blob: cbee5a36a80fc9214f1c8713b767e231ebefee03 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_MV_H_
#define AOM_AV1_COMMON_MV_H_
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "aom_dsp/aom_filter.h"
#ifdef __cplusplus
extern "C" {
#endif
#define INVALID_MV 0x80008000
typedef struct mv {
int16_t row;
int16_t col;
} MV;
static const MV kZeroMv = { 0, 0 };
typedef union int_mv {
uint32_t as_int;
MV as_mv;
} int_mv; /* facilitates faster equality tests and copies */
typedef struct mv32 {
int32_t row;
int32_t col;
} MV32;
// Bits of precision used for the model
#define WARPEDMODEL_PREC_BITS 16
#define WARPEDMODEL_ROW3HOMO_PREC_BITS 16
#define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS)
#define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3))
#define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2))
// Bits of subpel precision for warped interpolation
#define WARPEDPIXEL_PREC_BITS 6
#define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS)
#define WARP_PARAM_REDUCE_BITS 6
#define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS)
/* clang-format off */
enum {
IDENTITY = 0, // identity transformation, 0-parameter
TRANSLATION = 1, // translational motion 2-parameter
ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter
AFFINE = 3, // affine, 6-parameter
TRANS_TYPES,
} UENUM1BYTE(TransformationType);
/* clang-format on */
// Number of types used for global motion (must be >= 3 and <= TRANS_TYPES)
// The following can be useful:
// GLOBAL_TRANS_TYPES 3 - up to rotation-zoom
// GLOBAL_TRANS_TYPES 4 - up to affine
// GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids
// GLOBAL_TRANS_TYPES 7 - up to full homography
#define GLOBAL_TRANS_TYPES 4
typedef struct {
int global_warp_allowed;
int local_warp_allowed;
} WarpTypesAllowed;
// number of parameters used by each transformation in TransformationTypes
static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
// The order of values in the wmmat matrix below is best described
// by the homography:
// [x' (m2 m3 m0 [x
// z . y' = m4 m5 m1 * y
// 1] m6 m7 1) 1]
typedef struct {
int32_t wmmat[8];
int16_t alpha, beta, gamma, delta;
TransformationType wmtype;
int16_t invalid;
} WarpedMotionParams;
/* clang-format off */
static const WarpedMotionParams default_warp_params = {
{ 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0,
0 },
0, 0, 0, 0,
IDENTITY,
0,
};
/* clang-format on */
// The following constants describe the various precisions
// of different parameters in the global motion experiment.
//
// Given the general homography:
// [x' (a b c [x
// z . y' = d e f * y
// 1] g h i) 1]
//
// Constants using the name ALPHA here are related to parameters
// a, b, d, e. Constants using the name TRANS are related
// to parameters c and f.
//
// Anything ending in PREC_BITS is the number of bits of precision
// to maintain when converting from double to integer.
//
// The ABS parameters are used to create an upper and lower bound
// for each parameter. In other words, after a parameter is integerized
// it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS).
//
// XXX_PREC_DIFF and XXX_DECODE_FACTOR
// are computed once here to prevent repetitive
// computation on the decoder side. These are
// to allow the global motion parameters to be encoded in a lower
// precision than the warped model precision. This means that they
// need to be changed to warped precision when they are decoded.
//
// XX_MIN, XX_MAX are also computed to avoid repeated computation
#define SUBEXPFIN_K 3
#define GM_TRANS_PREC_BITS 6
#define GM_ABS_TRANS_BITS 12
#define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3)
#define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS)
#define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3)
#define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF)
#define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF)
#define GM_ALPHA_PREC_BITS 15
#define GM_ABS_ALPHA_BITS 12
#define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS)
#define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF)
#define GM_ROW3HOMO_PREC_BITS 16
#define GM_ABS_ROW3HOMO_BITS 11
#define GM_ROW3HOMO_PREC_DIFF \
(WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS)
#define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF)
#define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS)
#define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS)
#define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS)
#define GM_TRANS_MIN -GM_TRANS_MAX
#define GM_ALPHA_MIN -GM_ALPHA_MAX
#define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX
static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) {
const int bw = block_size_wide[bs];
return mi_col * MI_SIZE + bw / 2 - 1;
}
static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) {
const int bh = block_size_high[bs];
return mi_row * MI_SIZE + bh / 2 - 1;
}
static INLINE int convert_to_trans_prec(int allow_hp, int coor) {
if (allow_hp)
return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3);
else
return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2;
}
static INLINE void integer_mv_precision(MV *mv) {
int mod = (mv->row % 8);
if (mod != 0) {
mv->row -= mod;
if (abs(mod) > 4) {
if (mod > 0) {
mv->row += 8;
} else {
mv->row -= 8;
}
}
}
mod = (mv->col % 8);
if (mod != 0) {
mv->col -= mod;
if (abs(mod) > 4) {
if (mod > 0) {
mv->col += 8;
} else {
mv->col -= 8;
}
}
}
}
// Convert a global motion vector into a motion vector at the centre of the
// given block.
//
// The resulting motion vector will have three fractional bits of precision. If
// allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and
// is_integer is true, the bottom three bits will be zero (so the motion vector
// represents an integer)
static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm,
int allow_hp, BLOCK_SIZE bsize,
int mi_col, int mi_row,
int is_integer) {
int_mv res;
if (gm->wmtype == IDENTITY) {
res.as_int = 0;
return res;
}
const int32_t *mat = gm->wmmat;
int x, y, tx, ty;
if (gm->wmtype == TRANSLATION) {
// All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16)
// bits of fractional precision. The offset for a translation is stored in
// entries 0 and 1. For translations, all but the top three (two if
// cm->allow_high_precision_mv is false) fractional bits are always zero.
//
// After the right shifts, there are 3 fractional bits of precision. If
// allow_hp is false, the bottom bit is always zero (so we don't need a
// call to convert_to_trans_prec here)
res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF;
res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF;
assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp));
if (is_integer) {
integer_mv_precision(&res.as_mv);
}
return res;
}
x = block_center_x(mi_col, bsize);
y = block_center_y(mi_row, bsize);
if (gm->wmtype == ROTZOOM) {
assert(gm->wmmat[5] == gm->wmmat[2]);
assert(gm->wmmat[4] == -gm->wmmat[3]);
}
const int xc =
(mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0];
const int yc =
mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1];
tx = convert_to_trans_prec(allow_hp, xc);
ty = convert_to_trans_prec(allow_hp, yc);
res.as_mv.row = ty;
res.as_mv.col = tx;
if (is_integer) {
integer_mv_precision(&res.as_mv);
}
return res;
}
static INLINE TransformationType get_wmtype(const WarpedMotionParams *gm) {
if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] &&
gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) {
return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION);
}
if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4])
return ROTZOOM;
else
return AFFINE;
}
typedef struct candidate_mv {
int_mv this_mv;
int_mv comp_mv;
int weight;
} CANDIDATE_MV;
static INLINE int is_zero_mv(const MV *mv) {
return *((const uint32_t *)mv) == 0;
}
static INLINE int is_equal_mv(const MV *a, const MV *b) {
return *((const uint32_t *)a) == *((const uint32_t *)b);
}
static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row,
int max_row) {
mv->col = clamp(mv->col, min_col, max_col);
mv->row = clamp(mv->row, min_row, max_row);
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_MV_H_