bit_depth);
else
aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const int col_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = (MAX_MIB_SIZE >> scale_vert);
const int x_range = (MAX_MIB_SIZE >> scale_horz);
const int use_highbitdepth = cm->seq_params.use_highbitdepth;
const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth;
for (int x = 0; x < x_range; x += col_step) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 trasnform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, (cm->mi_stride << scale_vert), cm, xd,
HORZ_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
switch (params.filter_length) {
// apply 4-tap filtering
case 4:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 6-tap filtering
case 6:
assert(plane != 0);
if (use_highbitdepth)
aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 8-tap filtering
case 8:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// apply 14-tap filtering
case 14:
if (use_highbitdepth)
aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride,
params.mblim, params.lim,
params.hev_thr, bit_depth);
else
aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim,
params.hev_thr);
break;
// no filtering
default: break;
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
void av1_filter_block_plane_vert_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const int row_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = cm->mi_rows >> scale_vert;
const int x_range = cm->mi_cols >> scale_horz;
for (int y = 0; y < y_range; y += row_step) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 trasnform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz_test(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd,
const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row,
const uint32_t mi_col) {
const int col_step = MI_SIZE >> MI_SIZE_LOG2;
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int y_range = cm->mi_rows >> scale_vert;
const int x_range = cm->mi_cols >> scale_horz;
for (int x = 0; x < x_range; x += col_step) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 trasnform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, (cm->mi_stride << scale_vert), cm, xd,
HORZ_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm,
MACROBLOCKD *xd, int start, int stop,
#if LOOP_FILTER_BITMASK
int is_decoding,
#endif
int plane_start, int plane_end) {
struct macroblockd_plane *pd = xd->plane;
const int col_start = 0;
const int col_end = cm->mi_cols;
int mi_row, mi_col;
int plane;
#if LOOP_FILTER_