| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <stddef.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 | #include "config/aom_scale_rtcd.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom/aom_codec.h" | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/binary_codes_reader.h" | 
 | #include "aom_dsp/bitreader.h" | 
 | #include "aom_dsp/bitreader_buffer.h" | 
 | #include "aom_mem/aom_mem.h" | 
 | #include "aom_ports/aom_timer.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "aom_ports/mem_ops.h" | 
 | #include "aom_scale/aom_scale.h" | 
 | #include "aom_util/aom_thread.h" | 
 |  | 
 | #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG | 
 | #include "aom_util/debug_util.h" | 
 | #endif  // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG | 
 |  | 
 | #include "av1/common/alloccommon.h" | 
 | #include "av1/common/cdef.h" | 
 | #include "av1/common/cfl.h" | 
 | #if CONFIG_INSPECTION | 
 | #include "av1/decoder/inspection.h" | 
 | #endif | 
 | #include "av1/common/common.h" | 
 | #include "av1/common/entropy.h" | 
 | #include "av1/common/entropymode.h" | 
 | #include "av1/common/entropymv.h" | 
 | #include "av1/common/frame_buffers.h" | 
 | #include "av1/common/idct.h" | 
 | #include "av1/common/mvref_common.h" | 
 | #include "av1/common/pred_common.h" | 
 | #include "av1/common/quant_common.h" | 
 | #include "av1/common/reconinter.h" | 
 | #include "av1/common/reconintra.h" | 
 | #include "av1/common/resize.h" | 
 | #include "av1/common/seg_common.h" | 
 | #include "av1/common/thread_common.h" | 
 | #include "av1/common/tile_common.h" | 
 | #include "av1/common/warped_motion.h" | 
 | #include "av1/common/obmc.h" | 
 | #include "av1/decoder/decodeframe.h" | 
 | #include "av1/decoder/decodemv.h" | 
 | #include "av1/decoder/decoder.h" | 
 | #include "av1/decoder/decodetxb.h" | 
 | #include "av1/decoder/detokenize.h" | 
 |  | 
 |  | 
 | #include "dx\av1_core.h" | 
 |  | 
 |  | 
 | #define ACCT_STR __func__ | 
 |  | 
 | #define AOM_MIN_THREADS_PER_TILE 1 | 
 | #define AOM_MAX_THREADS_PER_TILE 2 | 
 |  | 
 | // This is needed by ext_tile related unit tests. | 
 | #define EXT_TILE_DEBUG 1 | 
 | #define MC_TEMP_BUF_PELS                       \ | 
 |   (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ | 
 |    ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) | 
 |  | 
 | // Checks that the remaining bits start with a 1 and ends with 0s. | 
 | // It consumes an additional byte, if already byte aligned before the check. | 
 | int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   // bit_offset is set to 0 (mod 8) when the reader is already byte aligned | 
 |   int bits_before_alignment = 8 - rb->bit_offset % 8; | 
 |   int trailing = aom_rb_read_literal(rb, bits_before_alignment); | 
 |   if (trailing != (1 << (bits_before_alignment - 1))) { | 
 |     cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; | 
 |     return -1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Use only_chroma = 1 to only set the chroma planes | 
 | static void set_planes_to_neutral_grey(const SequenceHeader *const seq_params, | 
 |                                        const YV12_BUFFER_CONFIG *const buf, | 
 |                                        int only_chroma) { | 
 |   HwFrameBuffer * hbuf = buf->hw_buffer; | 
 | //  if (hbuf) | 
 | //    return; | 
 | //  if (seq_params->use_highbitdepth) { | 
 | //    const int val = 1 << (seq_params->bit_depth - 1); | 
 | //    for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { | 
 | //      uint16_t *const base = (uint16_t*)(hbuf->pool_ptr + hbuf->planes[plane].offset); | 
 | //      const int sz = (plane ? hbuf->uv_crop_height : hbuf->y_crop_height) * hbuf->planes[plane].stride; | 
 | //      if (sz > 0) | 
 | //        aom_memset16(base, val, sz); | 
 | //    } | 
 | //  } else { | 
 | //    for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { | 
 | //      int8_t *const base = hbuf->pool_ptr + hbuf->planes[plane].offset; | 
 | //      const int sz = (plane ? hbuf->uv_crop_height : hbuf->y_crop_height) * hbuf->planes[plane].stride; | 
 | //      if (sz > 0) | 
 | //          memset(base, 1 << 7, sz); | 
 | //    } | 
 | //  } | 
 | } | 
 |  | 
 | static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, | 
 |                                             MACROBLOCKD *xd, | 
 |                                             aom_reader *const r, int plane, | 
 |                                             int runit_idx); | 
 |  | 
 | static void setup_compound_reference_mode(AV1_COMMON *cm) { | 
 |   cm->comp_fwd_ref[0] = LAST_FRAME; | 
 |   cm->comp_fwd_ref[1] = LAST2_FRAME; | 
 |   cm->comp_fwd_ref[2] = LAST3_FRAME; | 
 |   cm->comp_fwd_ref[3] = GOLDEN_FRAME; | 
 |  | 
 |   cm->comp_bwd_ref[0] = BWDREF_FRAME; | 
 |   cm->comp_bwd_ref[1] = ALTREF2_FRAME; | 
 |   cm->comp_bwd_ref[2] = ALTREF_FRAME; | 
 | } | 
 |  | 
 | static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { | 
 |   return len != 0 && len <= (size_t)(end - start); | 
 | } | 
 |  | 
 | static TX_MODE read_tx_mode(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   if (cm->coded_lossless) return ONLY_4X4; | 
 |   return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; | 
 | } | 
 |  | 
 | static REFERENCE_MODE read_frame_reference_mode( | 
 |     const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   if (frame_is_intra_only(cm)) { | 
 |     return SINGLE_REFERENCE; | 
 |   } else { | 
 |     return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; | 
 |   } | 
 | } | 
 |  | 
 | static void read_coeffs_tx_intra_block(const AV1_COMMON *const cm, | 
 |                                        MACROBLOCKD *const xd, | 
 |                                        aom_reader *const r, const int plane, | 
 |                                        const int row, const int col, | 
 |                                        const TX_SIZE tx_size) { | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   if (!mbmi->skip) { | 
 | #if TXCOEFF_TIMER | 
 |     struct aom_usec_timer timer; | 
 |     aom_usec_timer_start(&timer); | 
 | #endif | 
 |     av1_read_coeffs_txb_facade(cm, xd, r, plane, row, col, tx_size); | 
 | #if TXCOEFF_TIMER | 
 |     aom_usec_timer_mark(&timer); | 
 |     const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); | 
 |     cm->txcoeff_timer += elapsed_time; | 
 |     ++cm->txb_count; | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | static void decode_block_void(const AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
 |                               aom_reader *const r, const int plane, | 
 |                               const int row, const int col, | 
 |                               const TX_SIZE tx_size) { | 
 |   (void)cm; | 
 |   (void)xd; | 
 |   (void)r; | 
 |   (void)plane; | 
 |   (void)row; | 
 |   (void)col; | 
 |   (void)tx_size; | 
 | } | 
 |  | 
 | static void predict_inter_block_void(AV1_COMMON *const cm, | 
 |                                      MACROBLOCKD *const xd, int mi_row, | 
 |                                      int mi_col, BLOCK_SIZE bsize) { | 
 |   (void)cm; | 
 |   (void)xd; | 
 |   (void)mi_row; | 
 |   (void)mi_col; | 
 |   (void)bsize; | 
 | } | 
 |  | 
 | static void cfl_store_inter_block_void(AV1_COMMON *const cm, | 
 |                                        MACROBLOCKD *const xd) { | 
 |   (void)cm; | 
 |   (void)xd; | 
 | } | 
 |  | 
 | static void set_cb_buffer_offsets(MACROBLOCKD *const xd, TX_SIZE tx_size, | 
 |                                   int plane) { | 
 |   xd->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; | 
 |   xd->txb_offset[plane] = | 
 |       xd->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); | 
 | } | 
 |  | 
 | static void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td, | 
 |                                   aom_reader *r, MB_MODE_INFO *const mbmi, | 
 |                                   int plane, BLOCK_SIZE plane_bsize, | 
 |                                   int blk_row, int blk_col, int block, | 
 |                                   TX_SIZE tx_size, int *eob_total) { | 
 |   MACROBLOCKD *const xd = &td->xd; | 
 |   const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |   const TX_SIZE plane_tx_size = | 
 |       plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, | 
 |                                     pd->subsampling_y) | 
 |             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, | 
 |                                                          blk_col)]; | 
 |   // Scale to match transform block unit. | 
 |   const int max_blocks_high = max_block_high(xd, plane_bsize, plane); | 
 |   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); | 
 |  | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |  | 
 |   if (tx_size == plane_tx_size || plane) { | 
 |     td->read_coeffs_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col, | 
 |                                          tx_size); | 
 |  | 
 |     td->inverse_tx_inter_block_visit(cm, xd, r, plane, blk_row, blk_col, | 
 |                                      tx_size); | 
 |     eob_info *eob_data = pd->eob_data + xd->txb_offset[plane]; | 
 |     *eob_total += eob_data->eob; | 
 |     set_cb_buffer_offsets(xd, tx_size, plane); | 
 |   } else { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); | 
 |     assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |     const int sub_step = bsw * bsh; | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |  | 
 |     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
 |       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
 |         const int offsetr = blk_row + row; | 
 |         const int offsetc = blk_col + col; | 
 |  | 
 |         if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; | 
 |  | 
 |         decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, | 
 |                               offsetc, block, sub_txs, eob_total); | 
 |         block += sub_step; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, | 
 |                         BLOCK_SIZE bsize, int mi_row, int mi_col, int bw, | 
 |                         int bh, int x_mis, int y_mis, ThreadData *const td) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   const int offset = mi_row * cm->mi_stride + mi_col; | 
 |   const TileInfo *const tile = &xd->tile; | 
 |  | 
 |   xd->mi = cm->mi_grid_visible + offset; | 
 |   if (td->mi_pool2) { | 
 |     xd->mi[0] = &td->mi_pool2[td->mi_count2++]; | 
 |   } else { | 
 |     xd->mi[0] = &td->mi_pool[td->mi_count++]; | 
 |   } | 
 |   // TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of | 
 |   // passing bsize from decode_partition(). | 
 |   xd->mi[0]->sb_type = bsize; | 
 |   xd->mi[0]->mi_row = mi_row; | 
 |   xd->mi[0]->mi_col = mi_col; | 
 |   xd->cfl.mi_row = mi_row; | 
 |   xd->cfl.mi_col = mi_col; | 
 |  | 
 |   assert(x_mis && y_mis); | 
 |   for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0]; | 
 |   int idx = cm->mi_stride; | 
 |   for (int y = 1; y < y_mis; ++y) { | 
 |     memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0])); | 
 |     idx += cm->mi_stride; | 
 |   } | 
 |  | 
 |   set_plane_n4(xd, bw, bh, num_planes); | 
 |   set_skip_context(xd, mi_row, mi_col, num_planes); | 
 |  | 
 |   // Distance of Mb to the various image edges. These are specified to 8th pel | 
 |   // as they are always compared to values that are in 1/8th pel units | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
 |  | 
 |   av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
 |                        num_planes); | 
 | } | 
 |  | 
 | static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd, | 
 |                               int mi_row, int mi_col, aom_reader *r, | 
 |                               PARTITION_TYPE partition, BLOCK_SIZE bsize, | 
 |                               ThreadData *const td) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); | 
 |   const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); | 
 |  | 
 | #if CONFIG_ACCOUNTING | 
 |   aom_accounting_set_context(&pbi->accounting, mi_col, mi_row); | 
 | #endif | 
 |   if (td->mi_count >= td->mi_count_max && td->mi_pool2 == NULL) { | 
 |       av1_setup_sec_data(pbi, cm, td); | 
 |   } | 
 |   set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, td); | 
 |   xd->mi[0]->partition = partition; | 
 |   av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis); | 
 |   if (bsize >= BLOCK_8X8 && | 
 |       (seq_params->subsampling_x || seq_params->subsampling_y)) { | 
 |     const BLOCK_SIZE uv_subsize = | 
 |         ss_size_lookup[bsize][seq_params->subsampling_x] | 
 |                       [seq_params->subsampling_y]; | 
 |     if (uv_subsize == BLOCK_INVALID) | 
 |       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid block size."); | 
 |   } | 
 | } | 
 |  | 
 | static void set_color_index_map_offset(AV1Decoder * pbi, MACROBLOCKD *const xd, int plane, | 
 |                                        aom_reader *r) { | 
 |   (void)r; | 
 |   Av1ColorMapParam params; | 
 |   const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
 |   av1_get_block_dimensions(mbmi->sb_type, plane, xd, ¶ms.plane_width, | 
 |                            ¶ms.plane_height, NULL, NULL); | 
 |   xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; | 
 | } | 
 |  | 
 | static void decode_token_recon_block(AV1Decoder *const pbi, | 
 |                                      ThreadData *const td, int mi_row, | 
 |                                      int mi_col, aom_reader *r, | 
 |                                      BLOCK_SIZE bsize) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   MACROBLOCKD *const xd = &td->xd; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   CFL_CTX *const cfl = &xd->cfl; | 
 |   cfl->is_chroma_reference = is_chroma_reference( | 
 |       mi_row, mi_col, bsize, cfl->subsampling_x, cfl->subsampling_y); | 
 |  | 
 |   if (!is_inter_block(mbmi)) { | 
 |     int row, col; | 
 |     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, | 
 |                                          xd->plane[0].subsampling_y)); | 
 |     const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |     const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |     int mu_blocks_wide = | 
 |         block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
 |     int mu_blocks_high = | 
 |         block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
 |     mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); | 
 |     mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); | 
 |  | 
 |     for (row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |       for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |         for (int plane = 0; plane < num_planes; ++plane) { | 
 |           const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |           if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, | 
 |                                    pd->subsampling_y)) | 
 |             continue; | 
 |  | 
 |           const TX_SIZE tx_size = av1_get_tx_size(plane, xd); | 
 |           const int stepr = tx_size_high_unit[tx_size]; | 
 |           const int stepc = tx_size_wide_unit[tx_size]; | 
 |  | 
 |           const int unit_height = ROUND_POWER_OF_TWO( | 
 |               AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); | 
 |           const int unit_width = ROUND_POWER_OF_TWO( | 
 |               AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); | 
 |  | 
 |           for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; | 
 |                blk_row += stepr) { | 
 |             for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; | 
 |                  blk_col += stepc) { | 
 |               td->read_coeffs_tx_intra_block_visit(cm, xd, r, plane, blk_row, | 
 |                                                    blk_col, tx_size); | 
 |               td->predict_and_recon_intra_block_visit(cm, xd, r, plane, blk_row, | 
 |                                                       blk_col, tx_size); | 
 |               set_cb_buffer_offsets(xd, tx_size, plane); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     td->predict_inter_block_visit(cm, xd, mi_row, mi_col, bsize); | 
 |     // Reconstruction | 
 |     if (!mbmi->skip) { | 
 |       int eobtotal = 0; | 
 |  | 
 |       const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |       const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |       int row, col; | 
 |  | 
 |       const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |       assert(max_unit_bsize == | 
 |              get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, | 
 |                                   xd->plane[0].subsampling_y)); | 
 |       int mu_blocks_wide = | 
 |           block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
 |       int mu_blocks_high = | 
 |           block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
 |  | 
 |       mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); | 
 |       mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); | 
 |  | 
 |       for (row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |         for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |           for (int plane = 0; plane < num_planes; ++plane) { | 
 |             const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |             if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, | 
 |                                      pd->subsampling_y)) | 
 |               continue; | 
 |             const BLOCK_SIZE bsizec = | 
 |                 scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); | 
 |             const BLOCK_SIZE plane_bsize = get_plane_block_size( | 
 |                 bsizec, pd->subsampling_x, pd->subsampling_y); | 
 |  | 
 |             const TX_SIZE max_tx_size = | 
 |                 get_vartx_max_txsize(xd, plane_bsize, plane); | 
 |             const int bh_var_tx = tx_size_high_unit[max_tx_size]; | 
 |             const int bw_var_tx = tx_size_wide_unit[max_tx_size]; | 
 |             int block = 0; | 
 |             int step = | 
 |                 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; | 
 |             int blk_row, blk_col; | 
 |             const int unit_height = ROUND_POWER_OF_TWO( | 
 |                 AOMMIN(mu_blocks_high + row, max_blocks_high), | 
 |                 pd->subsampling_y); | 
 |             const int unit_width = ROUND_POWER_OF_TWO( | 
 |                 AOMMIN(mu_blocks_wide + col, max_blocks_wide), | 
 |                 pd->subsampling_x); | 
 |  | 
 |             for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; | 
 |                  blk_row += bh_var_tx) { | 
 |               for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; | 
 |                    blk_col += bw_var_tx) { | 
 |                 decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, | 
 |                                       blk_row, blk_col, block, max_tx_size, | 
 |                                       &eobtotal); | 
 |                 block += step; | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     td->cfl_store_inter_block_visit(cm, xd); | 
 |   } | 
 |  | 
 |   av1_visit_palette(pbi, xd, mi_row, mi_col, r, bsize, | 
 |                     set_color_index_map_offset); | 
 | } | 
 |  | 
 | #if LOOP_FILTER_BITMASK | 
 | static void store_bitmask_vartx(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                 BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                                 MB_MODE_INFO *mbmi); | 
 | #endif | 
 |  | 
 | static void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2, | 
 |                               int tx_w_log2, int tx_h_log2, int min_txs, | 
 |                               int split_size, int txs, int blk_row, | 
 |                               int blk_col) { | 
 |   for (int idy = 0; idy < tx_size_high_unit[split_size]; | 
 |        idy += tx_size_high_unit[min_txs]) { | 
 |     for (int idx = 0; idx < tx_size_wide_unit[split_size]; | 
 |          idx += tx_size_wide_unit[min_txs]) { | 
 |       const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) + | 
 |                         ((blk_col + idx) >> tx_w_log2); | 
 |       mbmi->inter_tx_size[index] = txs; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, | 
 |                                TX_SIZE tx_size, int depth, | 
 | #if LOOP_FILTER_BITMASK | 
 |                                AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                int store_bitmask, | 
 | #endif | 
 |                                int blk_row, int blk_col, aom_reader *r) { | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   int is_split = 0; | 
 |   const BLOCK_SIZE bsize = mbmi->sb_type; | 
 |   const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |   const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; | 
 |   assert(tx_size > TX_4X4); | 
 |   TX_SIZE txs = max_txsize_rect_lookup[bsize]; | 
 |   for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) | 
 |     txs = sub_tx_size_map[txs]; | 
 |   const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; | 
 |   const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; | 
 |   const int bw_log2 = mi_size_wide_log2[bsize]; | 
 |   const int stride_log2 = bw_log2 - tx_w_log2; | 
 |  | 
 |   if (depth == MAX_VARTX_DEPTH) { | 
 |     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                       tx_size, blk_row, blk_col); | 
 |     mbmi->tx_size = tx_size; | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 |     return; | 
 |   } | 
 |  | 
 |   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, | 
 |                                          xd->left_txfm_context + blk_row, | 
 |                                          mbmi->sb_type, tx_size); | 
 |   is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR); | 
 |  | 
 |   if (is_split) { | 
 |     const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; | 
 |     const int bsw = tx_size_wide_unit[sub_txs]; | 
 |     const int bsh = tx_size_high_unit[sub_txs]; | 
 |  | 
 |     if (sub_txs == TX_4X4) { | 
 |       set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                         sub_txs, blk_row, blk_col); | 
 |       mbmi->tx_size = sub_txs; | 
 |       txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                             xd->left_txfm_context + blk_row, sub_txs, tx_size); | 
 | #if LOOP_FILTER_BITMASK | 
 |       if (store_bitmask) { | 
 |         store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                             txsize_to_bsize[tx_size], TX_4X4, mbmi); | 
 |       } | 
 | #endif | 
 |       return; | 
 |     } | 
 | #if LOOP_FILTER_BITMASK | 
 |     if (depth + 1 == MAX_VARTX_DEPTH && store_bitmask) { | 
 |       store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                           txsize_to_bsize[tx_size], sub_txs, mbmi); | 
 |       store_bitmask = 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     assert(bsw > 0 && bsh > 0); | 
 |     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { | 
 |       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { | 
 |         int offsetr = blk_row + row; | 
 |         int offsetc = blk_col + col; | 
 |         read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, | 
 | #if LOOP_FILTER_BITMASK | 
 |                            cm, mi_row, mi_col, store_bitmask, | 
 | #endif | 
 |                            offsetr, offsetc, r); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, | 
 |                       tx_size, blk_row, blk_col); | 
 |     mbmi->tx_size = tx_size; | 
 |     txfm_partition_update(xd->above_txfm_context + blk_col, | 
 |                           xd->left_txfm_context + blk_row, tx_size, tx_size); | 
 | #if LOOP_FILTER_BITMASK | 
 |     if (store_bitmask) { | 
 |       store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, | 
 |                           txsize_to_bsize[tx_size], tx_size, mbmi); | 
 |     } | 
 | #endif | 
 |   } | 
 | } | 
 |  | 
 | static TX_SIZE read_selected_tx_size(MACROBLOCKD *xd, aom_reader *r) { | 
 |   // TODO(debargha): Clean up the logic here. This function should only | 
 |   // be called for intra. | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type; | 
 |   const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); | 
 |   const int max_depths = bsize_to_max_depth(bsize); | 
 |   const int ctx = get_tx_size_context(xd); | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |   const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], | 
 |                                     max_depths + 1, ACCT_STR); | 
 |   assert(depth >= 0 && depth <= max_depths); | 
 |   const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); | 
 |   return tx_size; | 
 | } | 
 |  | 
 | static TX_SIZE read_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int is_inter, | 
 |                             int allow_select_inter, aom_reader *r) { | 
 |   const TX_MODE tx_mode = cm->tx_mode; | 
 |   const BLOCK_SIZE bsize = xd->mi[0]->sb_type; | 
 |   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; | 
 |  | 
 |   if (block_signals_txsize(bsize)) { | 
 |     if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { | 
 |       const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); | 
 |       return coded_tx_size; | 
 |     } else { | 
 |       return tx_size_from_tx_mode(bsize, tx_mode); | 
 |     } | 
 |   } else { | 
 |     assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); | 
 |     return max_txsize_rect_lookup[bsize]; | 
 |   } | 
 | } | 
 |  | 
 | #if LOOP_FILTER_BITMASK | 
 | static void store_bitmask_vartx(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                 BLOCK_SIZE bsize, TX_SIZE tx_size, | 
 |                                 MB_MODE_INFO *mbmi) { | 
 |   LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); | 
 |   const TX_SIZE tx_size_y_vert = txsize_vert_map[tx_size]; | 
 |   const TX_SIZE tx_size_y_horz = txsize_horz_map[tx_size]; | 
 |   const TX_SIZE tx_size_uv_vert = txsize_vert_map[av1_get_max_uv_txsize( | 
 |       mbmi->sb_type, cm->seq_params.subsampling_x, | 
 |       cm->seq_params.subsampling_y)]; | 
 |   const TX_SIZE tx_size_uv_horz = txsize_horz_map[av1_get_max_uv_txsize( | 
 |       mbmi->sb_type, cm->seq_params.subsampling_x, | 
 |       cm->seq_params.subsampling_y)]; | 
 |   const int is_square_transform_size = tx_size <= TX_64X64; | 
 |   int mask_id = 0; | 
 |   int offset = 0; | 
 |   const int half_ratio_tx_size_max32 = | 
 |       (tx_size > TX_64X64) & (tx_size <= TX_32X16); | 
 |   if (is_square_transform_size) { | 
 |     switch (tx_size) { | 
 |       case TX_4X4: mask_id = mask_id_table_tx_4x4[bsize]; break; | 
 |       case TX_8X8: | 
 |         mask_id = mask_id_table_tx_8x8[bsize]; | 
 |         offset = 19; | 
 |         break; | 
 |       case TX_16X16: | 
 |         mask_id = mask_id_table_tx_16x16[bsize]; | 
 |         offset = 33; | 
 |         break; | 
 |       case TX_32X32: | 
 |         mask_id = mask_id_table_tx_32x32[bsize]; | 
 |         offset = 42; | 
 |         break; | 
 |       case TX_64X64: mask_id = 46; break; | 
 |       default: assert(!is_square_transform_size); return; | 
 |     } | 
 |     mask_id += offset; | 
 |   } else if (half_ratio_tx_size_max32) { | 
 |     int tx_size_equal_block_size = bsize == txsize_to_bsize[tx_size]; | 
 |     mask_id = 47 + 2 * (tx_size - TX_4X8) + (tx_size_equal_block_size ? 0 : 1); | 
 |   } else if (tx_size == TX_32X64) { | 
 |     mask_id = 59; | 
 |   } else if (tx_size == TX_64X32) { | 
 |     mask_id = 60; | 
 |   } else {  // quarter ratio tx size | 
 |     mask_id = 61 + (tx_size - TX_4X16); | 
 |   } | 
 |   int index = 0; | 
 |   const int row = mi_row % MI_SIZE_64X64; | 
 |   const int col = mi_col % MI_SIZE_64X64; | 
 |   const int shift = get_index_shift(col, row, &index); | 
 |   const int vert_shift = tx_size_y_vert <= TX_8X8 ? shift : col; | 
 |   for (int i = 0; i + index < 4; ++i) { | 
 |     // y vertical. | 
 |     lfm->tx_size_ver[0][tx_size_y_horz].bits[i + index] |= | 
 |         (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); | 
 |     // y horizontal. | 
 |     lfm->tx_size_hor[0][tx_size_y_vert].bits[i + index] |= | 
 |         (above_mask_univariant_reordered[mask_id].bits[i] << shift); | 
 |     // u/v vertical. | 
 |     lfm->tx_size_ver[1][tx_size_uv_horz].bits[i + index] |= | 
 |         (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); | 
 |     // u/v horizontal. | 
 |     lfm->tx_size_hor[1][tx_size_uv_vert].bits[i + index] |= | 
 |         (above_mask_univariant_reordered[mask_id].bits[i] << shift); | 
 |   } | 
 | } | 
 |  | 
 | static void store_bitmask_univariant_tx(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                         BLOCK_SIZE bsize, MB_MODE_INFO *mbmi) { | 
 |   // Use a lookup table that provides one bitmask for a given block size and | 
 |   // a univariant transform size. | 
 |   int index; | 
 |   int shift; | 
 |   int row; | 
 |   int col; | 
 |   LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); | 
 |   const TX_SIZE tx_size_y_vert = txsize_vert_map[mbmi->tx_size]; | 
 |   const TX_SIZE tx_size_y_horz = txsize_horz_map[mbmi->tx_size]; | 
 |   const TX_SIZE tx_size_uv_vert = txsize_vert_map[av1_get_max_uv_txsize( | 
 |       mbmi->sb_type, cm->seq_params.subsampling_x, | 
 |       cm->seq_params.subsampling_y)]; | 
 |   const TX_SIZE tx_size_uv_horz = txsize_horz_map[av1_get_max_uv_txsize( | 
 |       mbmi->sb_type, cm->seq_params.subsampling_x, | 
 |       cm->seq_params.subsampling_y)]; | 
 |   const int is_square_transform_size = mbmi->tx_size <= TX_64X64; | 
 |   int mask_id = 0; | 
 |   int offset = 0; | 
 |   const int half_ratio_tx_size_max32 = | 
 |       (mbmi->tx_size > TX_64X64) & (mbmi->tx_size <= TX_32X16); | 
 |   if (is_square_transform_size) { | 
 |     switch (mbmi->tx_size) { | 
 |       case TX_4X4: mask_id = mask_id_table_tx_4x4[bsize]; break; | 
 |       case TX_8X8: | 
 |         mask_id = mask_id_table_tx_8x8[bsize]; | 
 |         offset = 19; | 
 |         break; | 
 |       case TX_16X16: | 
 |         mask_id = mask_id_table_tx_16x16[bsize]; | 
 |         offset = 33; | 
 |         break; | 
 |       case TX_32X32: | 
 |         mask_id = mask_id_table_tx_32x32[bsize]; | 
 |         offset = 42; | 
 |         break; | 
 |       case TX_64X64: mask_id = 46; break; | 
 |       default: assert(!is_square_transform_size); return; | 
 |     } | 
 |     mask_id += offset; | 
 |   } else if (half_ratio_tx_size_max32) { | 
 |     int tx_size_equal_block_size = bsize == txsize_to_bsize[mbmi->tx_size]; | 
 |     mask_id = | 
 |         47 + 2 * (mbmi->tx_size - TX_4X8) + (tx_size_equal_block_size ? 0 : 1); | 
 |   } else if (mbmi->tx_size == TX_32X64) { | 
 |     mask_id = 59; | 
 |   } else if (mbmi->tx_size == TX_64X32) { | 
 |     mask_id = 60; | 
 |   } else {  // quarter ratio tx size | 
 |     mask_id = 61 + (mbmi->tx_size - TX_4X16); | 
 |   } | 
 |   row = mi_row % MI_SIZE_64X64; | 
 |   col = mi_col % MI_SIZE_64X64; | 
 |   shift = get_index_shift(col, row, &index); | 
 |   const int vert_shift = tx_size_y_vert <= TX_8X8 ? shift : col; | 
 |   for (int i = 0; i + index < 4; ++i) { | 
 |     // y vertical. | 
 |     lfm->tx_size_ver[0][tx_size_y_horz].bits[i + index] |= | 
 |         (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); | 
 |     // y horizontal. | 
 |     lfm->tx_size_hor[0][tx_size_y_vert].bits[i + index] |= | 
 |         (above_mask_univariant_reordered[mask_id].bits[i] << shift); | 
 |     // u/v vertical. | 
 |     lfm->tx_size_ver[1][tx_size_uv_horz].bits[i + index] |= | 
 |         (left_mask_univariant_reordered[mask_id].bits[i] << vert_shift); | 
 |     // u/v horizontal. | 
 |     lfm->tx_size_hor[1][tx_size_uv_vert].bits[i + index] |= | 
 |         (above_mask_univariant_reordered[mask_id].bits[i] << shift); | 
 |   } | 
 | } | 
 |  | 
 | static void store_bitmask_other_info(AV1_COMMON *cm, int mi_row, int mi_col, | 
 |                                      BLOCK_SIZE bsize, MB_MODE_INFO *mbmi, | 
 |                                      int is_horz_coding_block_border, | 
 |                                      int is_vert_coding_block_border) { | 
 |   int index; | 
 |   int shift; | 
 |   int row; | 
 |   LoopFilterMask *lfm = get_loop_filter_mask(cm, mi_row, mi_col); | 
 |   const int row_start = mi_row % MI_SIZE_64X64; | 
 |   const int col_start = mi_col % MI_SIZE_64X64; | 
 |   shift = get_index_shift(col_start, row_start, &index); | 
 |   if (is_horz_coding_block_border) { | 
 |     const int block_shift = shift + mi_size_wide[bsize]; | 
 |     assert(block_shift <= 64); | 
 |     const uint64_t right_edge_shift = | 
 |         (block_shift == 64) ? 0xffffffffffffffff : ((uint64_t)1 << block_shift); | 
 |     const uint64_t left_edge_shift = (block_shift == 64) | 
 |                                          ? (((uint64_t)1 << shift) - 1) | 
 |                                          : ((uint64_t)1 << shift); | 
 |     assert(right_edge_shift > left_edge_shift); | 
 |     const uint64_t top_edge_mask = right_edge_shift - left_edge_shift; | 
 |     lfm->is_horz_border.bits[index] |= top_edge_mask; | 
 |   } | 
 |   if (is_vert_coding_block_border) { | 
 |     const int is_vert_border = mask_id_table_vert_border[bsize]; | 
 |     const int vert_shift = block_size_high[bsize] <= 8 ? shift : col_start; | 
 |     for (int i = 0; i + index < 4; ++i) { | 
 |       lfm->is_vert_border.bits[i + index] |= | 
 |           (left_mask_univariant_reordered[is_vert_border].bits[i] | 
 |            << vert_shift); | 
 |     } | 
 |   } | 
 |   const int is_skip = mbmi->skip && is_inter_block(mbmi); | 
 |   if (is_skip) { | 
 |     const int is_skip_mask = mask_id_table_tx_4x4[bsize]; | 
 |     for (int i = 0; i + index < 4; ++i) { | 
 |       lfm->skip.bits[i + index] |= | 
 |           (above_mask_univariant_reordered[is_skip_mask].bits[i] << shift); | 
 |     } | 
 |   } | 
 |   const uint8_t level_vert_y = get_filter_level(cm, &cm->lf_info, 0, 0, mbmi); | 
 |   const uint8_t level_horz_y = get_filter_level(cm, &cm->lf_info, 1, 0, mbmi); | 
 |   const uint8_t level_u = get_filter_level(cm, &cm->lf_info, 0, 1, mbmi); | 
 |   const uint8_t level_v = get_filter_level(cm, &cm->lf_info, 0, 2, mbmi); | 
 |   for (int r = mi_row; r < mi_row + mi_size_high[bsize]; r++) { | 
 |     index = 0; | 
 |     row = r % MI_SIZE_64X64; | 
 |     memset(&lfm->lfl_y_ver[row][col_start], level_vert_y, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |     memset(&lfm->lfl_y_hor[row][col_start], level_horz_y, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |     memset(&lfm->lfl_u_ver[row][col_start], level_u, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |     memset(&lfm->lfl_u_hor[row][col_start], level_u, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |     memset(&lfm->lfl_v_ver[row][col_start], level_v, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |     memset(&lfm->lfl_v_hor[row][col_start], level_v, | 
 |            sizeof(uint8_t) * mi_size_wide[bsize]); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | static void parse_decode_block(AV1Decoder *const pbi, ThreadData *const td, | 
 |                                int mi_row, int mi_col, aom_reader *r, | 
 |                                PARTITION_TYPE partition, BLOCK_SIZE bsize) { | 
 |   MACROBLOCKD *const xd = &td->xd; | 
 |   decode_mbmi_block(pbi, xd, mi_row, mi_col, r, partition, bsize, td); | 
 |  | 
 |   av1_visit_palette(pbi, xd, mi_row, mi_col, r, bsize, | 
 |                     av1_decode_palette_tokens); | 
 |  | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |   int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); | 
 |   if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && | 
 |       !mbmi->skip && inter_block_tx && !xd->lossless[mbmi->segment_id]) { | 
 |     const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; | 
 |     const int bh = tx_size_high_unit[max_tx_size]; | 
 |     const int bw = tx_size_wide_unit[max_tx_size]; | 
 |     const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; | 
 |     const int height = block_size_high[bsize] >> tx_size_high_log2[0]; | 
 |  | 
 |     for (int idy = 0; idy < height; idy += bh) | 
 |       for (int idx = 0; idx < width; idx += bw) | 
 |         read_tx_size_vartx(xd, mbmi, max_tx_size, 0, | 
 | #if LOOP_FILTER_BITMASK | 
 |                            cm, mi_row, mi_col, 1, | 
 | #endif | 
 |                            idy, idx, r); | 
 |   } else { | 
 |     mbmi->tx_size = read_tx_size(cm, xd, inter_block_tx, !mbmi->skip, r); | 
 |     if (inter_block_tx) | 
 |       memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); | 
 |     set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, | 
 |                   mbmi->skip && is_inter_block(mbmi), xd); | 
 | #if LOOP_FILTER_BITMASK | 
 |     const int w = mi_size_wide[bsize]; | 
 |     const int h = mi_size_high[bsize]; | 
 |     if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { | 
 |       store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi); | 
 |     } else { | 
 |       for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { | 
 |         for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { | 
 |           store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col, | 
 |                                       BLOCK_64X64, mbmi); | 
 |         } | 
 |       } | 
 |     } | 
 | #endif | 
 |   } | 
 | #if LOOP_FILTER_BITMASK | 
 |   const int w = mi_size_wide[bsize]; | 
 |   const int h = mi_size_high[bsize]; | 
 |   if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { | 
 |     store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi, 1, 1); | 
 |   } else { | 
 |     for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { | 
 |       for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { | 
 |         store_bitmask_other_info(cm, mi_row + row, mi_col + col, BLOCK_64X64, | 
 |                                  mbmi, row == 0, col == 0); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   if (cm->delta_q_info.delta_q_present_flag) { | 
 |     for (int i = 0; i < MAX_SEGMENTS; i++) { | 
 |       const int current_qindex = | 
 |           av1_get_qindex(&cm->seg, i, xd->current_qindex); | 
 |       for (int j = 0; j < num_planes; ++j) { | 
 |         const int dc_delta_q = | 
 |             j == 0 ? cm->y_dc_delta_q | 
 |                    : (j == 1 ? cm->u_dc_delta_q : cm->v_dc_delta_q); | 
 |         const int ac_delta_q = | 
 |             j == 0 ? 0 : (j == 1 ? cm->u_ac_delta_q : cm->v_ac_delta_q); | 
 |         xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX( | 
 |             current_qindex, dc_delta_q, cm->seq_params.bit_depth); | 
 |         xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( | 
 |             current_qindex, ac_delta_q, cm->seq_params.bit_depth); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (mbmi->skip) av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes); | 
 |  | 
 |   decode_token_recon_block(pbi, td, mi_row, mi_col, r, bsize); | 
 | } | 
 |  | 
 | static void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, | 
 |                                            ThreadData *const td, int mi_row, | 
 |                                            int mi_col, BLOCK_SIZE bsize) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   MACROBLOCKD *const xd = &td->xd; | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int bh = mi_size_high[bsize]; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   const int offset = mi_row * cm->mi_stride + mi_col; | 
 |   const TileInfo *const tile = &xd->tile; | 
 |  | 
 |   xd->mi = cm->mi_grid_visible + offset; | 
 |   xd->cfl.mi_row = mi_row; | 
 |   xd->cfl.mi_col = mi_col; | 
 |  | 
 |   set_plane_n4(xd, bw, bh, num_planes); | 
 |  | 
 |   // Distance of Mb to the various image edges. These are specified to 8th pel | 
 |   // as they are always compared to values that are in 1/8th pel units | 
 |   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); | 
 |  | 
 |   av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, | 
 |                        num_planes); | 
 | } | 
 |  | 
 | static void decode_block(AV1Decoder *const pbi, ThreadData *const td, | 
 |                          int mi_row, int mi_col, aom_reader *r, | 
 |                          PARTITION_TYPE partition, BLOCK_SIZE bsize) { | 
 |   (void)partition; | 
 |   set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); | 
 |   decode_token_recon_block(pbi, td, mi_row, mi_col, r, bsize); | 
 | } | 
 |  | 
 | static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col, | 
 |                                      aom_reader *r, int has_rows, int has_cols, | 
 |                                      BLOCK_SIZE bsize) { | 
 |   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); | 
 |   FRAME_CONTEXT *ec_ctx = xd->tile_ctx; | 
 |  | 
 |   if (!has_rows && !has_cols) return PARTITION_SPLIT; | 
 |  | 
 |   assert(ctx >= 0); | 
 |   aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx]; | 
 |   if (has_rows && has_cols) { | 
 |     return (PARTITION_TYPE)aom_read_symbol( | 
 |         r, partition_cdf, partition_cdf_length(bsize), ACCT_STR); | 
 |   } else if (!has_rows && has_cols) { | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_vert_alike(cdf, partition_cdf, bsize); | 
 |     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); | 
 |     return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ; | 
 |   } else { | 
 |     assert(has_rows && !has_cols); | 
 |     assert(bsize > BLOCK_8X8); | 
 |     aom_cdf_prob cdf[2]; | 
 |     partition_gather_horz_alike(cdf, partition_cdf, bsize); | 
 |     assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); | 
 |     return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT; | 
 |   } | 
 | } | 
 |  | 
 | // TODO(slavarnway): eliminate bsize and subsize in future commits | 
 | static void decode_partition(AV1Decoder *const pbi, ThreadData *const td, | 
 |                              int mi_row, int mi_col, aom_reader *reader, | 
 |                              BLOCK_SIZE bsize, int parse_decode_flag) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   MACROBLOCKD *const xd = &td->xd; | 
 |   const int bw = mi_size_wide[bsize]; | 
 |   const int hbs = bw >> 1; | 
 |   PARTITION_TYPE partition; | 
 |   BLOCK_SIZE subsize; | 
 |   const int quarter_step = bw / 4; | 
 |   BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); | 
 |   const int has_rows = (mi_row + hbs) < cm->mi_rows; | 
 |   const int has_cols = (mi_col + hbs) < cm->mi_cols; | 
 |  | 
 |   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; | 
 |  | 
 |   // parse_decode_flag takes the following values : | 
 |   // 01 - do parse only | 
 |   // 10 - do decode only | 
 |   // 11 - do parse and decode | 
 |   static const block_visitor_fn_t block_visit[4] = { | 
 |     NULL, parse_decode_block, decode_block, parse_decode_block | 
 |   }; | 
 |  | 
 |   if (parse_decode_flag & 1) { | 
 |     const int num_planes = av1_num_planes(cm); | 
 |     for (int plane = 0; plane < num_planes; ++plane) { | 
 |       int rcol0, rcol1, rrow0, rrow1; | 
 |       if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, | 
 |                                              &rcol0, &rcol1, &rrow0, &rrow1)) { | 
 |         const int rstride = cm->rst_info[plane].horz_units_per_tile; | 
 |         for (int rrow = rrow0; rrow < rrow1; ++rrow) { | 
 |           for (int rcol = rcol0; rcol < rcol1; ++rcol) { | 
 |             const int runit_idx = rcol + rrow * rstride; | 
 |             loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     partition = (bsize < BLOCK_8X8) ? PARTITION_NONE | 
 |                                     : read_partition(xd, mi_row, mi_col, reader, | 
 |                                                      has_rows, has_cols, bsize); | 
 |   } else { | 
 |     partition = get_partition(cm, mi_row, mi_col, bsize); | 
 |   } | 
 |   subsize = get_partition_subsize(bsize, partition); | 
 |  | 
 |   // Check the bitstream is conformant: if there is subsampling on the | 
 |   // chroma planes, subsize must subsample to a valid block size. | 
 |   const struct macroblockd_plane *const pd_u = &xd->plane[1]; | 
 |   if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == | 
 |       BLOCK_INVALID) { | 
 |     aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Block size %dx%d invalid with this subsampling mode", | 
 |                        block_size_wide[subsize], block_size_high[subsize]); | 
 |   } | 
 |  | 
 | #define DEC_BLOCK_STX_ARG | 
 | #define DEC_BLOCK_EPT_ARG partition, | 
 | #define DEC_BLOCK(db_r, db_c, db_subsize)                                  \ | 
 |   block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \ | 
 |                                  reader, DEC_BLOCK_EPT_ARG(db_subsize)) | 
 | #define DEC_PARTITION(db_r, db_c, db_subsize)                        \ | 
 |   decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ | 
 |                    (db_subsize), parse_decode_flag) | 
 |  | 
 |   switch (partition) { | 
 |     case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break; | 
 |     case PARTITION_HORZ: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize); | 
 |       if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize); | 
 |       break; | 
 |     case PARTITION_VERT: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize); | 
 |       if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize); | 
 |       break; | 
 |     case PARTITION_SPLIT: | 
 |       DEC_PARTITION(mi_row, mi_col, subsize); | 
 |       DEC_PARTITION(mi_row, mi_col + hbs, subsize); | 
 |       DEC_PARTITION(mi_row + hbs, mi_col, subsize); | 
 |       DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize); | 
 |       break; | 
 |     case PARTITION_HORZ_A: | 
 |       DEC_BLOCK(mi_row, mi_col, bsize2); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs, bsize2); | 
 |       DEC_BLOCK(mi_row + hbs, mi_col, subsize); | 
 |       break; | 
 |     case PARTITION_HORZ_B: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize); | 
 |       DEC_BLOCK(mi_row + hbs, mi_col, bsize2); | 
 |       DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); | 
 |       break; | 
 |     case PARTITION_VERT_A: | 
 |       DEC_BLOCK(mi_row, mi_col, bsize2); | 
 |       DEC_BLOCK(mi_row + hbs, mi_col, bsize2); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs, subsize); | 
 |       break; | 
 |     case PARTITION_VERT_B: | 
 |       DEC_BLOCK(mi_row, mi_col, subsize); | 
 |       DEC_BLOCK(mi_row, mi_col + hbs, bsize2); | 
 |       DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2); | 
 |       break; | 
 |     case PARTITION_HORZ_4: | 
 |       for (int i = 0; i < 4; ++i) { | 
 |         int this_mi_row = mi_row + i * quarter_step; | 
 |         if (i > 0 && this_mi_row >= cm->mi_rows) break; | 
 |         DEC_BLOCK(this_mi_row, mi_col, subsize); | 
 |       } | 
 |       break; | 
 |     case PARTITION_VERT_4: | 
 |       for (int i = 0; i < 4; ++i) { | 
 |         int this_mi_col = mi_col + i * quarter_step; | 
 |         if (i > 0 && this_mi_col >= cm->mi_cols) break; | 
 |         DEC_BLOCK(mi_row, this_mi_col, subsize); | 
 |       } | 
 |       break; | 
 |     default: assert(0 && "Invalid partition type"); | 
 |   } | 
 |  | 
 | #undef DEC_PARTITION | 
 | #undef DEC_BLOCK | 
 | #undef DEC_BLOCK_EPT_ARG | 
 | #undef DEC_BLOCK_STX_ARG | 
 |  | 
 |   if (parse_decode_flag & 1) | 
 |     update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); | 
 | } | 
 |  | 
 | static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end, | 
 |                                const size_t read_size, | 
 |                                struct aom_internal_error_info *error_info, | 
 |                                aom_reader *r, uint8_t allow_update_cdf) { | 
 |   // Validate the calculated partition length. If the buffer | 
 |   // described by the partition can't be fully read, then restrict | 
 |   // it to the portion that can be (for EC mode) or throw an error. | 
 |   if (!read_is_valid(data, read_size, data_end)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile length"); | 
 |  | 
 |   if (aom_reader_init(r, data, read_size)) | 
 |     aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, | 
 |                        "Failed to allocate bool decoder %d", 1); | 
 |  | 
 |   r->allow_update_cdf = allow_update_cdf; | 
 | } | 
 |  | 
 | static void setup_segmentation(AV1_COMMON *const cm, | 
 |                                struct aom_read_bit_buffer *rb) { | 
 |   struct segmentation *const seg = &cm->seg; | 
 |  | 
 |   seg->update_map = 0; | 
 |   seg->update_data = 0; | 
 |   seg->temporal_update = 0; | 
 |  | 
 |   seg->enabled = aom_rb_read_bit(rb); | 
 |   if (!seg->enabled) { | 
 |     if (cm->cur_frame->seg_map) | 
 |       memset(cm->cur_frame->seg_map, 0, (cm->mi_rows * cm->mi_cols)); | 
 |  | 
 |     memset(seg, 0, sizeof(*seg)); | 
 |     segfeatures_copy(&cm->cur_frame->seg, seg); | 
 |     return; | 
 |   } | 
 |   if (cm->seg.enabled && cm->prev_frame && | 
 |       (cm->mi_rows == cm->prev_frame->mi_rows) && | 
 |       (cm->mi_cols == cm->prev_frame->mi_cols)) { | 
 |     cm->last_frame_seg_map = cm->prev_frame->seg_map; | 
 |   } else { | 
 |     cm->last_frame_seg_map = NULL; | 
 |   } | 
 |   // Read update flags | 
 |   if (cm->primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     // These frames can't use previous frames, so must signal map + features | 
 |     seg->update_map = 1; | 
 |     seg->temporal_update = 0; | 
 |     seg->update_data = 1; | 
 |   } else { | 
 |     seg->update_map = aom_rb_read_bit(rb); | 
 |     if (seg->update_map) { | 
 |       seg->temporal_update = aom_rb_read_bit(rb); | 
 |     } else { | 
 |       seg->temporal_update = 0; | 
 |     } | 
 |     seg->update_data = aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 |   // Segmentation data update | 
 |   if (seg->update_data) { | 
 |     av1_clearall_segfeatures(seg); | 
 |  | 
 |     for (int i = 0; i < MAX_SEGMENTS; i++) { | 
 |       for (int j = 0; j < SEG_LVL_MAX; j++) { | 
 |         int data = 0; | 
 |         const int feature_enabled = aom_rb_read_bit(rb); | 
 |         if (feature_enabled) { | 
 |           av1_enable_segfeature(seg, i, j); | 
 |  | 
 |           const int data_max = av1_seg_feature_data_max(j); | 
 |           const int data_min = -data_max; | 
 |           const int ubits = get_unsigned_bits(data_max); | 
 |  | 
 |           if (av1_is_segfeature_signed(j)) { | 
 |             data = aom_rb_read_inv_signed_literal(rb, ubits); | 
 |           } else { | 
 |             data = aom_rb_read_literal(rb, ubits); | 
 |           } | 
 |  | 
 |           data = clamp(data, data_min, data_max); | 
 |         } | 
 |         av1_set_segdata(seg, i, j, data); | 
 |       } | 
 |     } | 
 |     calculate_segdata(seg); | 
 |   } else if (cm->prev_frame) { | 
 |     segfeatures_copy(seg, &cm->prev_frame->seg); | 
 |   } | 
 |   segfeatures_copy(&cm->cur_frame->seg, seg); | 
 | } | 
 |  | 
 | static void decode_restoration_mode(AV1_COMMON *cm, | 
 |                                     struct aom_read_bit_buffer *rb) { | 
 |   assert(!cm->all_lossless); | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   if (cm->allow_intrabc) return; | 
 |   int all_none = 1, chroma_none = 1; | 
 |   for (int p = 0; p < num_planes; ++p) { | 
 |     RestorationInfo *rsi = &cm->rst_info[p]; | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       rsi->frame_restoration_type = | 
 |           aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; | 
 |     } else { | 
 |       rsi->frame_restoration_type = | 
 |           aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE; | 
 |     } | 
 |     if (rsi->frame_restoration_type != RESTORE_NONE) { | 
 |       all_none = 0; | 
 |       chroma_none &= p == 0; | 
 |     } | 
 |   } | 
 |   if (!all_none) { | 
 |     assert(cm->seq_params.sb_size == BLOCK_64X64 || | 
 |            cm->seq_params.sb_size == BLOCK_128X128); | 
 |     const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; | 
 |  | 
 |     for (int p = 0; p < num_planes; ++p) | 
 |       cm->rst_info[p].restoration_unit_size = sb_size; | 
 |  | 
 |     RestorationInfo *rsi = &cm->rst_info[0]; | 
 |  | 
 |     if (sb_size == 64) { | 
 |       rsi->restoration_unit_size <<= aom_rb_read_bit(rb); | 
 |     } | 
 |     if (rsi->restoration_unit_size > 64) { | 
 |       rsi->restoration_unit_size <<= aom_rb_read_bit(rb); | 
 |     } | 
 |   } else { | 
 |     const int size = RESTORATION_UNITSIZE_MAX; | 
 |     for (int p = 0; p < num_planes; ++p) | 
 |       cm->rst_info[p].restoration_unit_size = size; | 
 |   } | 
 |  | 
 |   if (num_planes > 1) { | 
 |     int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); | 
 |     if (s && !chroma_none) { | 
 |       cm->rst_info[1].restoration_unit_size = | 
 |           cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s); | 
 |     } else { | 
 |       cm->rst_info[1].restoration_unit_size = | 
 |           cm->rst_info[0].restoration_unit_size; | 
 |     } | 
 |     cm->rst_info[2].restoration_unit_size = | 
 |         cm->rst_info[1].restoration_unit_size; | 
 |   } | 
 | } | 
 |  | 
 | static void read_wiener_filter(int wiener_win, WienerInfo *wiener_info, | 
 |                                WienerInfo *ref_wiener_info, aom_reader *rb) { | 
 |   memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); | 
 |   memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); | 
 |  | 
 |   if (wiener_win == WIENER_WIN) | 
 |     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |             WIENER_FILT_TAP0_SUBEXP_K, | 
 |             ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + | 
 |         WIENER_FILT_TAP0_MINV; | 
 |   else | 
 |     wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; | 
 |   wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |           WIENER_FILT_TAP1_SUBEXP_K, | 
 |           ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + | 
 |       WIENER_FILT_TAP1_MINV; | 
 |   wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |           WIENER_FILT_TAP2_SUBEXP_K, | 
 |           ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + | 
 |       WIENER_FILT_TAP2_MINV; | 
 |   // The central element has an implicit +WIENER_FILT_STEP | 
 |   wiener_info->vfilter[WIENER_HALFWIN] = | 
 |       -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + | 
 |             wiener_info->vfilter[2]); | 
 |  | 
 |   if (wiener_win == WIENER_WIN) | 
 |     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, | 
 |             WIENER_FILT_TAP0_SUBEXP_K, | 
 |             ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) + | 
 |         WIENER_FILT_TAP0_MINV; | 
 |   else | 
 |     wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; | 
 |   wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, | 
 |           WIENER_FILT_TAP1_SUBEXP_K, | 
 |           ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) + | 
 |       WIENER_FILT_TAP1_MINV; | 
 |   wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = | 
 |       aom_read_primitive_refsubexpfin( | 
 |           rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, | 
 |           WIENER_FILT_TAP2_SUBEXP_K, | 
 |           ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) + | 
 |       WIENER_FILT_TAP2_MINV; | 
 |   // The central element has an implicit +WIENER_FILT_STEP | 
 |   wiener_info->hfilter[WIENER_HALFWIN] = | 
 |       -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + | 
 |             wiener_info->hfilter[2]); | 
 |   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); | 
 | } | 
 |  | 
 | static void read_sgrproj_filter(SgrprojInfo *sgrproj_info, | 
 |                                 SgrprojInfo *ref_sgrproj_info, aom_reader *rb) { | 
 |   sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR); | 
 |   const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; | 
 |  | 
 |   if (params->r[0] == 0) { | 
 |     sgrproj_info->xqd[0] = 0; | 
 |     sgrproj_info->xqd[1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + | 
 |         SGRPROJ_PRJ_MIN1; | 
 |   } else if (params->r[1] == 0) { | 
 |     sgrproj_info->xqd[0] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + | 
 |         SGRPROJ_PRJ_MIN0; | 
 |     sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], | 
 |                                  SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); | 
 |   } else { | 
 |     sgrproj_info->xqd[0] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) + | 
 |         SGRPROJ_PRJ_MIN0; | 
 |     sgrproj_info->xqd[1] = | 
 |         aom_read_primitive_refsubexpfin( | 
 |             rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, | 
 |             ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) + | 
 |         SGRPROJ_PRJ_MIN1; | 
 |   } | 
 |  | 
 |   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); | 
 | } | 
 |  | 
 | static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm, | 
 |                                             MACROBLOCKD *xd, | 
 |                                             aom_reader *const r, int plane, | 
 |                                             int runit_idx) { | 
 |   const RestorationInfo *rsi = &cm->rst_info[plane]; | 
 |   RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; | 
 |   if (rsi->frame_restoration_type == RESTORE_NONE) return; | 
 |  | 
 |   assert(!cm->all_lossless); | 
 |  | 
 |   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; | 
 |   WienerInfo *wiener_info = xd->wiener_info + plane; | 
 |   SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; | 
 |  | 
 |   if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { | 
 |     rui->restoration_type = | 
 |         aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf, | 
 |                         RESTORE_SWITCHABLE_TYPES, ACCT_STR); | 
 |     switch (rui->restoration_type) { | 
 |       case RESTORE_WIENER: | 
 |         read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); | 
 |         break; | 
 |       case RESTORE_SGRPROJ: | 
 |         read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); | 
 |         break; | 
 |       default: assert(rui->restoration_type == RESTORE_NONE); break; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_WIENER) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) { | 
 |       rui->restoration_type = RESTORE_WIENER; | 
 |       read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r); | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { | 
 |     if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) { | 
 |       rui->restoration_type = RESTORE_SGRPROJ; | 
 |       read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r); | 
 |     } else { | 
 |       rui->restoration_type = RESTORE_NONE; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   struct loopfilter *lf = &cm->lf; | 
 |   if (cm->allow_intrabc || cm->coded_lossless) { | 
 |     // write default deltas to frame buffer | 
 |     av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); | 
 |     av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); | 
 |     return; | 
 |   } | 
 |   assert(!cm->coded_lossless); | 
 |   if (cm->prev_frame) { | 
 |     // write deltas to frame buffer | 
 |     memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); | 
 |     memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); | 
 |   } else { | 
 |     av1_set_default_ref_deltas(lf->ref_deltas); | 
 |     av1_set_default_mode_deltas(lf->mode_deltas); | 
 |   } | 
 |   lf->filter_level[0] = aom_rb_read_literal(rb, 6); | 
 |   lf->filter_level[1] = aom_rb_read_literal(rb, 6); | 
 |   if (num_planes > 1) { | 
 |     if (lf->filter_level[0] || lf->filter_level[1]) { | 
 |       lf->filter_level_u = aom_rb_read_literal(rb, 6); | 
 |       lf->filter_level_v = aom_rb_read_literal(rb, 6); | 
 |     } | 
 |   } | 
 |   lf->sharpness_level = aom_rb_read_literal(rb, 3); | 
 |  | 
 |   // Read in loop filter deltas applied at the MB level based on mode or ref | 
 |   // frame. | 
 |   lf->mode_ref_delta_update = 0; | 
 |  | 
 |   lf->mode_ref_delta_enabled = aom_rb_read_bit(rb); | 
 |   if (lf->mode_ref_delta_enabled) { | 
 |     lf->mode_ref_delta_update = aom_rb_read_bit(rb); | 
 |     if (lf->mode_ref_delta_update) { | 
 |       for (int i = 0; i < REF_FRAMES; i++) | 
 |         if (aom_rb_read_bit(rb)) | 
 |           lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); | 
 |  | 
 |       for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) | 
 |         if (aom_rb_read_bit(rb)) | 
 |           lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6); | 
 |     } | 
 |   } | 
 |  | 
 |   // write deltas to frame buffer | 
 |   memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES); | 
 |   memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS); | 
 | } | 
 |  | 
 | static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   CdefInfo *const cdef_info = &cm->cdef_info; | 
 |  | 
 |   if (cm->allow_intrabc) return; | 
 |   cdef_info->cdef_pri_damping = aom_rb_read_literal(rb, 2) + 3; | 
 |   cdef_info->cdef_sec_damping = cdef_info->cdef_pri_damping; | 
 |   cdef_info->cdef_bits = aom_rb_read_literal(rb, 2); | 
 |   cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits; | 
 |   for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) { | 
 |     cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); | 
 |     cdef_info->cdef_uv_strengths[i] = | 
 |         num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; | 
 |   } | 
 | } | 
 |  | 
 | static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { | 
 |   return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; | 
 | } | 
 |  | 
 | static void setup_quantization(AV1_COMMON *const cm, | 
 |                                struct aom_read_bit_buffer *rb) { | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS); | 
 |   cm->y_dc_delta_q = read_delta_q(rb); | 
 |   if (num_planes > 1) { | 
 |     int diff_uv_delta = 0; | 
 |     if (seq_params->separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); | 
 |     cm->u_dc_delta_q = read_delta_q(rb); | 
 |     cm->u_ac_delta_q = read_delta_q(rb); | 
 |     if (diff_uv_delta) { | 
 |       cm->v_dc_delta_q = read_delta_q(rb); | 
 |       cm->v_ac_delta_q = read_delta_q(rb); | 
 |     } else { | 
 |       cm->v_dc_delta_q = cm->u_dc_delta_q; | 
 |       cm->v_ac_delta_q = cm->u_ac_delta_q; | 
 |     } | 
 |   } else { | 
 |     cm->u_dc_delta_q = 0; | 
 |     cm->u_ac_delta_q = 0; | 
 |     cm->v_dc_delta_q = 0; | 
 |     cm->v_ac_delta_q = 0; | 
 |   } | 
 |   cm->using_qmatrix = aom_rb_read_bit(rb); | 
 |   if (cm->using_qmatrix) { | 
 |     cm->qm_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |     cm->qm_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |     if (!seq_params->separate_uv_delta_q) | 
 |       cm->qm_v = cm->qm_u; | 
 |     else | 
 |       cm->qm_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); | 
 |   } else { | 
 |     cm->qm_y = 0; | 
 |     cm->qm_u = 0; | 
 |     cm->qm_v = 0; | 
 |   } | 
 | } | 
 |  | 
 | // Build y/uv dequant values based on segmentation. | 
 | static void setup_segmentation_dequant(AV1_COMMON *const cm, | 
 |                                        MACROBLOCKD *const xd) { | 
 |   const int bit_depth = cm->seq_params.bit_depth; | 
 |   const int using_qm = cm->using_qmatrix; | 
 |   // When segmentation is disabled, only the first value is used.  The | 
 |   // remaining are don't cares. | 
 |   const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; | 
 |   for (int i = 0; i < max_segments; ++i) { | 
 |     const int qindex = xd->qindex[i]; | 
 |     cm->y_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, cm->y_dc_delta_q, bit_depth); | 
 |     cm->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); | 
 |     cm->u_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, cm->u_dc_delta_q, bit_depth); | 
 |     cm->u_dequant_QTX[i][1] = | 
 |         av1_ac_quant_QTX(qindex, cm->u_ac_delta_q, bit_depth); | 
 |     cm->v_dequant_QTX[i][0] = | 
 |         av1_dc_quant_QTX(qindex, cm->v_dc_delta_q, bit_depth); | 
 |     cm->v_dequant_QTX[i][1] = | 
 |         av1_ac_quant_QTX(qindex, cm->v_ac_delta_q, bit_depth); | 
 |     const int lossless = xd->lossless[i]; | 
 |     // NB: depends on base index so there is only 1 set per frame | 
 |     // No quant weighting when lossless or signalled not using QM | 
 |     int qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_y; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       cm->y_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_Y, j); | 
 |     } | 
 |     qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_u; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       cm->u_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_U, j); | 
 |     } | 
 |     qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_v; | 
 |     for (int j = 0; j < TX_SIZES_ALL; ++j) { | 
 |       cm->v_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_V, j); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { | 
 |   return aom_rb_read_bit(rb) ? SWITCHABLE | 
 |                              : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); | 
 | } | 
 |  | 
 | static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   cm->render_width = cm->superres_upscaled_width; | 
 |   cm->render_height = cm->superres_upscaled_height; | 
 |   if (aom_rb_read_bit(rb)) | 
 |     av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); | 
 | } | 
 |  | 
 | // TODO(afergs): make "struct aom_read_bit_buffer *const rb"? | 
 | static void setup_superres(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb, | 
 |                            int *width, int *height) { | 
 |   cm->superres_upscaled_width = *width; | 
 |   cm->superres_upscaled_height = *height; | 
 |  | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   if (!seq_params->enable_superres) return; | 
 |  | 
 |   if (aom_rb_read_bit(rb)) { | 
 |     cm->superres_scale_denominator = | 
 |         (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); | 
 |     cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; | 
 |     // Don't edit cm->width or cm->height directly, or the buffers won't get | 
 |     // resized correctly | 
 |     av1_calculate_scaled_superres_size(width, height, | 
 |                                        cm->superres_scale_denominator); | 
 |   } else { | 
 |     // 1:1 scaling - ie. no scaling, scale not provided | 
 |     cm->superres_scale_denominator = SCALE_NUMERATOR; | 
 |   } | 
 | } | 
 |  | 
 | static void resize_context_buffers(AV1_COMMON *cm, int width, int height) { | 
 | #if CONFIG_SIZE_LIMIT | 
 |   if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Dimensions of %dx%d beyond allowed size of %dx%d.", | 
 |                        width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); | 
 | #endif | 
 |   if (cm->width != width || cm->height != height) { | 
 |     av1_set_mb_mi(cm, width, height); | 
 |     cm->width = width; | 
 |     cm->height = height; | 
 |   } | 
 |  | 
 |   cm->cur_frame->width = cm->width; | 
 |   cm->cur_frame->height = cm->height; | 
 | } | 
 |  | 
 | static void setup_buffer_pool(AV1_COMMON *cm) { | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |  | 
 |   lock_buffer_pool(pool); | 
 |   //if (aom_realloc_frame_buffer( | 
 |   //        &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, | 
 |   //        seq_params->subsampling_y, seq_params->use_highbitdepth, | 
 |   //        AOM_DEC_BORDER_IN_PIXELS, cm->byte_alignment, | 
 |   //        &cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv)) { | 
 |   //  unlock_buffer_pool(pool); | 
 |   //  aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |   //                     "Failed to allocate frame buffer"); | 
 |   //} | 
 |   if (av1_reallocate_frame_buffer(pool->cb_priv, | 
 |                                 &cm->cur_frame->buf,  | 
 |                                 cm->width,  | 
 |                                 cm->height,  | 
 |                                 cm->superres_upscaled_width, | 
 |                                 seq_params->use_highbitdepth)) { | 
 |     unlock_buffer_pool(pool); | 
 |     aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); | 
 |   } | 
 |   unlock_buffer_pool(pool); | 
 |   ensure_mv_buffer(cm->cur_frame, cm); | 
 |  | 
 |   cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth; | 
 |   cm->cur_frame->buf.color_primaries = seq_params->color_primaries; | 
 |   cm->cur_frame->buf.transfer_characteristics = | 
 |       seq_params->transfer_characteristics; | 
 |   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; | 
 |   cm->cur_frame->buf.monochrome = seq_params->monochrome; | 
 |   cm->cur_frame->buf.chroma_sample_position = | 
 |       seq_params->chroma_sample_position; | 
 |   cm->cur_frame->buf.color_range = seq_params->color_range; | 
 |   cm->cur_frame->buf.render_width = cm->render_width; | 
 |   cm->cur_frame->buf.render_height = cm->render_height; | 
 | } | 
 |  | 
 | static void setup_frame_size(AV1_COMMON *cm, int frame_size_override_flag, | 
 |                              struct aom_read_bit_buffer *rb) { | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   int width, height; | 
 |  | 
 |   if (frame_size_override_flag) { | 
 |     int num_bits_width = seq_params->num_bits_width; | 
 |     int num_bits_height = seq_params->num_bits_height; | 
 |     av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); | 
 |     if (width > seq_params->max_frame_width || | 
 |         height > seq_params->max_frame_height) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Frame dimensions are larger than the maximum values"); | 
 |     } | 
 |   } else { | 
 |     width = seq_params->max_frame_width; | 
 |     height = seq_params->max_frame_height; | 
 |   } | 
 |  | 
 |   setup_superres(cm, rb, &width, &height); | 
 |   resize_context_buffers(cm, width, height); | 
 |   setup_render_size(cm, rb); | 
 |   setup_buffer_pool(cm); | 
 | } | 
 |  | 
 | static void setup_sb_size(SequenceHeader *seq_params, | 
 |                           struct aom_read_bit_buffer *rb) { | 
 |   set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64); | 
 | } | 
 |  | 
 | static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, | 
 |                                           int ref_xss, int ref_yss, | 
 |                                           aom_bit_depth_t this_bit_depth, | 
 |                                           int this_xss, int this_yss) { | 
 |   return ref_bit_depth == this_bit_depth && ref_xss == this_xss && | 
 |          ref_yss == this_yss; | 
 | } | 
 |  | 
 | static void setup_frame_size_with_refs(AV1_COMMON *cm, | 
 |                                        struct aom_read_bit_buffer *rb) { | 
 |   int width, height; | 
 |   int found = 0; | 
 |   int has_valid_ref_frame = 0; | 
 |   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); | 
 |       // This will never be NULL in a normal stream, as streams are required to | 
 |       // have a shown keyframe before any inter frames, which would refresh all | 
 |       // the reference buffers. However, it might be null if we're starting in | 
 |       // the middle of a stream, and static analysis will error if we don't do | 
 |       // a null check here. | 
 |       if (ref_buf == NULL) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Invalid condition: invalid reference buffer"); | 
 |       } else { | 
 |         const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf; | 
 |         width = buf->y_crop_width; | 
 |         height = buf->y_crop_height; | 
 |         cm->render_width = buf->render_width; | 
 |         cm->render_height = buf->render_height; | 
 |         setup_superres(cm, rb, &width, &height); | 
 |         resize_context_buffers(cm, width, height); | 
 |         found = 1; | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   if (!found) { | 
 |     int num_bits_width = seq_params->num_bits_width; | 
 |     int num_bits_height = seq_params->num_bits_height; | 
 |  | 
 |     av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); | 
 |     setup_superres(cm, rb, &width, &height); | 
 |     resize_context_buffers(cm, width, height); | 
 |     setup_render_size(cm, rb); | 
 |   } | 
 |  | 
 |   if (width <= 0 || height <= 0) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Invalid frame size"); | 
 |  | 
 |   // Check to make sure at least one of frames that this frame references | 
 |   // has valid dimensions. | 
 |   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); | 
 |     has_valid_ref_frame |= | 
 |         valid_ref_frame_size(ref_frame->buf.y_crop_width, | 
 |                              ref_frame->buf.y_crop_height, width, height); | 
 |   } | 
 |   if (!has_valid_ref_frame) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Referenced frame has invalid size"); | 
 |   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |     const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); | 
 |     if (!valid_ref_frame_img_fmt( | 
 |             ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x, | 
 |             ref_frame->buf.subsampling_y, seq_params->bit_depth, | 
 |             seq_params->subsampling_x, seq_params->subsampling_y)) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Referenced frame has incompatible color format"); | 
 |   } | 
 |   setup_buffer_pool(cm); | 
 | } | 
 |  | 
 | // Same function as av1_read_uniform but reading from uncompresses header wb | 
 | static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { | 
 |   const int l = get_unsigned_bits(n); | 
 |   const int m = (1 << l) - n; | 
 |   const int v = aom_rb_read_literal(rb, l - 1); | 
 |   assert(l != 0); | 
 |   if (v < m) | 
 |     return v; | 
 |   else | 
 |     return (v << 1) - m + aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static void read_tile_info_max_tile(AV1_COMMON *const cm, | 
 |                                     struct aom_read_bit_buffer *const rb) { | 
 |   int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); | 
 |   int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); | 
 |   int width_sb = width_mi >> cm->seq_params.mib_size_log2; | 
 |   int height_sb = height_mi >> cm->seq_params.mib_size_log2; | 
 |  | 
 |   av1_get_tile_limits(cm); | 
 |   cm->uniform_tile_spacing_flag = aom_rb_read_bit(rb); | 
 |  | 
 |   // Read tile columns | 
 |   if (cm->uniform_tile_spacing_flag) { | 
 |     cm->log2_tile_cols = cm->min_log2_tile_cols; | 
 |     while (cm->log2_tile_cols < cm->max_log2_tile_cols) { | 
 |       if (!aom_rb_read_bit(rb)) { | 
 |         break; | 
 |       } | 
 |       cm->log2_tile_cols++; | 
 |     } | 
 |   } else { | 
 |     int i; | 
 |     int start_sb; | 
 |     for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { | 
 |       const int size_sb = | 
 |           1 + rb_read_uniform(rb, AOMMIN(width_sb, cm->max_tile_width_sb)); | 
 |       cm->tile_col_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |       width_sb -= size_sb; | 
 |     } | 
 |     cm->tile_cols = i; | 
 |     cm->tile_col_start_sb[i] = start_sb + width_sb; | 
 |   } | 
 |   av1_calculate_tile_cols(cm); | 
 |  | 
 |   // Read tile rows | 
 |   if (cm->uniform_tile_spacing_flag) { | 
 |     cm->log2_tile_rows = cm->min_log2_tile_rows; | 
 |     while (cm->log2_tile_rows < cm->max_log2_tile_rows) { | 
 |       if (!aom_rb_read_bit(rb)) { | 
 |         break; | 
 |       } | 
 |       cm->log2_tile_rows++; | 
 |     } | 
 |   } else { | 
 |     int i; | 
 |     int start_sb; | 
 |     for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { | 
 |       const int size_sb = | 
 |           1 + rb_read_uniform(rb, AOMMIN(height_sb, cm->max_tile_height_sb)); | 
 |       cm->tile_row_start_sb[i] = start_sb; | 
 |       start_sb += size_sb; | 
 |       height_sb -= size_sb; | 
 |     } | 
 |     cm->tile_rows = i; | 
 |     cm->tile_row_start_sb[i] = start_sb + height_sb; | 
 |   } | 
 |   av1_calculate_tile_rows(cm); | 
 | } | 
 |  | 
 | void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { | 
 |   cm->single_tile_decoding = 0; | 
 |   if (cm->large_scale_tile) { | 
 |     struct loopfilter *lf = &cm->lf; | 
 |     RestorationInfo *const rst_info = cm->rst_info; | 
 |     const CdefInfo *const cdef_info = &cm->cdef_info; | 
 |  | 
 |     // Figure out single_tile_decoding by loopfilter_level. | 
 |     const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); | 
 |     const int no_cdef = cdef_info->cdef_bits == 0 && | 
 |                         cdef_info->cdef_strengths[0] == 0 && | 
 |                         cdef_info->cdef_uv_strengths[0] == 0; | 
 |     const int no_restoration = | 
 |         rst_info[0].frame_restoration_type == RESTORE_NONE && | 
 |         rst_info[1].frame_restoration_type == RESTORE_NONE && | 
 |         rst_info[2].frame_restoration_type == RESTORE_NONE; | 
 |     assert(IMPLIES(cm->coded_lossless, no_loopfilter && no_cdef)); | 
 |     assert(IMPLIES(cm->all_lossless, no_restoration)); | 
 |     cm->single_tile_decoding = no_loopfilter && no_cdef && no_restoration; | 
 |   } | 
 | } | 
 |  | 
 | static void read_tile_info(AV1Decoder *const pbi, | 
 |                            struct aom_read_bit_buffer *const rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   read_tile_info_max_tile(cm, rb); | 
 |  | 
 |   cm->context_update_tile_id = 0; | 
 |   if (cm->tile_rows * cm->tile_cols > 1) { | 
 |     // tile to use for cdf update | 
 |     cm->context_update_tile_id = | 
 |         aom_rb_read_literal(rb, cm->log2_tile_rows + cm->log2_tile_cols); | 
 |     if (cm->context_update_tile_id >= cm->tile_rows * cm->tile_cols) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid context_update_tile_id"); | 
 |     } | 
 |     // tile size magnitude | 
 |     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |   } | 
 | } | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 | static void read_ext_tile_info(AV1Decoder *const pbi, | 
 |                                struct aom_read_bit_buffer *const rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   // This information is stored as a separate byte. | 
 |   int mod = rb->bit_offset % CHAR_BIT; | 
 |   if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); | 
 |   assert(rb->bit_offset % CHAR_BIT == 0); | 
 |  | 
 |   if (cm->tile_cols * cm->tile_rows > 1) { | 
 |     // Read the number of bytes used to store tile size | 
 |     pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |     pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; | 
 |   } | 
 | } | 
 | #endif  // EXT_TILE_DEBUG | 
 |  | 
 | static size_t mem_get_varsize(const uint8_t *src, int sz) { | 
 |   switch (sz) { | 
 |     case 1: return src[0]; | 
 |     case 2: return mem_get_le16(src); | 
 |     case 3: return mem_get_le24(src); | 
 |     case 4: return mem_get_le32(src); | 
 |     default: assert(0 && "Invalid size"); return -1; | 
 |   } | 
 | } | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 | // Reads the next tile returning its size and adjusting '*data' accordingly | 
 | // based on 'is_last'. On return, '*data' is updated to point to the end of the | 
 | // raw tile buffer in the bit stream. | 
 | static void get_ls_tile_buffer( | 
 |     const uint8_t *const data_end, struct aom_internal_error_info *error_info, | 
 |     const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], | 
 |     int tile_size_bytes, int col, int row, int tile_copy_mode) { | 
 |   size_t size; | 
 |  | 
 |   size_t copy_size = 0; | 
 |   const uint8_t *copy_data = NULL; | 
 |  | 
 |   if (!read_is_valid(*data, tile_size_bytes, data_end)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile length"); | 
 |   size = mem_get_varsize(*data, tile_size_bytes); | 
 |  | 
 |   // If tile_copy_mode = 1, then the top bit of the tile header indicates copy | 
 |   // mode. | 
 |   if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { | 
 |     // The remaining bits in the top byte signal the row offset | 
 |     int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; | 
 |  | 
 |     // Currently, only use tiles in same column as reference tiles. | 
 |     copy_data = tile_buffers[row - offset][col].data; | 
 |     copy_size = tile_buffers[row - offset][col].size; | 
 |     size = 0; | 
 |   } else { | 
 |     size += AV1_MIN_TILE_SIZE_BYTES; | 
 |   } | 
 |  | 
 |   *data += tile_size_bytes; | 
 |  | 
 |   if (size > (size_t)(data_end - *data)) | 
 |     aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Truncated packet or corrupt tile size"); | 
 |  | 
 |   if (size > 0) { | 
 |     tile_buffers[row][col].data = *data; | 
 |     tile_buffers[row][col].size = size; | 
 |   } else { | 
 |     tile_buffers[row][col].data = copy_data; | 
 |     tile_buffers[row][col].size = copy_size; | 
 |   } | 
 |  | 
 |   *data += size; | 
 | } | 
 |  | 
 | // Returns the end of the last tile buffer | 
 | // (tile_buffers[cm->tile_rows - 1][cm->tile_cols - 1]). | 
 | static const uint8_t *get_ls_tile_buffers( | 
 |     AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, | 
 |     TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int tile_cols = cm->tile_cols; | 
 |   const int tile_rows = cm->tile_rows; | 
 |   const int have_tiles = tile_cols * tile_rows > 1; | 
 |   const uint8_t *raw_data_end;  // The end of the last tile buffer | 
 |  | 
 |   if (!have_tiles) { | 
 |     const size_t tile_size = data_end - data; | 
 |     tile_buffers[0][0].data = data; | 
 |     tile_buffers[0][0].size = tile_size; | 
 |     raw_data_end = NULL; | 
 |   } else { | 
 |     // We locate only the tile buffers that are required, which are the ones | 
 |     // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always | 
 |     // need the last (bottom right) tile buffer, as we need to know where the | 
 |     // end of the compressed frame buffer is for proper superframe decoding. | 
 |  | 
 |     const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; | 
 |     const uint8_t *const data_start = data; | 
 |  | 
 |     const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |     const int single_row = pbi->dec_tile_row >= 0; | 
 |     const int tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; | 
 |     const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |     const int single_col = pbi->dec_tile_col >= 0; | 
 |     const int tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |  | 
 |     const int tile_col_size_bytes = pbi->tile_col_size_bytes; | 
 |     const int tile_size_bytes = pbi->tile_size_bytes; | 
 |     int tile_width, tile_height; | 
 |     av1_get_uniform_tile_size(cm, &tile_width, &tile_height); | 
 |     const int tile_copy_mode = | 
 |         ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; | 
 |     // Read tile column sizes for all columns (we need the last tile buffer) | 
 |     for (int c = 0; c < tile_cols; ++c) { | 
 |       const int is_last = c == tile_cols - 1; | 
 |       size_t tile_col_size; | 
 |  | 
 |       if (!is_last) { | 
 |         tile_col_size = mem_get_varsize(data, tile_col_size_bytes); | 
 |         data += tile_col_size_bytes; | 
 |         tile_col_data_end[c] = data + tile_col_size; | 
 |       } else { | 
 |         tile_col_size = data_end - data; | 
 |         tile_col_data_end[c] = data_end; | 
 |       } | 
 |       data += tile_col_size; | 
 |     } | 
 |  | 
 |     data = data_start; | 
 |  | 
 |     // Read the required tile sizes. | 
 |     for (int c = tile_cols_start; c < tile_cols_end; ++c) { | 
 |       const int is_last = c == tile_cols - 1; | 
 |  | 
 |       if (c > 0) data = tile_col_data_end[c - 1]; | 
 |  | 
 |       if (!is_last) data += tile_col_size_bytes; | 
 |  | 
 |       // Get the whole of the last column, otherwise stop at the required tile. | 
 |       for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { | 
 |         get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
 |                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode); | 
 |       } | 
 |     } | 
 |  | 
 |     // If we have not read the last column, then read it to get the last tile. | 
 |     if (tile_cols_end != tile_cols) { | 
 |       const int c = tile_cols - 1; | 
 |  | 
 |       data = tile_col_data_end[c - 1]; | 
 |  | 
 |       for (int r = 0; r < tile_rows; ++r) { | 
 |         get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, | 
 |                            tile_buffers, tile_size_bytes, c, r, tile_copy_mode); | 
 |       } | 
 |     } | 
 |     raw_data_end = data; | 
 |   } | 
 |   return raw_data_end; | 
 | } | 
 | #endif  // EXT_TILE_DEBUG | 
 |  | 
 | // Reads the next tile returning its size and adjusting '*data' accordingly | 
 | // based on 'is_last'. | 
 | static void get_tile_buffer(const uint8_t *const data_end, | 
 |                             const int tile_size_bytes, int is_last, | 
 |                             struct aom_internal_error_info *error_info, | 
 |                             const uint8_t **data, TileBufferDec *const buf) { | 
 |   size_t size; | 
 |  | 
 |   if (!is_last) { | 
 |     if (!read_is_valid(*data, tile_size_bytes, data_end)) | 
 |       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Truncated packet or corrupt tile length"); | 
 |  | 
 |     size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; | 
 |     *data += tile_size_bytes; | 
 |  | 
 |     if (size > (size_t)(data_end - *data)) | 
 |       aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Truncated packet or corrupt tile size"); | 
 |   } else { | 
 |     size = data_end - *data; | 
 |   } | 
 |  | 
 |   buf->data = *data; | 
 |   buf->size = size; | 
 |  | 
 |   *data += size; | 
 | } | 
 |  | 
 | static void get_tile_buffers(AV1Decoder *pbi, const uint8_t *data, | 
 |                              const uint8_t *data_end, | 
 |                              TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], | 
 |                              int start_tile, int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int tile_cols = cm->tile_cols; | 
 |   const int tile_rows = cm->tile_rows; | 
 |   int tc = 0; | 
 |   int first_tile_in_tg = 0; | 
 |  | 
 |   for (int r = 0; r < tile_rows; ++r) { | 
 |     for (int c = 0; c < tile_cols; ++c, ++tc) { | 
 |       TileBufferDec *const buf = &tile_buffers[r][c]; | 
 |  | 
 |       const int is_last = (tc == end_tile); | 
 |       const size_t hdr_offset = 0; | 
 |  | 
 |       if (tc < start_tile || tc > end_tile) continue; | 
 |  | 
 |       if (data + hdr_offset >= data_end) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Data ended before all tiles were read."); | 
 |       first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0; | 
 |       data += hdr_offset; | 
 |       get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, | 
 |                       &pbi->common.error, &data, buf); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void set_cb_buffer(AV1Decoder *pbi, MACROBLOCKD *const xd, | 
 |                           CB_BUFFER *cb_buffer_base, const int num_planes, | 
 |                           int mi_row, int mi_col) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   int mib_size_log2 = cm->seq_params.mib_size_log2; | 
 |   int stride = (cm->mi_cols >> mib_size_log2) + 1; | 
 |   int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); | 
 |   CB_BUFFER *cb_buffer = cb_buffer_base + offset; | 
 |   xd->cb_buffer = cb_buffer; | 
 |   //cb_buffer->dqcoeff_ptr = 0; | 
 |   for (int plane = 0; plane < num_planes; ++plane) { | 
 |     xd->plane[plane].eob_data = cb_buffer->eob_data[plane]; | 
 |     xd->cb_offset[plane] = 0; | 
 |     xd->txb_offset[plane] = 0; | 
 |   } | 
 |   xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; | 
 |   xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; | 
 |   xd->color_index_map_offset[0] = 0; | 
 |   xd->color_index_map_offset[1] = 0; | 
 | } | 
 |  | 
 | static void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) { | 
 |   pbi->tile_data = pbi->tile_data_alloc; | 
 |   pbi->allocated_tiles = n_tiles; | 
 |   pbi->allocated_row_mt_sync_rows = 0; | 
 | } | 
 |  | 
 |  | 
 | // Deallocate decoder row synchronization related mutex and data | 
 | void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { | 
 |   if (dec_row_mt_sync != NULL) { | 
 | #if CONFIG_MULTITHREAD | 
 |     int i; | 
 |     if (dec_row_mt_sync->mutex_ != NULL) { | 
 |       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { | 
 |         pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); | 
 |       } | 
 |       aom_free(dec_row_mt_sync->mutex_); | 
 |     } | 
 |     if (dec_row_mt_sync->cond_ != NULL) { | 
 |       for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { | 
 |         pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); | 
 |       } | 
 |       aom_free(dec_row_mt_sync->cond_); | 
 |     } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |     aom_free(dec_row_mt_sync->cur_sb_col); | 
 |  | 
 |     // clear the structure as the source of this call may be a resize in which | 
 |     // case this call will be followed by an _alloc() which may fail. | 
 |     av1_zero(*dec_row_mt_sync); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static int check_trailing_bits_after_symbol_coder(aom_reader *r) { | 
 |   if (aom_reader_has_overflowed(r)) return -1; | 
 |  | 
 |   uint32_t nb_bits = aom_reader_tell(r); | 
 |   uint32_t nb_bytes = (nb_bits + 7) >> 3; | 
 |   const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; | 
 |  | 
 |   // aom_reader_tell() returns 1 for a newly initialized decoder, and the | 
 |   // return value only increases as values are decoded. So nb_bits > 0, and | 
 |   // thus p > p_begin. Therefore accessing p[-1] is safe. | 
 |   uint8_t last_byte = p[-1]; | 
 |   uint8_t pattern = 128 >> ((nb_bits - 1) & 7); | 
 |   if ((last_byte & (2 * pattern - 1)) != pattern) return -1; | 
 |  | 
 |   // Make sure that all padding bytes are zero as required by the spec. | 
 |   const uint8_t *p_end = aom_reader_find_end(r); | 
 |   while (p < p_end) { | 
 |     if (*p != 0) return -1; | 
 |     p++; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | static void set_decode_func_pointers(ThreadData *td, int parse_decode_flag) { | 
 |   (void)parse_decode_flag; | 
 |   td->read_coeffs_tx_intra_block_visit = decode_block_void; | 
 |   td->predict_and_recon_intra_block_visit = decode_block_void; | 
 |   td->read_coeffs_tx_inter_block_visit = decode_block_void; | 
 |   td->inverse_tx_inter_block_visit = decode_block_void; | 
 |   td->predict_inter_block_visit = predict_inter_block_void; | 
 |   td->cfl_store_inter_block_visit = cfl_store_inter_block_void; | 
 |  | 
 |   td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; | 
 |   td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; | 
 | } | 
 |  | 
 | static void decode_tile2(AV1Decoder *pbi, ThreadData *const td, int tile_row, | 
 |                          int tile_col, int flags) { | 
 |   TileInfo tile_info; | 
 |   int block = 0; | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |  | 
 |   static int tile_no = 0; | 
 |   ++tile_no; | 
 |  | 
 |   set_decode_func_pointers(td, 0x1); | 
 |  | 
 |   av1_tile_set_row(&tile_info, cm, tile_row); | 
 |   av1_tile_set_col(&tile_info, cm, tile_col); | 
 |   av1_zero_above_context(cm, &td->xd, tile_info.mi_col_start, | 
 |                          tile_info.mi_col_end, tile_row); | 
 |   av1_reset_loop_filter_delta(&td->xd, num_planes); | 
 |   av1_reset_loop_restoration(&td->xd, num_planes); | 
 |  | 
 |   av1_setup_macroblockd(pbi, cm, td, &tile_info); | 
 |  | 
 |   for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->seq_params.mib_size) | 
 |   { | 
 |     av1_zero_left_context(&td->xd); | 
 |     for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->seq_params.mib_size) | 
 |     { | 
 |       if (!td->ext_idct_buffer && td->tile_data->dq_buffer_ptr >= td->tile_data->dq_buffer_max) { | 
 |           av1_setup_ext_coef_buffer(pbi, cm, td); | 
 |           td->ext_idct_buffer = 1; | 
 |       } | 
 |        | 
 |       set_cb_buffer(pbi, &td->xd, &td->cb_buffer_base, num_planes, 0, 0); | 
 |       // Bit-stream parsing and decoding of the superblock | 
 |       decode_partition(pbi, td, mi_row, mi_col, td->bit_reader, | 
 |                        cm->seq_params.sb_size, 1); | 
 |  | 
 |       if (aom_reader_has_overflowed(td->bit_reader)) { | 
 |         aom_merge_corrupted_flag(&td->xd.corrupted, 1); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   int corrupted = | 
 |       (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; | 
 |   aom_merge_corrupted_flag(&td->xd.corrupted, corrupted); | 
 |  | 
 | #if 1 | 
 |   td->tile_data->mi_count = td->mi_count; | 
 |   if (td->tile_data2) | 
 |     td->tile_data2->mi_count = td->mi_count2; | 
 |   for (block = 0; block < td->mi_count; ++block) { | 
 |       MB_MODE_INFO *mi = &td->mi_pool[block]; | 
 |       const int mi_col = mi->mi_col; | 
 |       const int mi_row = mi->mi_row; | 
 |       const int bsize = mi->sb_type; | 
 |       MACROBLOCKD *const xd = &td->xd; | 
 |  | 
 |       set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); | 
 |       av1_mi_push_block(pbi, cm, xd); | 
 |   } | 
 |   for (block = 0; block < td->mi_count2; ++block) { | 
 |       MB_MODE_INFO *mi = &td->mi_pool2[block]; | 
 |       const int mi_col = mi->mi_col; | 
 |       const int mi_row = mi->mi_row; | 
 |       const int bsize = mi->sb_type; | 
 |       MACROBLOCKD *const xd = &td->xd; | 
 |       set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); | 
 |       av1_mi_push_block(pbi, cm, xd); | 
 |   } | 
 |  | 
 | #else | 
 |   set_decode_func_pointers(td, 0x2); | 
 |  | 
 |   //idct ; | 
 |   { | 
 |       for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->seq_params.mib_size) | 
 |       { | 
 |           for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->seq_params.mib_size) | 
 |           { | 
 |               set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row, mi_col); | 
 |               CB_BUFFER *cb = td->xd.cb_buffer; | 
 |               for (int blk = 0; blk < cb->tx_block_count; ++blk) | 
 |               { | 
 |                   tx_block_info * tx_block = &cb->tx_block_data[blk]; | 
 |                   if (tx_block->eob) | 
 |                   { | 
 |                       const int bx = tx_block->x; | 
 |                       const int by = tx_block->y; | 
 |                       const int plane = tx_block->plane; | 
 |                       const struct macroblockd_plane *const pd = &td->xd.plane[plane]; | 
 |                       const int dst_stride = ((cm->mi_cols + 31) & (~31)) * 4 >> (plane > 0); | 
 |                       int16_t * dst = pbi->res_buffer_base[plane] + bx + by * dst_stride; | 
 |                       tran_low_t *const dqcoeff = pd->dqcoeff_block + tx_block->dq_offset; | 
 |                       uint16_t scan_line = tx_block->max_scan_line; | 
 |                       uint16_t eob = tx_block->eob; | 
 |                       TxfmParam params; | 
 |                       params.tx_type = tx_block->tx_type; | 
 |                       params.tx_size = tx_block->tx_size; | 
 |                       params.eob = tx_block->eob; | 
 |                       params.lossless = tx_block->flags; | 
 |                       params.bd = td->xd.bd; | 
 |                       params.is_hbd = is_cur_buf_hbd(&td->xd); | 
 |                       params.tx_set_type = EXT_TX_SET_ALL16; | 
 |  | 
 |  | 
 |                       av1_highbd_inv_txfm_c(dqcoeff, dst, dst_stride, ¶ms); | 
 |                     //  memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); | 
 |                   } | 
 |               } | 
 |           } | 
 |       } | 
 |  | 
 |       for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; mi_row += cm->seq_params.mib_size) | 
 |       { | 
 |           for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; mi_col += cm->seq_params.mib_size) | 
 |           { | 
 |               set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row, mi_col); | 
 |               CB_BUFFER *cb = td->xd.cb_buffer; | 
 |               for (int blk = 0; blk < cb->tx_block_count; ++blk) | 
 |               { | 
 |                   tx_block_info * tx_block = &cb->tx_block_data[blk]; | 
 |                   if (tx_block->eob) | 
 |                   { | 
 |                       const int plane = tx_block->plane; | 
 |                       const struct macroblockd_plane *const pd = &td->xd.plane[plane]; | 
 |                       tran_low_t *const dqcoeff = pd->dqcoeff_block + tx_block->dq_offset; | 
 |                       uint16_t scan_line = tx_block->max_scan_line; | 
 |                       memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0])); | 
 |                   } | 
 |               } | 
 |           } | 
 |       } | 
 |   } | 
 |  | 
 |   for (block = 0; block < td->mi_count; ++block) { | 
 |     MB_MODE_INFO *mi = &td->mi_pool[block]; | 
 |     const int sb_mask = cm->seq_params.mib_size - 1;     | 
 |     const int mi_col = mi->mi_col; | 
 |     const int mi_row = mi->mi_row; | 
 |     const int bsize = mi->sb_type; | 
 |     MACROBLOCKD *const xd = &td->xd; | 
 |  | 
 |     if ((mi_col & sb_mask) == 0 && (mi_row & sb_mask) == 0) | 
 |       set_cb_buffer(pbi, &td->xd, pbi->cb_buffer_base, num_planes, mi_row, mi_col); | 
 |  | 
 |     set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); | 
 |  | 
 |     av1_mi_push_block(cm, xd); | 
 |  | 
 |     { | 
 |       MB_MODE_INFO *mbmi = xd->mi[0]; | 
 |       CFL_CTX *const cfl = &xd->cfl; | 
 |       cfl->is_chroma_reference = is_chroma_reference( | 
 |           mi_row, mi_col, bsize, cfl->subsampling_x, cfl->subsampling_y); | 
 |  | 
 |  | 
 |  | 
 |       if (!is_inter_block(mbmi)) { | 
 |         int row, col; | 
 |         assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, xd->plane[0].subsampling_y)); | 
 |         const int max_blocks_wide = max_block_wide(xd, bsize, 0); | 
 |         const int max_blocks_high = max_block_high(xd, bsize, 0); | 
 |         const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; | 
 |         int mu_blocks_wide = | 
 |             block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; | 
 |         int mu_blocks_high = | 
 |             block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; | 
 |  | 
 |         mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); | 
 |         mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); | 
 |  | 
 |         for (row = 0; row < max_blocks_high; row += mu_blocks_high) { | 
 |           for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { | 
 |             for (int plane = 0; plane < num_planes; ++plane) { | 
 |               const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |               if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, | 
 |                                        pd->subsampling_y)) | 
 |                 continue; | 
 |  | 
 |               const TX_SIZE tx_size = av1_get_tx_size(plane, xd); | 
 |               const int stepr = tx_size_high_unit[tx_size]; | 
 |               const int stepc = tx_size_wide_unit[tx_size]; | 
 |  | 
 |               const int unit_height = ROUND_POWER_OF_TWO( | 
 |                   AOMMIN(mu_blocks_high + row, max_blocks_high), | 
 |                   pd->subsampling_y); | 
 |               const int unit_width = ROUND_POWER_OF_TWO( | 
 |                   AOMMIN(mu_blocks_wide + col, max_blocks_wide), | 
 |                   pd->subsampling_x); | 
 |  | 
 |               for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; blk_row += stepr) { | 
 |                   for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; blk_col += stepc) { | 
 |                       int c, r; | 
 |                       av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); | 
 |                       uint8_t *dst_ = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; | 
 |                       const int new_res_stride = ((cm->mi_cols + 31) & (~31)) * 4 >> (plane > 0); | 
 |                       int res_x = (((mi_col * MI_SIZE) >> pd->subsampling_x) + (blk_col << tx_size_wide_log2[0])) & (~3); | 
 |                       int res_y = (((mi_row * MI_SIZE) >> pd->subsampling_y) + (blk_row << tx_size_wide_log2[0])) & (~3); | 
 |  | 
 |                       int16_t * new_res_ = pbi->res_buffer_base[plane] + res_x + res_y * new_res_stride; | 
 |                           //((mi_col * MI_SIZE) >> pd->subsampling_x) + | 
 |                           //((mi_row * MI_SIZE) >> pd->subsampling_y) * new_res_stride + | 
 |                           //((blk_col + blk_row * new_res_stride) << tx_size_wide_log2[0]); | 
 |                       uint8_t * dst = dst_; | 
 |                       int16_t * new_res = new_res_; | 
 |                       if (!mi->skip) | 
 |                       { | 
 |                           for (r = 0; r < (stepr << 2); ++r) | 
 |                           { | 
 |                               for (c = 0; c < (stepc << 2); ++c) | 
 |                               { | 
 |                                   dst[c] = clip_pixel_highbd((int)new_res[c] + (int)dst[c], xd->bd); | 
 |                               } | 
 |                               dst += pd->dst.stride; | 
 |                               new_res += new_res_stride; | 
 |                           } | 
 |                       } | 
 |  | 
 |                       if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) { | 
 |                           cfl_store_tx(xd, blk_row, blk_col, tx_size, mbmi->sb_type); | 
 |                       } | 
 |                   } | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } else { | 
 |         predict_inter_block(cm, xd, mi_row, mi_col, bsize); | 
 |          | 
 |         //if (is_interintra_pred(mbmi)) | 
 |         //    av1_inter_block_run(cm, xd); | 
 |  | 
 |         if (!mbmi->skip) | 
 |         { | 
 |             for (int plane = 0; plane < 3; ++plane) | 
 |             { | 
 |                 const struct macroblockd_plane *const pd = &xd->plane[plane]; | 
 |                 if (is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) | 
 |                 { | 
 |                     int x, y; | 
 |                     int w = MAX(4, block_size_wide[bsize] >> pd->subsampling_x); | 
 |                     int h = MAX(4, block_size_high[bsize] >> pd->subsampling_y); | 
 |                     uint8_t * dst = pd->dst.buf; | 
 |                     const int stride = pd->dst.stride; | 
 |                     const int new_res_stride = ((cm->mi_cols + 31) & (~31)) * 4 >> (plane > 0); | 
 |                      | 
 |                     int mi_col1 = mi_col; | 
 |                     int mi_row1 = mi_row; | 
 |                     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[mbmi->sb_type] == 1)) | 
 |                         mi_row1 -= 1; | 
 |                     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[mbmi->sb_type] == 1)) | 
 |                         mi_col1 -= 1; | 
 |                     int16_t * new_res = pbi->res_buffer_base[plane] + | 
 |                         ((mi_col1 * MI_SIZE) >> pd->subsampling_x) + | 
 |                         ((mi_row1 * MI_SIZE) >> pd->subsampling_y) * new_res_stride; | 
 |                     for (y = 0; y < h; ++y) | 
 |                     { | 
 |                         for (x = 0; x < w; ++x) | 
 |                         { | 
 |                             dst[x] = clip_pixel_highbd((int)new_res[x] + (int)dst[x], xd->bd); | 
 |                         } | 
 |                         dst += stride; | 
 |                         new_res += new_res_stride; | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |         cfl_store_inter_block(cm, xd); | 
 |       } | 
 |  | 
 |     //  if (/*!is_inter_block(mbmi) || is_intrabc_block(mbmi)*/ is_interintra_pred(mbmi)) | 
 |     //  { | 
 |     //      int16_t * res[3]; | 
 |     //      const int res_stride = ((cm->mi_cols + 31) & (~31)) * 4; | 
 |     //      res[0] = pbi->res_buffer_base[0] + (mi_col * MI_SIZE) + (mi_row * MI_SIZE) * res_stride; | 
 |     //      res[1] = pbi->res_buffer_base[1] + ((mi_col * MI_SIZE) >> 1) + ((mi_row * MI_SIZE) >> 1) * (res_stride >> 1); | 
 |     //      res[2] = pbi->res_buffer_base[2] + ((mi_col * MI_SIZE) >> 1) + ((mi_row * MI_SIZE) >> 1) * (res_stride >> 1); | 
 |     //      av1_intra_block_run(cm, xd, res, res_stride); | 
 |     //  } | 
 |  | 
 |  | 
 |       av1_visit_palette(pbi, xd, mi_row, mi_col, NULL, bsize, | 
 |                         set_color_index_map_offset); | 
 |     } | 
 |   } | 
 |  | 
 | //  { | 
 | //  static int tile_idx = 0; | 
 | //  ++tile_idx; | 
 | //    //      if (tile_idx >= 9) | 
 | //          { | 
 | //              int mib_size_log2 = cm->seq_params.mib_size_log2; | 
 | //              int stride = (cm->mi_cols >> mib_size_log2) + 1; | 
 | //              int y_stride = ((cm->mi_cols + 31) & (~31)) * 4; | 
 | //              av1_idct_run(&td->xd, pbi->cb_buffer_base, tile_info, stride, mib_size_log2, pbi->res_buffer_base, y_stride); | 
 | //              av1_prediction_run_all(cm, &tile_info); | 
 | //          } | 
 | // | 
 | //  } | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { | 
 |   TileJobsDec *cur_job_info = NULL; | 
 | #if CONFIG_MULTITHREAD | 
 |   pthread_mutex_lock(tile_mt_info->job_mutex); | 
 |  | 
 |   if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { | 
 |     cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; | 
 |     tile_mt_info->jobs_dequeued++; | 
 |   } | 
 |  | 
 |   pthread_mutex_unlock(tile_mt_info->job_mutex); | 
 | #else | 
 |   (void)tile_mt_info; | 
 | #endif | 
 |   return cur_job_info; | 
 | } | 
 |  | 
 | static void tile_worker_hook_init(AV1Decoder *const pbi, | 
 |                                   DecWorkerData *const thread_data, | 
 |                                   const TileBufferDec *const tile_buffer, | 
 |                                   TileDataDec *const tile_data, | 
 |                                   uint8_t allow_update_cdf) { | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   ThreadData *const td = thread_data->td; | 
 |   int tile_row = tile_data->tile_info.tile_row; | 
 |   int tile_col = tile_data->tile_info.tile_col; | 
 |  | 
 |   td->bit_reader = tile_data->is_last? &pbi->bit_reader_end : &td->thread_bit_reader; | 
 |   av1_tile_init(&td->xd.tile, cm, tile_row, tile_col); | 
 |   td->xd.current_qindex = cm->base_qindex; | 
 |   setup_bool_decoder(tile_buffer->data, thread_data->data_end, | 
 |                      tile_buffer->size, &thread_data->error_info, | 
 |                      td->bit_reader, allow_update_cdf); | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     td->bit_reader->accounting = &pbi->accounting; | 
 |     td->bit_reader->accounting->last_tell_frac = | 
 |         aom_reader_tell_frac(td->bit_reader); | 
 |   } else { | 
 |     td->bit_reader->accounting = NULL; | 
 |   } | 
 | #endif | 
 |   av1_init_macroblockd(cm, &td->xd, NULL); | 
 |   td->xd.error_info = &thread_data->error_info; | 
 |   av1_init_above_context(cm, &td->xd, tile_row); | 
 |  | 
 |   // Initialise the tile context from the frame context | 
 |   td->xd.tile_ctx = tile_data->is_choosen_one ? &pbi->ctx_the_choosen_one : &td->tctx; | 
 |   *td->xd.tile_ctx = *cm->fc; | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     tile_data->bit_reader.accounting->last_tell_frac = | 
 |         aom_reader_tell_frac(&tile_data->bit_reader); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static int tile_worker_hook(void *arg1, void *arg2) { | 
 |   DecWorkerData *const thread_data = (DecWorkerData *)arg1; | 
 |   AV1Decoder *const pbi = (AV1Decoder *)arg2; | 
 |   AV1_COMMON *cm = &pbi->common; | 
 |   ThreadData *const td = thread_data->td; | 
 |   uint8_t allow_update_cdf; | 
 |  | 
 |   // The jmp_buf is valid only for the duration of the function that calls | 
 |   // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 | 
 |   // before it returns. | 
 |   if (setjmp(thread_data->error_info.jmp)) { | 
 |     thread_data->error_info.setjmp = 0; | 
 |     thread_data->td->xd.corrupted = 1; | 
 |     return 0; | 
 |   } | 
 |   thread_data->error_info.setjmp = 1; | 
 |  | 
 |   allow_update_cdf = cm->large_scale_tile ? 0 : 1; | 
 |   allow_update_cdf = allow_update_cdf && !cm->disable_cdf_update; | 
 |  | 
 |   assert(cm->tile_cols > 0); | 
 |   while (!td->xd.corrupted) { | 
 |     TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); | 
 |  | 
 |     if (cur_job_info != NULL) { | 
 |       const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; | 
 |       TileDataDec *const tile_data = cur_job_info->tile_data; | 
 |       tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, | 
 |                             allow_update_cdf); | 
 |       // decode tile | 
 |       int tile_row = tile_data->tile_info.tile_row; | 
 |       int tile_col = tile_data->tile_info.tile_col; | 
 |  | 
 |       decode_tile2(pbi, td, tile_row, tile_col, 0); | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |   thread_data->error_info.setjmp = 0; | 
 |   return !td->xd.corrupted; | 
 | } | 
 |  | 
 | // sorts in descending order | 
 | static int compare_tile_buffers(const void *a, const void *b) { | 
 |   const TileJobsDec *const buf1 = (const TileJobsDec *)a; | 
 |   const TileJobsDec *const buf2 = (const TileJobsDec *)b; | 
 |   return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); | 
 | } | 
 |  | 
 | static void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, | 
 |                               int tile_rows_start, int tile_rows_end, | 
 |                               int tile_cols_start, int tile_cols_end, | 
 |                               int start_tile, int end_tile) { | 
 |   AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; | 
 |   TileJobsDec *tile_job_queue = tile_mt_info->job_queue; | 
 |   tile_mt_info->jobs_enqueued = 0; | 
 |   tile_mt_info->jobs_dequeued = 0; | 
 |  | 
 |   for (int row = tile_rows_start; row < tile_rows_end; row++) { | 
 |     for (int col = tile_cols_start; col < tile_cols_end; col++) { | 
 |       if (row * cm->tile_cols + col < start_tile || | 
 |           row * cm->tile_cols + col > end_tile) | 
 |         continue; | 
 |       tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; | 
 |       tile_job_queue->tile_data = pbi->tile_data + row * cm->tile_cols + col; | 
 |       tile_job_queue++; | 
 |       tile_mt_info->jobs_enqueued++; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm, | 
 |                            int tile_rows, int tile_cols) { | 
 |   tile_mt_info->alloc_tile_rows = tile_rows; | 
 |   tile_mt_info->alloc_tile_cols = tile_cols; | 
 |   int num_tiles = tile_rows * tile_cols; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     for (int i = 0; i < num_tiles; i++) { | 
 |       pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void av1_free_mc_tmp_buf(ThreadData *thread_data) { | 
 |   int ref; | 
 |   if (thread_data) | 
 |   { | 
 |       for (ref = 0; ref < 2; ref++) { | 
 |           if (thread_data->mc_buf_use_highbd) | 
 |               aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref])); | 
 |           else | 
 |               aom_free(thread_data->mc_buf[ref]); | 
 |           thread_data->mc_buf[ref] = NULL; | 
 |       } | 
 |       thread_data->mc_buf_size = 0; | 
 |       thread_data->mc_buf_use_highbd = 0; | 
 |  | 
 |       aom_free(thread_data->tmp_conv_dst); | 
 |       thread_data->tmp_conv_dst = NULL; | 
 |       for (int i = 0; i < 2; ++i) { | 
 |           aom_free(thread_data->tmp_obmc_bufs[i]); | 
 |           thread_data->tmp_obmc_bufs[i] = NULL; | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook, | 
 |                               int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |  | 
 |   // Reset tile decoding hook | 
 |   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |     DecWorkerData *const thread_data = pbi->thread_data + worker_idx; | 
 |     thread_data->td->xd = pbi->mb; | 
 |     thread_data->td->xd.corrupted = 0; | 
 |     thread_data->td->xd.mc_buf[0] = thread_data->td->mc_buf[0]; | 
 |     thread_data->td->xd.mc_buf[1] = thread_data->td->mc_buf[1]; | 
 |     thread_data->td->xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; | 
 |     for (int j = 0; j < 2; ++j) { | 
 |       thread_data->td->xd.tmp_obmc_bufs[j] = thread_data->td->tmp_obmc_bufs[j]; | 
 |     } | 
 |     thread_data->td->thread_id = worker_idx; | 
 |  | 
 |     winterface->sync(worker); | 
 |      | 
 |     worker->hook = worker_hook; | 
 |     worker->data1 = thread_data; | 
 |     worker->data2 = pbi; | 
 |   } | 
 | #if CONFIG_ACCOUNTING | 
 |   if (pbi->acct_enabled) { | 
 |     aom_accounting_reset(&pbi->accounting); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | static void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end, | 
 |                                int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |  | 
 |   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |     DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; | 
 |  | 
 |     thread_data->data_end = data_end; | 
 |  | 
 |     worker->had_error = 0; | 
 |     if (worker_idx == num_workers - 1) { | 
 |       winterface->execute(worker); | 
 |     } else { | 
 |       winterface->launch(worker); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void sync_dec_workers(AV1Decoder *pbi, int num_workers) { | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   int corrupted = 0; | 
 |  | 
 |   for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { | 
 |     AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; | 
 |     aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); | 
 |   } | 
 |  | 
 |   pbi->mb.corrupted = corrupted; | 
 | } | 
 |  | 
 | static void decode_mt_init(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const AVxWorkerInterface *const winterface = aom_get_worker_interface(); | 
 |   int worker_idx; | 
 |  | 
 |   // Create workers and thread_data | 
 |   if (pbi->num_workers == 0) { | 
 |     const int num_threads = pbi->max_threads; | 
 |     memset(pbi->tile_workers, 0, sizeof(pbi->tile_workers)); | 
 |     memset(pbi->thread_data, 0, sizeof(pbi->thread_data)); | 
 |  | 
 |     for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { | 
 |       AVxWorker *const worker = &pbi->tile_workers[worker_idx]; | 
 |       DecWorkerData *const thread_data = pbi->thread_data + worker_idx; | 
 |       ++pbi->num_workers; | 
 |  | 
 |       winterface->init(worker); | 
 |       worker->thread_name = "aom tile worker"; | 
 |       if (worker_idx < num_threads - 1 && !winterface->reset(worker)) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                            "Tile decoder thread creation failed"); | 
 |       } | 
 |         // Main thread acts as a worker and uses the thread data in pbi | 
 |       thread_data->td = &pbi->td[worker_idx]; | 
 |       thread_data->error_info.error_code = AOM_CODEC_OK; | 
 |       thread_data->error_info.setjmp = 0; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows, | 
 |                           int tile_rows_start, int tile_rows_end, | 
 |                           int tile_cols_start, int tile_cols_end, | 
 |                           int start_tile, int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || | 
 |       pbi->tile_mt_info.alloc_tile_rows != tile_rows) { | 
 |     av1_dealloc_dec_jobs(&pbi->tile_mt_info); | 
 |     alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); | 
 |   } | 
 |   enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, | 
 |                     tile_cols_end, start_tile, end_tile); | 
 |   qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, | 
 |         sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); | 
 | } | 
 |  | 
 | static void dec_alloc_cb_buf(AV1Decoder *pbi) { | 
 |     pbi->cb_buffer_base = NULL; | 
 | //  AV1_COMMON *const cm = &pbi->common; | 
 | //  int size = ((cm->mi_rows >> cm->seq_params.mib_size_log2) + 1) * | 
 | //             ((cm->mi_cols >> cm->seq_params.mib_size_log2) + 1); | 
 | // | 
 | //  if (pbi->cb_buffer_alloc_size < size) { | 
 | //    av1_dec_free_cb_buf(pbi); | 
 | //    CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, | 
 | //                    aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); | 
 | //    memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size); | 
 | //    pbi->cb_buffer_alloc_size = size; | 
 | //  } | 
 | } | 
 |  | 
 | static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, | 
 |                                       const uint8_t *data_end, int start_tile, | 
 |                                       int end_tile) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int tile_cols = cm->tile_cols; | 
 |   const int tile_rows = cm->tile_rows; | 
 |   const int n_tiles = tile_cols * tile_rows; | 
 |   TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; | 
 |   const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); | 
 |   const int single_row = pbi->dec_tile_row >= 0; | 
 |   const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); | 
 |   const int single_col = pbi->dec_tile_col >= 0; | 
 |   int tile_rows_start; | 
 |   int tile_rows_end; | 
 |   int tile_cols_start; | 
 |   int tile_cols_end; | 
 |   int tile_count_tg; | 
 |   int num_workers; | 
 |   const uint8_t *raw_data_end = NULL; | 
 |  | 
 |   if (cm->large_scale_tile) { | 
 |     tile_rows_start = single_row ? dec_tile_row : 0; | 
 |     tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; | 
 |     tile_cols_start = single_col ? dec_tile_col : 0; | 
 |     tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; | 
 |   } else { | 
 |     tile_rows_start = 0; | 
 |     tile_rows_end = tile_rows; | 
 |     tile_cols_start = 0; | 
 |     tile_cols_end = tile_cols; | 
 |   } | 
 |   tile_count_tg = end_tile - start_tile + 1; | 
 |   num_workers = AOMMIN(pbi->max_threads, tile_count_tg); | 
 |  | 
 |   // No tiles to decode. | 
 |   if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || | 
 |       // First tile is larger than end_tile. | 
 |       tile_rows_start * tile_cols + tile_cols_start > end_tile || | 
 |       // Last tile is smaller than start_tile. | 
 |       (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) | 
 |     return data; | 
 |  | 
 |   assert(tile_rows <= MAX_TILE_ROWS); | 
 |   assert(tile_cols <= MAX_TILE_COLS); | 
 |   assert(tile_count_tg > 0); | 
 |   assert(num_workers > 0); | 
 |   assert(start_tile <= end_tile); | 
 |   assert(start_tile >= 0 && end_tile < n_tiles); | 
 |  | 
 |   //decode_mt_init(pbi); | 
 |   dec_alloc_cb_buf(pbi); | 
 |  | 
 |   // get tile size in tile group | 
 | #if EXT_TILE_DEBUG | 
 |   if (cm->large_scale_tile) assert(pbi->ext_tile_debug == 1); | 
 |   if (cm->large_scale_tile) | 
 |     raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); | 
 |   else | 
 | #endif  // EXT_TILE_DEBUG | 
 |     get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); | 
 |  | 
 |   if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { | 
 |     decoder_alloc_tile_data(pbi, n_tiles); | 
 |   } | 
 |  | 
 |   for (int row = 0; row < tile_rows; row++) { | 
 |     for (int col = 0; col < tile_cols; col++) { | 
 |       TileDataDec *tile_data = pbi->tile_data + row * cm->tile_cols + col; | 
 |       av1_tile_init(&tile_data->tile_info, cm, row, col); | 
 |       tile_data->is_choosen_one = 0; | 
 |       tile_data->is_last = 0; | 
 |     } | 
 |   } | 
 |   if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) | 
 |       pbi->tile_data[cm->context_update_tile_id].is_choosen_one = 1; | 
 |   pbi->tile_data[end_tile].is_last = 1; | 
 |  | 
 |  | 
 |   tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, | 
 |                 tile_cols_start, tile_cols_end, start_tile, end_tile); | 
 |  | 
 |   reset_dec_workers(pbi, tile_worker_hook, num_workers); | 
 |   launch_dec_workers(pbi, data_end, num_workers); | 
 |   sync_dec_workers(pbi, num_workers); | 
 |  | 
 |   if (pbi->mb.corrupted) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Failed to decode tile data"); | 
 |  | 
 |   if (cm->large_scale_tile) { | 
 |     if (n_tiles == 1) { | 
 |       // Find the end of the single tile buffer | 
 |       return aom_reader_find_end(&pbi->bit_reader_end); | 
 |     } | 
 |     // Return the end of the last tile buffer | 
 |     return raw_data_end; | 
 |   } | 
 |   return aom_reader_find_end(&pbi->bit_reader_end); | 
 | } | 
 |  | 
 | static void error_handler(void *data) { | 
 |   AV1_COMMON *const cm = (AV1_COMMON *)data; | 
 |   aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); | 
 | } | 
 |  | 
 | // Reads the high_bitdepth and twelve_bit fields in color_config() and sets | 
 | // seq_params->bit_depth based on the values of those fields and | 
 | // seq_params->profile. Reports errors by calling rb->error_handler() or | 
 | // aom_internal_error(). | 
 | static void read_bitdepth(struct aom_read_bit_buffer *rb, | 
 |                           SequenceHeader *seq_params, | 
 |                           struct aom_internal_error_info *error_info) { | 
 |   const int high_bitdepth = aom_rb_read_bit(rb); | 
 |   if (seq_params->profile == PROFILE_2 && high_bitdepth) { | 
 |     const int twelve_bit = aom_rb_read_bit(rb); | 
 |     seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; | 
 |   } else if (seq_params->profile <= PROFILE_2) { | 
 |     seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; | 
 |   } else { | 
 |     aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Unsupported profile/bit-depth combination"); | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_film_grain_params(AV1_COMMON *cm, | 
 |                                 struct aom_read_bit_buffer *rb) { | 
 |   aom_film_grain_t *pars = &cm->film_grain_params; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |  | 
 |   pars->apply_grain = aom_rb_read_bit(rb); | 
 |   if (!pars->apply_grain) { | 
 |     memset(pars, 0, sizeof(*pars)); | 
 |     return; | 
 |   } | 
 |  | 
 |   pars->random_seed = aom_rb_read_literal(rb, 16); | 
 |   if (cm->current_frame.frame_type == INTER_FRAME) | 
 |     pars->update_parameters = aom_rb_read_bit(rb); | 
 |   else | 
 |     pars->update_parameters = 1; | 
 |  | 
 |   pars->bit_depth = seq_params->bit_depth; | 
 |  | 
 |   if (!pars->update_parameters) { | 
 |     // inherit parameters from a previous reference frame | 
 |     int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); | 
 |     RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx]; | 
 |     if (buf == NULL) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Invalid Film grain reference idx"); | 
 |     } | 
 |     if (!buf->film_grain_params_present) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Film grain reference parameters not available"); | 
 |     } | 
 |     uint16_t random_seed = pars->random_seed; | 
 |     *pars = buf->film_grain_params;   // inherit paramaters | 
 |     pars->random_seed = random_seed;  // with new random seed | 
 |     return; | 
 |   } | 
 |  | 
 |   // Scaling functions parameters | 
 |   pars->num_y_points = aom_rb_read_literal(rb, 4);  // max 14 | 
 |   if (pars->num_y_points > 14) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "Number of points for film grain luma scaling function " | 
 |                        "exceeds the maximum value."); | 
 |   for (int i = 0; i < pars->num_y_points; i++) { | 
 |     pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); | 
 |     if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "First coordinate of the scaling function points " | 
 |                          "shall be increasing."); | 
 |     pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); | 
 |   } | 
 |  | 
 |   if (!seq_params->monochrome) | 
 |     pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); | 
 |   else | 
 |     pars->chroma_scaling_from_luma = 0; | 
 |  | 
 |   if (seq_params->monochrome || pars->chroma_scaling_from_luma || | 
 |       ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && | 
 |        (pars->num_y_points == 0))) { | 
 |     pars->num_cb_points = 0; | 
 |     pars->num_cr_points = 0; | 
 |   } else { | 
 |     pars->num_cb_points = aom_rb_read_literal(rb, 4);  // max 10 | 
 |     if (pars->num_cb_points > 10) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Number of points for film grain cb scaling function " | 
 |                          "exceeds the maximum value."); | 
 |     for (int i = 0; i < pars->num_cb_points; i++) { | 
 |       pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); | 
 |       if (i && | 
 |           pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "First coordinate of the scaling function points " | 
 |                            "shall be increasing."); | 
 |       pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); | 
 |     } | 
 |  | 
 |     pars->num_cr_points = aom_rb_read_literal(rb, 4);  // max 10 | 
 |     if (pars->num_cr_points > 10) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "Number of points for film grain cr scaling function " | 
 |                          "exceeds the maximum value."); | 
 |     for (int i = 0; i < pars->num_cr_points; i++) { | 
 |       pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); | 
 |       if (i && | 
 |           pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "First coordinate of the scaling function points " | 
 |                            "shall be increasing."); | 
 |       pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); | 
 |     } | 
 |  | 
 |     if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && | 
 |         (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || | 
 |          ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                          "In YCbCr 4:2:0, film grain shall be applied " | 
 |                          "to both chroma components or neither."); | 
 |   } | 
 |  | 
 |   pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8;  // 8 + value | 
 |  | 
 |   // AR coefficients | 
 |   // Only sent if the corresponsing scaling function has | 
 |   // more than 0 points | 
 |  | 
 |   pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); | 
 |  | 
 |   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); | 
 |   int num_pos_chroma = num_pos_luma; | 
 |   if (pars->num_y_points > 0) ++num_pos_chroma; | 
 |  | 
 |   if (pars->num_y_points) | 
 |     for (int i = 0; i < num_pos_luma; i++) | 
 |       pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   if (pars->num_cb_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   if (pars->num_cr_points || pars->chroma_scaling_from_luma) | 
 |     for (int i = 0; i < num_pos_chroma; i++) | 
 |       pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; | 
 |  | 
 |   pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6;  // 6 + value | 
 |  | 
 |   pars->grain_scale_shift = aom_rb_read_literal(rb, 2); | 
 |  | 
 |   if (pars->num_cb_points) { | 
 |     pars->cb_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cb_luma_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cb_offset = aom_rb_read_literal(rb, 9); | 
 |   } | 
 |  | 
 |   if (pars->num_cr_points) { | 
 |     pars->cr_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cr_luma_mult = aom_rb_read_literal(rb, 8); | 
 |     pars->cr_offset = aom_rb_read_literal(rb, 9); | 
 |   } | 
 |  | 
 |   pars->overlap_flag = aom_rb_read_bit(rb); | 
 |  | 
 |   pars->clip_to_restricted_range = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static void read_film_grain(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   if (cm->seq_params.film_grain_params_present && | 
 |       (cm->show_frame || cm->showable_frame)) { | 
 |     av1_read_film_grain_params(cm, rb); | 
 |   } else { | 
 |     memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); | 
 |   } | 
 |   cm->film_grain_params.bit_depth = cm->seq_params.bit_depth; | 
 |   memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, | 
 |          sizeof(aom_film_grain_t)); | 
 | } | 
 |  | 
 | void av1_read_color_config(struct aom_read_bit_buffer *rb, | 
 |                            int allow_lowbitdepth, SequenceHeader *seq_params, | 
 |                            struct aom_internal_error_info *error_info) { | 
 |   read_bitdepth(rb, seq_params, error_info); | 
 |  | 
 |   seq_params->use_highbitdepth = | 
 |       seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth; | 
 |  | 
 |   // monochrome bit (not needed for PROFILE_1) | 
 |   const int is_monochrome = | 
 |       seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; | 
 |   seq_params->monochrome = is_monochrome; | 
 |   int color_description_present_flag = aom_rb_read_bit(rb); | 
 |   if (color_description_present_flag) { | 
 |     seq_params->color_primaries = aom_rb_read_literal(rb, 8); | 
 |     seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); | 
 |     seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); | 
 |   } else { | 
 |     seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; | 
 |     seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; | 
 |     seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; | 
 |   } | 
 |   if (is_monochrome) { | 
 |     // [16,235] (including xvycc) vs [0,255] range | 
 |     seq_params->color_range = aom_rb_read_bit(rb); | 
 |     seq_params->subsampling_y = seq_params->subsampling_x = 1; | 
 |     seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; | 
 |     seq_params->separate_uv_delta_q = 0; | 
 |     return; | 
 |   } | 
 |   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && | 
 |       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && | 
 |       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { | 
 |     seq_params->subsampling_y = seq_params->subsampling_x = 0; | 
 |     seq_params->color_range = 1;  // assume full color-range | 
 |     if (!(seq_params->profile == PROFILE_1 || | 
 |           (seq_params->profile == PROFILE_2 && | 
 |            seq_params->bit_depth == AOM_BITS_12))) { | 
 |       aom_internal_error( | 
 |           error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "sRGB colorspace not compatible with specified profile"); | 
 |     } | 
 |   } else { | 
 |     // [16,235] (including xvycc) vs [0,255] range | 
 |     seq_params->color_range = aom_rb_read_bit(rb); | 
 |     if (seq_params->profile == PROFILE_0) { | 
 |       // 420 only | 
 |       seq_params->subsampling_x = seq_params->subsampling_y = 1; | 
 |     } else if (seq_params->profile == PROFILE_1) { | 
 |       // 444 only | 
 |       seq_params->subsampling_x = seq_params->subsampling_y = 0; | 
 |     } else { | 
 |       assert(seq_params->profile == PROFILE_2); | 
 |       if (seq_params->bit_depth == AOM_BITS_12) { | 
 |         seq_params->subsampling_x = aom_rb_read_bit(rb); | 
 |         if (seq_params->subsampling_x) | 
 |           seq_params->subsampling_y = aom_rb_read_bit(rb);  // 422 or 420 | 
 |         else | 
 |           seq_params->subsampling_y = 0;  // 444 | 
 |       } else { | 
 |         // 422 | 
 |         seq_params->subsampling_x = 1; | 
 |         seq_params->subsampling_y = 0; | 
 |       } | 
 |     } | 
 |     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && | 
 |         (seq_params->subsampling_x || seq_params->subsampling_y)) { | 
 |       aom_internal_error( | 
 |           error_info, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); | 
 |     } | 
 |     if (seq_params->subsampling_x && seq_params->subsampling_y) { | 
 |       seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); | 
 |     } | 
 |   } | 
 |   seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | void av1_read_timing_info_header(AV1_COMMON *cm, | 
 |                                  struct aom_read_bit_buffer *rb) { | 
 |   cm->timing_info.num_units_in_display_tick = aom_rb_read_unsigned_literal( | 
 |       rb, 32);  // Number of units in a display tick | 
 |   cm->timing_info.time_scale = | 
 |       aom_rb_read_unsigned_literal(rb, 32);  // Time scale | 
 |   if (cm->timing_info.num_units_in_display_tick == 0 || | 
 |       cm->timing_info.time_scale == 0) { | 
 |     aom_internal_error( | 
 |         &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |         "num_units_in_display_tick and time_scale must be greater than 0."); | 
 |   } | 
 |   cm->timing_info.equal_picture_interval = | 
 |       aom_rb_read_bit(rb);  // Equal picture interval bit | 
 |   if (cm->timing_info.equal_picture_interval) { | 
 |     cm->timing_info.num_ticks_per_picture = | 
 |         aom_rb_read_uvlc(rb) + 1;  // ticks per picture | 
 |     if (cm->timing_info.num_ticks_per_picture == 0) { | 
 |       aom_internal_error( | 
 |           &cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |           "num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1."); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void av1_read_decoder_model_info(AV1_COMMON *cm, | 
 |                                  struct aom_read_bit_buffer *rb) { | 
 |   cm->buffer_model.encoder_decoder_buffer_delay_length = | 
 |       aom_rb_read_literal(rb, 5) + 1; | 
 |   cm->buffer_model.num_units_in_decoding_tick = aom_rb_read_unsigned_literal( | 
 |       rb, 32);  // Number of units in a decoding tick | 
 |   cm->buffer_model.buffer_removal_time_length = aom_rb_read_literal(rb, 5) + 1; | 
 |   cm->buffer_model.frame_presentation_time_length = | 
 |       aom_rb_read_literal(rb, 5) + 1; | 
 | } | 
 |  | 
 | void av1_read_op_parameters_info(AV1_COMMON *const cm, | 
 |                                  struct aom_read_bit_buffer *rb, int op_num) { | 
 |   // The cm->op_params array has MAX_NUM_OPERATING_POINTS + 1 elements. | 
 |   if (op_num > MAX_NUM_OPERATING_POINTS) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                        "AV1 does not support %d decoder model operating points", | 
 |                        op_num + 1); | 
 |   } | 
 |  | 
 |   cm->op_params[op_num].decoder_buffer_delay = aom_rb_read_unsigned_literal( | 
 |       rb, cm->buffer_model.encoder_decoder_buffer_delay_length); | 
 |  | 
 |   cm->op_params[op_num].encoder_buffer_delay = aom_rb_read_unsigned_literal( | 
 |       rb, cm->buffer_model.encoder_decoder_buffer_delay_length); | 
 |  | 
 |   cm->op_params[op_num].low_delay_mode_flag = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static void av1_read_temporal_point_info(AV1_COMMON *const cm, | 
 |                                          struct aom_read_bit_buffer *rb) { | 
 |   cm->frame_presentation_time = aom_rb_read_unsigned_literal( | 
 |       rb, cm->buffer_model.frame_presentation_time_length); | 
 | } | 
 |  | 
 | void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, | 
 |                               SequenceHeader *seq_params) { | 
 |   const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; | 
 |   const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; | 
 |   const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; | 
 |   const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; | 
 |  | 
 |   seq_params->num_bits_width = num_bits_width; | 
 |   seq_params->num_bits_height = num_bits_height; | 
 |   seq_params->max_frame_width = max_frame_width; | 
 |   seq_params->max_frame_height = max_frame_height; | 
 |  | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     seq_params->frame_id_numbers_present_flag = 0; | 
 |   } else { | 
 |     seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); | 
 |   } | 
 |   if (seq_params->frame_id_numbers_present_flag) { | 
 |     // We must always have delta_frame_id_length < frame_id_length, | 
 |     // in order for a frame to be referenced with a unique delta. | 
 |     // Avoid wasting bits by using a coding that enforces this restriction. | 
 |     seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; | 
 |     seq_params->frame_id_length = | 
 |         aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; | 
 |     if (seq_params->frame_id_length > 16) | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Invalid frame_id_length"); | 
 |   } | 
 |  | 
 |   setup_sb_size(seq_params, rb); | 
 |  | 
 |   seq_params->enable_filter_intra = aom_rb_read_bit(rb); | 
 |   seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); | 
 |  | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     seq_params->enable_interintra_compound = 0; | 
 |     seq_params->enable_masked_compound = 0; | 
 |     seq_params->enable_warped_motion = 0; | 
 |     seq_params->enable_dual_filter = 0; | 
 |     seq_params->order_hint_info.enable_order_hint = 0; | 
 |     seq_params->order_hint_info.enable_dist_wtd_comp = 0; | 
 |     seq_params->order_hint_info.enable_ref_frame_mvs = 0; | 
 |     seq_params->force_screen_content_tools = 2;  // SELECT_SCREEN_CONTENT_TOOLS | 
 |     seq_params->force_integer_mv = 2;            // SELECT_INTEGER_MV | 
 |     seq_params->order_hint_info.order_hint_bits_minus_1 = -1; | 
 |   } else { | 
 |     seq_params->enable_interintra_compound = aom_rb_read_bit(rb); | 
 |     seq_params->enable_masked_compound = aom_rb_read_bit(rb); | 
 |     seq_params->enable_warped_motion = aom_rb_read_bit(rb); | 
 |     seq_params->enable_dual_filter = aom_rb_read_bit(rb); | 
 |  | 
 |     seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb); | 
 |     seq_params->order_hint_info.enable_dist_wtd_comp = | 
 |         seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; | 
 |     seq_params->order_hint_info.enable_ref_frame_mvs = | 
 |         seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; | 
 |  | 
 |     if (aom_rb_read_bit(rb)) { | 
 |       seq_params->force_screen_content_tools = | 
 |           2;  // SELECT_SCREEN_CONTENT_TOOLS | 
 |     } else { | 
 |       seq_params->force_screen_content_tools = aom_rb_read_bit(rb); | 
 |     } | 
 |  | 
 |     if (seq_params->force_screen_content_tools > 0) { | 
 |       if (aom_rb_read_bit(rb)) { | 
 |         seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV | 
 |       } else { | 
 |         seq_params->force_integer_mv = aom_rb_read_bit(rb); | 
 |       } | 
 |     } else { | 
 |       seq_params->force_integer_mv = 2;  // SELECT_INTEGER_MV | 
 |     } | 
 |     seq_params->order_hint_info.order_hint_bits_minus_1 = | 
 |         seq_params->order_hint_info.enable_order_hint | 
 |             ? aom_rb_read_literal(rb, 3) | 
 |             : -1; | 
 |   } | 
 |  | 
 |   seq_params->enable_superres = aom_rb_read_bit(rb); | 
 |   seq_params->enable_cdef = aom_rb_read_bit(rb); | 
 |   seq_params->enable_restoration = aom_rb_read_bit(rb); | 
 | } | 
 |  | 
 | static int read_global_motion_params(WarpedMotionParams *params, | 
 |                                      const WarpedMotionParams *ref_params, | 
 |                                      struct aom_read_bit_buffer *rb, | 
 |                                      int allow_hp) { | 
 |   TransformationType type = aom_rb_read_bit(rb); | 
 |   if (type != IDENTITY) { | 
 |     if (aom_rb_read_bit(rb)) | 
 |       type = ROTZOOM; | 
 |     else | 
 |       type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; | 
 |   } | 
 |  | 
 |   *params = default_warp_params; | 
 |   params->wmtype = type; | 
 |  | 
 |   if (type >= ROTZOOM) { | 
 |     params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - | 
 |                                (1 << GM_ALPHA_PREC_BITS)) * | 
 |                            GM_ALPHA_DECODE_FACTOR + | 
 |                        (1 << WARPEDMODEL_PREC_BITS); | 
 |     params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * | 
 |                        GM_ALPHA_DECODE_FACTOR; | 
 |   } | 
 |  | 
 |   if (type >= AFFINE) { | 
 |     params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * | 
 |                        GM_ALPHA_DECODE_FACTOR; | 
 |     params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - | 
 |                                (1 << GM_ALPHA_PREC_BITS)) * | 
 |                            GM_ALPHA_DECODE_FACTOR + | 
 |                        (1 << WARPEDMODEL_PREC_BITS); | 
 |   } else { | 
 |     params->wmmat[4] = -params->wmmat[3]; | 
 |     params->wmmat[5] = params->wmmat[2]; | 
 |   } | 
 |  | 
 |   if (type >= TRANSLATION) { | 
 |     const int trans_bits = (type == TRANSLATION) | 
 |                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp | 
 |                                : GM_ABS_TRANS_BITS; | 
 |     const int trans_dec_factor = | 
 |         (type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp) | 
 |                               : GM_TRANS_DECODE_FACTOR; | 
 |     const int trans_prec_diff = (type == TRANSLATION) | 
 |                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp | 
 |                                     : GM_TRANS_PREC_DIFF; | 
 |     params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[0] >> trans_prec_diff)) * | 
 |                        trans_dec_factor; | 
 |     params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( | 
 |                            rb, (1 << trans_bits) + 1, SUBEXPFIN_K, | 
 |                            (ref_params->wmmat[1] >> trans_prec_diff)) * | 
 |                        trans_dec_factor; | 
 |   } | 
 |  | 
 |   if (params->wmtype <= AFFINE) { | 
 |     int good_shear_params = get_shear_params(params); | 
 |     if (!good_shear_params) return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static void read_global_motion(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { | 
 |   for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { | 
 |     const WarpedMotionParams *ref_params = | 
 |         cm->prev_frame ? &cm->prev_frame->global_motion[frame] | 
 |                        : &default_warp_params; | 
 |     int good_params = read_global_motion_params( | 
 |         &cm->global_motion[frame], ref_params, rb, cm->allow_high_precision_mv); | 
 |     if (!good_params) { | 
 | #if WARPED_MOTION_DEBUG | 
 |       printf("Warning: unexpected global motion shear params from aomenc\n"); | 
 | #endif | 
 |       cm->global_motion[frame].invalid = 1; | 
 |     } | 
 |  | 
 |     // TODO(sarahparker, debargha): The logic in the commented out code below | 
 |     // does not work currently and causes mismatches when resize is on. Fix it | 
 |     // before turning the optimization back on. | 
 |     /* | 
 |     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); | 
 |     if (cm->width == ref_buf->y_crop_width && | 
 |         cm->height == ref_buf->y_crop_height) { | 
 |       read_global_motion_params(&cm->global_motion[frame], | 
 |                                 &cm->prev_frame->global_motion[frame], rb, | 
 |                                 cm->allow_high_precision_mv); | 
 |     } else { | 
 |       cm->global_motion[frame] = default_warp_params; | 
 |     } | 
 |     */ | 
 |     /* | 
 |     printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", | 
 |            frame, cm->current_frame.frame_number, cm->show_frame, | 
 |            cm->global_motion[frame].wmmat[0], | 
 |            cm->global_motion[frame].wmmat[1], | 
 |            cm->global_motion[frame].wmmat[2], | 
 |            cm->global_motion[frame].wmmat[3]); | 
 |            */ | 
 |   } | 
 |   memcpy(cm->cur_frame->global_motion, cm->global_motion, | 
 |          REF_FRAMES * sizeof(WarpedMotionParams)); | 
 | } | 
 |  | 
 | // Release the references to the frame buffers in cm->ref_frame_map and reset | 
 | // all elements of cm->ref_frame_map to NULL. | 
 | static void reset_ref_frame_map(AV1_COMMON *const cm) { | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |  | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     decrease_ref_count(cm->ref_frame_map[i], pool); | 
 |     cm->ref_frame_map[i] = NULL; | 
 |   } | 
 | } | 
 |  | 
 | // Generate next_ref_frame_map. | 
 | static void generate_next_ref_frame_map(AV1Decoder *const pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |  | 
 |   lock_buffer_pool(pool); | 
 |   // cm->next_ref_frame_map holds references to frame buffers. After storing a | 
 |   // frame buffer index in cm->next_ref_frame_map, we need to increase the | 
 |   // frame buffer's ref_count. | 
 |   int ref_index = 0; | 
 |   for (int mask = cm->current_frame.refresh_frame_flags; mask; mask >>= 1) { | 
 |     if (mask & 1) { | 
 |       cm->next_ref_frame_map[ref_index] = cm->cur_frame; | 
 |     } else { | 
 |       cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; | 
 |     } | 
 |     if (cm->next_ref_frame_map[ref_index] != NULL) | 
 |       ++cm->next_ref_frame_map[ref_index]->ref_count; | 
 |     ++ref_index; | 
 |   } | 
 |  | 
 |   for (; ref_index < REF_FRAMES; ++ref_index) { | 
 |     cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index]; | 
 |     if (cm->next_ref_frame_map[ref_index] != NULL) | 
 |       ++cm->next_ref_frame_map[ref_index]->ref_count; | 
 |   } | 
 |   unlock_buffer_pool(pool); | 
 |   pbi->hold_ref_buf = 1; | 
 | } | 
 |  | 
 | // If the refresh_frame_flags bitmask is set, update reference frame id values | 
 | // and mark frames as valid for reference. | 
 | static void update_ref_frame_id(AV1_COMMON *const cm, int frame_id) { | 
 |   assert(cm->seq_params.frame_id_numbers_present_flag); | 
 |   int refresh_frame_flags = cm->current_frame.refresh_frame_flags; | 
 |   for (int i = 0; i < REF_FRAMES; i++) { | 
 |     if ((refresh_frame_flags >> i) & 1) { | 
 |       cm->ref_frame_id[i] = frame_id; | 
 |       cm->valid_for_referencing[i] = 1; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void show_existing_frame_reset(AV1Decoder *const pbi, | 
 |                                       int existing_frame_idx) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   assert(cm->show_existing_frame); | 
 |  | 
 |   cm->current_frame.frame_type = KEY_FRAME; | 
 |  | 
 |   cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1; | 
 |  | 
 |   for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |     cm->remapped_ref_idx[i] = INVALID_IDX; | 
 |   } | 
 |  | 
 |   if (pbi->need_resync) { | 
 |     reset_ref_frame_map(cm); | 
 |     pbi->need_resync = 0; | 
 |   } | 
 |  | 
 |   // Note that the displayed frame must be valid for referencing in order to | 
 |   // have been selected. | 
 |   if (cm->seq_params.frame_id_numbers_present_flag) { | 
 |     update_ref_frame_id(cm, cm->ref_frame_id[existing_frame_idx]); | 
 |   } | 
 |  | 
 |   cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; | 
 |  | 
 |   generate_next_ref_frame_map(pbi); | 
 |  | 
 |   // Reload the adapted CDFs from when we originally coded this keyframe | 
 |   *cm->fc = cm->next_ref_frame_map[existing_frame_idx]->frame_context; | 
 | } | 
 |  | 
 | static INLINE void reset_frame_buffers(AV1_COMMON *cm) { | 
 |   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; | 
 |   int i; | 
 |  | 
 |   // We have not stored any references to frame buffers in | 
 |   // cm->next_ref_frame_map, so we can directly reset it to all NULL. | 
 |   for (i = 0; i < REF_FRAMES; ++i) { | 
 |     cm->next_ref_frame_map[i] = NULL; | 
 |   } | 
 |  | 
 |   lock_buffer_pool(cm->buffer_pool); | 
 |   reset_ref_frame_map(cm); | 
 |   assert(cm->cur_frame->ref_count == 1); | 
 |   for (i = 0; i < FRAME_BUFFERS; ++i) { | 
 |     // Reset all unreferenced frame buffers. We can also reset cm->cur_frame | 
 |     // because we are the sole owner of cm->cur_frame. | 
 |     if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) { | 
 |       continue; | 
 |     } | 
 |     frame_bufs[i].order_hint = 0; | 
 |     av1_zero(frame_bufs[i].ref_order_hints); | 
 |   } | 
 |   av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); | 
 |   unlock_buffer_pool(cm->buffer_pool); | 
 | } | 
 |  | 
 | // On success, returns 0. On failure, calls aom_internal_error and does not | 
 | // return. | 
 | static int read_uncompressed_header(AV1Decoder *pbi, | 
 |                                     struct aom_read_bit_buffer *rb) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const SequenceHeader *const seq_params = &cm->seq_params; | 
 |   CurrentFrame *const current_frame = &cm->current_frame; | 
 |   MACROBLOCKD *const xd = &pbi->mb; | 
 |   BufferPool *const pool = cm->buffer_pool; | 
 |   RefCntBuffer *const frame_bufs = pool->frame_bufs; | 
 |  | 
 |   if (!pbi->sequence_header_ready) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "No sequence header"); | 
 |   } | 
 |  | 
 |   cm->last_frame_type = current_frame->frame_type; | 
 |  | 
 |   if (seq_params->reduced_still_picture_hdr) { | 
 |     cm->show_existing_frame = 0; | 
 |     cm->show_frame = 1; | 
 |     current_frame->frame_type = KEY_FRAME; | 
 |     if (pbi->sequence_header_changed) { | 
 |       // This is the start of a new coded video sequence. | 
 |       pbi->sequence_header_changed = 0; | 
 |       pbi->decoding_first_frame = 1; | 
 |       reset_frame_buffers(cm); | 
 |     } | 
 |     cm->error_resilient_mode = 1; | 
 |   } else { | 
 |     cm->show_existing_frame = aom_rb_read_bit(rb); | 
 |     pbi->reset_decoder_state = 0; | 
 |  | 
 |     if (cm->show_existing_frame) { | 
 |       if (pbi->sequence_header_changed) { | 
 |         aom_internal_error( | 
 |             &cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |             "New sequence header starts with a show_existing_frame."); | 
 |       } | 
 |       // Show an existing frame directly. | 
 |       const int existing_frame_idx = aom_rb_read_literal(rb, 3); | 
 |       RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx]; | 
 |       if (frame_to_show == NULL) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "Buffer does not contain a decoded frame"); | 
 |       } | 
 |       if (seq_params->decoder_model_info_present_flag && | 
 |           cm->timing_info.equal_picture_interval == 0) { | 
 |         av1_read_temporal_point_info(cm, rb); | 
 |       } | 
 |       if (seq_params->frame_id_numbers_present_flag) { | 
 |         int frame_id_length = seq_params->frame_id_length; | 
 |         int display_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
 |         /* Compare display_frame_id with ref_frame_id and check valid for | 
 |          * referencing */ | 
 |         if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || | 
 |             cm->valid_for_referencing[existing_frame_idx] == 0) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Reference buffer frame ID mismatch"); | 
 |       } | 
 |       lock_buffer_pool(pool); | 
 |       assert(frame_to_show->ref_count > 0); | 
 |       // cm->cur_frame should be the buffer referenced by the return value | 
 |       // of the get_free_fb() call in av1_receive_compressed_data(), and | 
 |       // generate_next_ref_frame_map() has not been called, so ref_count | 
 |       // should still be 1. | 
 |       assert(cm->cur_frame->ref_count == 1); | 
 |       // assign_frame_buffer_p() decrements ref_count directly rather than | 
 |       // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has | 
 |       // already been allocated, it will not be released by | 
 |       // assign_frame_buffer_p()! | 
 |       assert(!cm->cur_frame->raw_frame_buffer.data); | 
 |       assign_frame_buffer_p(&cm->cur_frame, frame_to_show); | 
 |       pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME; | 
 |       unlock_buffer_pool(pool); | 
 |  | 
 |       cm->lf.filter_level[0] = 0; | 
 |       cm->lf.filter_level[1] = 0; | 
 |       cm->show_frame = 1; | 
 |  | 
 |       if (!frame_to_show->showable_frame) { | 
 |         aom_merge_corrupted_flag(&xd->corrupted, 1); | 
 |       } | 
 |       if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0; | 
 |  | 
 |       cm->film_grain_params = frame_to_show->film_grain_params; | 
 |  | 
 |       if (pbi->reset_decoder_state) { | 
 |         show_existing_frame_reset(pbi, existing_frame_idx); | 
 |       } else { | 
 |         current_frame->refresh_frame_flags = 0; | 
 |       } | 
 |       av1_decode_sef(pbi); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); | 
 |     if (pbi->sequence_header_changed) { | 
 |       if (current_frame->frame_type == KEY_FRAME) { | 
 |         // This is the start of a new coded video sequence. | 
 |         pbi->sequence_header_changed = 0; | 
 |         pbi->decoding_first_frame = 1; | 
 |         reset_frame_buffers(cm); | 
 |       } else { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Sequence header has changed without a keyframe."); | 
 |       } | 
 |     } | 
 |  | 
 |     cm->show_frame = aom_rb_read_bit(rb); | 
 |     if (seq_params->still_picture && | 
 |         (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Still pictures must be coded as shown keyframes"); | 
 |     } | 
 |     cm->showable_frame = current_frame->frame_type != KEY_FRAME; | 
 |     if (cm->show_frame) { | 
 |       if (seq_params->decoder_model_info_present_flag && | 
 |           cm->timing_info.equal_picture_interval == 0) | 
 |         av1_read_temporal_point_info(cm, rb); | 
 |     } else { | 
 |       // See if this frame can be used as show_existing_frame in future | 
 |       cm->showable_frame = aom_rb_read_bit(rb); | 
 |     } | 
 |     cm->cur_frame->showable_frame = cm->showable_frame; | 
 |     cm->error_resilient_mode = | 
 |         frame_is_sframe(cm) || | 
 |                 (current_frame->frame_type == KEY_FRAME && cm->show_frame) | 
 |             ? 1 | 
 |             : aom_rb_read_bit(rb); | 
 |   } | 
 |  | 
 |   cm->disable_cdf_update = aom_rb_read_bit(rb); | 
 |   if (seq_params->force_screen_content_tools == 2) { | 
 |     cm->allow_screen_content_tools = aom_rb_read_bit(rb); | 
 |   } else { | 
 |     cm->allow_screen_content_tools = seq_params->force_screen_content_tools; | 
 |   } | 
 |  | 
 |   if (cm->allow_screen_content_tools) { | 
 |     if (seq_params->force_integer_mv == 2) { | 
 |       cm->cur_frame_force_integer_mv = aom_rb_read_bit(rb); | 
 |     } else { | 
 |       cm->cur_frame_force_integer_mv = seq_params->force_integer_mv; | 
 |     } | 
 |   } else { | 
 |     cm->cur_frame_force_integer_mv = 0; | 
 |   } | 
 |  | 
 |   int frame_size_override_flag = 0; | 
 |   cm->allow_intrabc = 0; | 
 |   cm->primary_ref_frame = PRIMARY_REF_NONE; | 
 |  | 
 |   if (!seq_params->reduced_still_picture_hdr) { | 
 |     if (seq_params->frame_id_numbers_present_flag) { | 
 |       int frame_id_length = seq_params->frame_id_length; | 
 |       int diff_len = seq_params->delta_frame_id_length; | 
 |       int prev_frame_id = 0; | 
 |       int have_prev_frame_id = | 
 |           !pbi->decoding_first_frame && | 
 |           !(current_frame->frame_type == KEY_FRAME && cm->show_frame); | 
 |       if (have_prev_frame_id) { | 
 |         prev_frame_id = cm->current_frame_id; | 
 |       } | 
 |       cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); | 
 |  | 
 |       if (have_prev_frame_id) { | 
 |         int diff_frame_id; | 
 |         if (cm->current_frame_id > prev_frame_id) { | 
 |           diff_frame_id = cm->current_frame_id - prev_frame_id; | 
 |         } else { | 
 |           diff_frame_id = | 
 |               (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; | 
 |         } | 
 |         /* Check current_frame_id for conformance */ | 
 |         if (prev_frame_id == cm->current_frame_id || | 
 |             diff_frame_id >= (1 << (frame_id_length - 1))) { | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Invalid value of current_frame_id"); | 
 |         } | 
 |       } | 
 |       /* Check if some frames need to be marked as not valid for referencing */ | 
 |       for (int i = 0; i < REF_FRAMES; i++) { | 
 |         if (current_frame->frame_type == KEY_FRAME && cm->show_frame) { | 
 |           cm->valid_for_referencing[i] = 0; | 
 |         } else if (cm->current_frame_id - (1 << diff_len) > 0) { | 
 |           if (cm->ref_frame_id[i] > cm->current_frame_id || | 
 |               cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) | 
 |             cm->valid_for_referencing[i] = 0; | 
 |         } else { | 
 |           if (cm->ref_frame_id[i] > cm->current_frame_id && | 
 |               cm->ref_frame_id[i] < (1 << frame_id_length) + | 
 |                                         cm->current_frame_id - (1 << diff_len)) | 
 |             cm->valid_for_referencing[i] = 0; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); | 
 |  | 
 |     current_frame->order_hint = aom_rb_read_literal( | 
 |         rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
 |     current_frame->frame_number = current_frame->order_hint; | 
 |  | 
 |     if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { | 
 |       cm->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); | 
 |     } | 
 |   } | 
 |  | 
 |   if (seq_params->decoder_model_info_present_flag) { | 
 |     cm->buffer_removal_time_present = aom_rb_read_bit(rb); | 
 |     if (cm->buffer_removal_time_present) { | 
 |       for (int op_num = 0; | 
 |            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { | 
 |         if (cm->op_params[op_num].decoder_model_param_present_flag) { | 
 |           if ((((seq_params->operating_point_idc[op_num] >> | 
 |                  cm->temporal_layer_id) & | 
 |                 0x1) && | 
 |                ((seq_params->operating_point_idc[op_num] >> | 
 |                  (cm->spatial_layer_id + 8)) & | 
 |                 0x1)) || | 
 |               seq_params->operating_point_idc[op_num] == 0) { | 
 |             cm->op_frame_timing[op_num].buffer_removal_time = | 
 |                 aom_rb_read_unsigned_literal( | 
 |                     rb, cm->buffer_model.buffer_removal_time_length); | 
 |           } else { | 
 |             cm->op_frame_timing[op_num].buffer_removal_time = 0; | 
 |           } | 
 |         } else { | 
 |           cm->op_frame_timing[op_num].buffer_removal_time = 0; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   if (current_frame->frame_type == KEY_FRAME) { | 
 |     if (!cm->show_frame) {  // unshown keyframe (forward keyframe) | 
 |       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
 |     } else {  // shown keyframe | 
 |       current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1; | 
 |     } | 
 |  | 
 |     for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |       cm->remapped_ref_idx[i] = INVALID_IDX; | 
 |     } | 
 |     if (pbi->need_resync) { | 
 |       reset_ref_frame_map(cm); | 
 |       pbi->need_resync = 0; | 
 |     } | 
 |   } else { | 
 |     if (current_frame->frame_type == INTRA_ONLY_FRAME) { | 
 |       current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); | 
 |       if (current_frame->refresh_frame_flags == 0xFF) { | 
 |         aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                            "Intra only frames cannot have refresh flags 0xFF"); | 
 |       } | 
 |       if (pbi->need_resync) { | 
 |         reset_ref_frame_map(cm); | 
 |         pbi->need_resync = 0; | 
 |       } | 
 |     } else if (pbi->need_resync != 1) { /* Skip if need resync */ | 
 |       current_frame->refresh_frame_flags = | 
 |           frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) { | 
 |     // Read all ref frame order hints if error_resilient_mode == 1 | 
 |     if (cm->error_resilient_mode && | 
 |         seq_params->order_hint_info.enable_order_hint) { | 
 |       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { | 
 |         // Read order hint from bit stream | 
 |         unsigned int order_hint = aom_rb_read_literal( | 
 |             rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); | 
 |         // Get buffer | 
 |         RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; | 
 |         if (buf == NULL || order_hint != buf->order_hint) { | 
 |           if (buf != NULL) { | 
 |             lock_buffer_pool(pool); | 
 |             decrease_ref_count(buf, pool); | 
 |             unlock_buffer_pool(pool); | 
 |           } | 
 |           // If no corresponding buffer exists, allocate a new buffer with all | 
 |           // pixels set to neutral grey. | 
 |           int buf_idx = get_free_fb(cm); | 
 |           if (buf_idx == INVALID_IDX) { | 
 |             aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |                                "Unable to find free frame buffer"); | 
 |           } | 
 |           buf = &frame_bufs[buf_idx]; | 
 |           lock_buffer_pool(pool); | 
 |  | 
 |           if (av1_reallocate_frame_buffer(pool->cb_priv, &buf->buf, | 
 |                                           seq_params->max_frame_width, | 
 |                                           seq_params->max_frame_height, | 
 |                                           seq_params->max_frame_width, | 
 |                                           seq_params->use_highbitdepth)) | 
 |           { | 
 |               unlock_buffer_pool(pool); | 
 |               aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); | 
 |           } | 
 |           unlock_buffer_pool(pool); | 
 |           set_planes_to_neutral_grey(seq_params, &buf->buf, 0); | 
 |           cm->ref_frame_map[ref_idx] = buf; | 
 |           buf->order_hint = order_hint; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (current_frame->frame_type == KEY_FRAME) { | 
 |     setup_frame_size(cm, frame_size_override_flag, rb); | 
 |  | 
 |     if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) | 
 |       cm->allow_intrabc = aom_rb_read_bit(rb); | 
 |     cm->allow_ref_frame_mvs = 0; | 
 |     cm->prev_frame = NULL; | 
 |   } else { | 
 |     cm->allow_ref_frame_mvs = 0; | 
 |  | 
 |     if (current_frame->frame_type == INTRA_ONLY_FRAME) { | 
 |       cm->cur_frame->film_grain_params_present = | 
 |           seq_params->film_grain_params_present; | 
 |       setup_frame_size(cm, frame_size_override_flag, rb); | 
 |       if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) | 
 |         cm->allow_intrabc = aom_rb_read_bit(rb); | 
 |  | 
 |     } else if (pbi->need_resync != 1) { /* Skip if need resync */ | 
 |       int frame_refs_short_signaling = 0; | 
 |       // Frame refs short signaling is off when error resilient mode is on. | 
 |       if (seq_params->order_hint_info.enable_order_hint) | 
 |         frame_refs_short_signaling = aom_rb_read_bit(rb); | 
 |  | 
 |       if (frame_refs_short_signaling) { | 
 |         // == LAST_FRAME == | 
 |         const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
 |         const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref]; | 
 |  | 
 |         // == GOLDEN_FRAME == | 
 |         const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
 |         const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref]; | 
 |  | 
 |         // Most of the time, streams start with a keyframe. In that case, | 
 |         // ref_frame_map will have been filled in at that point and will not | 
 |         // contain any NULLs. However, streams are explicitly allowed to start | 
 |         // with an intra-only frame, so long as they don't then signal a | 
 |         // reference to a slot that hasn't been set yet. That's what we are | 
 |         // checking here. | 
 |         if (lst_buf == NULL) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Inter frame requests nonexistent reference"); | 
 |         if (gld_buf == NULL) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                              "Inter frame requests nonexistent reference"); | 
 |  | 
 |         av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref); | 
 |       } | 
 |  | 
 |       for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { | 
 |         int ref = 0; | 
 |         if (!frame_refs_short_signaling) { | 
 |           ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); | 
 |  | 
 |           // Most of the time, streams start with a keyframe. In that case, | 
 |           // ref_frame_map will have been filled in at that point and will not | 
 |           // contain any -1's. However, streams are explicitly allowed to start | 
 |           // with an intra-only frame, so long as they don't then signal a | 
 |           // reference to a slot that hasn't been set yet. That's what we are | 
 |           // checking here. | 
 |           if (cm->ref_frame_map[ref] == NULL) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Inter frame requests nonexistent reference"); | 
 |           cm->remapped_ref_idx[i] = ref; | 
 |         } else { | 
 |           ref = cm->remapped_ref_idx[i]; | 
 |         } | 
 |  | 
 |         cm->ref_frame_sign_bias[LAST_FRAME + i] = 0; | 
 |  | 
 |         if (seq_params->frame_id_numbers_present_flag) { | 
 |           int frame_id_length = seq_params->frame_id_length; | 
 |           int diff_len = seq_params->delta_frame_id_length; | 
 |           int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); | 
 |           int ref_frame_id = | 
 |               ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + | 
 |                 (1 << frame_id_length)) % | 
 |                (1 << frame_id_length)); | 
 |           // Compare values derived from delta_frame_id_minus_1 and | 
 |           // refresh_frame_flags. Also, check valid for referencing | 
 |           if (ref_frame_id != cm->ref_frame_id[ref] || | 
 |               cm->valid_for_referencing[ref] == 0) | 
 |             aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                                "Reference buffer frame ID mismatch"); | 
 |         } | 
 |       } | 
 |  | 
 |       if (!cm->error_resilient_mode && frame_size_override_flag) { | 
 |         setup_frame_size_with_refs(cm, rb); | 
 |       } else { | 
 |         setup_frame_size(cm, frame_size_override_flag, rb); | 
 |       } | 
 |  | 
 |       if (cm->cur_frame_force_integer_mv) { | 
 |         cm->allow_high_precision_mv = 0; | 
 |       } else { | 
 |         cm->allow_high_precision_mv = aom_rb_read_bit(rb); | 
 |       } | 
 |       cm->interp_filter = read_frame_interp_filter(rb); | 
 |       cm->switchable_motion_mode = aom_rb_read_bit(rb); | 
 |     } | 
 |  | 
 |     cm->prev_frame = get_primary_ref_frame_buf(cm); | 
 |     if (cm->primary_ref_frame != PRIMARY_REF_NONE && | 
 |         get_primary_ref_frame_buf(cm) == NULL) { | 
 |       aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                          "Reference frame containing this frame's initial " | 
 |                          "frame context is unavailable."); | 
 |     } | 
 |  | 
 |     if (!(current_frame->frame_type == INTRA_ONLY_FRAME) && | 
 |         pbi->need_resync != 1) { | 
 |       if (frame_might_allow_ref_frame_mvs(cm)) | 
 |         cm->allow_ref_frame_mvs = aom_rb_read_bit(rb); | 
 |       else | 
 |         cm->allow_ref_frame_mvs = 0; | 
 |  | 
 |       for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |         const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); | 
 |         struct scale_factors *const ref_scale_factors = | 
 |             get_ref_scale_factors(cm, i); | 
 |         av1_setup_scale_factors_for_frame( | 
 |             ref_scale_factors, ref_buf->buf.y_crop_width, | 
 |             ref_buf->buf.y_crop_height, cm->width, cm->height); | 
 |         if ((!av1_is_valid_scale(ref_scale_factors))) | 
 |           aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, | 
 |                              "Reference frame has invalid dimensions"); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   av1_setup_frame_buf_refs(cm); | 
 |  | 
 |   av1_setup_frame_sign_bias(cm); | 
 |  | 
 |   cm->cur_frame->frame_type = current_frame->frame_type; | 
 |  | 
 |   if (seq_params->frame_id_numbers_present_flag) { | 
 |     update_ref_frame_id(cm, cm->current_frame_id); | 
 |   } | 
 |  | 
 |   const int might_bwd_adapt = | 
 |       !(seq_params->reduced_still_picture_hdr) && !(cm->disable_cdf_update); | 
 |   if (might_bwd_adapt) { | 
 |     cm->refresh_frame_context = aom_rb_read_bit(rb) | 
 |                                     ? REFRESH_FRAME_CONTEXT_DISABLED | 
 |                                     : REFRESH_FRAME_CONTEXT_BACKWARD; | 
 |   } else { | 
 |     cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; | 
 |   } | 
 |  | 
 |   cm->cur_frame->buf.bit_depth = seq_params->bit_depth; | 
 |   cm->cur_frame->buf.color_primaries = seq_params->color_primaries; | 
 |   cm->cur_frame->buf.transfer_characteristics = | 
 |       seq_params->transfer_characteristics; | 
 |   cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; | 
 |   cm->cur_frame->buf.monochrome = seq_params->monochrome; | 
 |   cm->cur_frame->buf.chroma_sample_position = | 
 |       seq_params->chroma_sample_position; | 
 |   cm->cur_frame->buf.color_range = seq_params->color_range; | 
 |   cm->cur_frame->buf.render_width = cm->render_width; | 
 |   cm->cur_frame->buf.render_height = cm->render_height; | 
 |  | 
 |   if (pbi->need_resync) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Keyframe / intra-only frame required to reset decoder" | 
 |                        " state"); | 
 |   } | 
 |  | 
 |   generate_next_ref_frame_map(pbi); | 
 |  | 
 |   if (cm->allow_intrabc) { | 
 |     // Set parameters corresponding to no filtering. | 
 |     struct loopfilter *lf = &cm->lf; | 
 |     lf->filter_level[0] = 0; | 
 |     lf->filter_level[1] = 0; | 
 |     cm->cdef_info.cdef_bits = 0; | 
 |     cm->cdef_info.cdef_strengths[0] = 0; | 
 |     cm->cdef_info.nb_cdef_strengths = 1; | 
 |     cm->cdef_info.cdef_uv_strengths[0] = 0; | 
 |     cm->rst_info[0].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[1].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[2].frame_restoration_type = RESTORE_NONE; | 
 |   } | 
 |  | 
 |   read_tile_info(pbi, rb); | 
 |   setup_quantization(cm, rb); | 
 |   xd->bd = (int)seq_params->bit_depth; | 
 |  | 
 |   //if (cm->num_allocated_above_context_planes < av1_num_planes(cm) || | 
 |   //    cm->num_allocated_above_context_mi_col < cm->mi_cols || | 
 |   //    cm->num_allocated_above_contexts < cm->tile_rows) { | 
 |   //  av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts); | 
 |   //  if (av1_alloc_above_context_buffers(cm, cm->tile_rows)) | 
 |   //    aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, | 
 |   //                       "Failed to allocate context buffers"); | 
 |   //} | 
 |   av1_setup_context_buffers(pbi); | 
 |  | 
 |   if (cm->primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     av1_setup_past_independence(cm); | 
 |   } | 
 |  | 
 |   setup_segmentation(cm, rb); | 
 |  | 
 |   cm->delta_q_info.delta_q_res = 1; | 
 |   cm->delta_q_info.delta_lf_res = 1; | 
 |   cm->delta_q_info.delta_lf_present_flag = 0; | 
 |   cm->delta_q_info.delta_lf_multi = 0; | 
 |   cm->delta_q_info.delta_q_present_flag = | 
 |       cm->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; | 
 |   if (cm->delta_q_info.delta_q_present_flag) { | 
 |     xd->current_qindex = cm->base_qindex; | 
 |     cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2); | 
 |     if (!cm->allow_intrabc) | 
 |       cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb); | 
 |     if (cm->delta_q_info.delta_lf_present_flag) { | 
 |       cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2); | 
 |       cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb); | 
 |       av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); | 
 |     } | 
 |   } | 
 |  | 
 |   xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; | 
 |  | 
 |   for (int i = 0; i < MAX_SEGMENTS; ++i) { | 
 |     const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex); | 
 |     xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && | 
 |                       cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && | 
 |                       cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; | 
 |     xd->qindex[i] = qindex; | 
 |   } | 
 |   cm->coded_lossless = is_coded_lossless(cm, xd); | 
 |   cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); | 
 |   setup_segmentation_dequant(cm, xd); | 
 |   if (cm->coded_lossless) { | 
 |     cm->lf.filter_level[0] = 0; | 
 |     cm->lf.filter_level[1] = 0; | 
 |   } | 
 |   if (cm->coded_lossless || !seq_params->enable_cdef) { | 
 |     cm->cdef_info.cdef_bits = 0; | 
 |     cm->cdef_info.cdef_strengths[0] = 0; | 
 |     cm->cdef_info.cdef_uv_strengths[0] = 0; | 
 |   } | 
 |   if (cm->all_lossless || !seq_params->enable_restoration) { | 
 |     cm->rst_info[0].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[1].frame_restoration_type = RESTORE_NONE; | 
 |     cm->rst_info[2].frame_restoration_type = RESTORE_NONE; | 
 |   } | 
 |   setup_loopfilter(cm, rb); | 
 |  | 
 |   if (!cm->coded_lossless && seq_params->enable_cdef) { | 
 |     setup_cdef(cm, rb); | 
 |   } | 
 |   if (!cm->all_lossless && seq_params->enable_restoration) { | 
 |     decode_restoration_mode(cm, rb); | 
 |   } | 
 |  | 
 |   cm->tx_mode = read_tx_mode(cm, rb); | 
 |   current_frame->reference_mode = read_frame_reference_mode(cm, rb); | 
 |   if (current_frame->reference_mode != SINGLE_REFERENCE) | 
 |     setup_compound_reference_mode(cm); | 
 |  | 
 |   av1_setup_skip_mode_allowed(cm); | 
 |   current_frame->skip_mode_info.skip_mode_flag = | 
 |       current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0; | 
 |  | 
 |   if (frame_might_allow_warped_motion(cm)) | 
 |     cm->allow_warped_motion = aom_rb_read_bit(rb); | 
 |   else | 
 |     cm->allow_warped_motion = 0; | 
 |  | 
 |   cm->reduced_tx_set_used = aom_rb_read_bit(rb); | 
 |  | 
 |   if (cm->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Frame wrongly requests reference frame MVs"); | 
 |   } | 
 |  | 
 |   if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); | 
 |  | 
 |   cm->cur_frame->film_grain_params_present = | 
 |       seq_params->film_grain_params_present; | 
 |   read_film_grain(cm, rb); | 
 |  | 
 | #if EXT_TILE_DEBUG | 
 |   if (pbi->ext_tile_debug && cm->large_scale_tile) { | 
 |     read_ext_tile_info(pbi, rb); | 
 |     av1_set_single_tile_decoding_mode(cm); | 
 |   } | 
 | #endif  // EXT_TILE_DEBUG | 
 |   return 0; | 
 | } | 
 |  | 
 | struct aom_read_bit_buffer *av1_init_read_bit_buffer( | 
 |     AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, | 
 |     const uint8_t *data_end) { | 
 |   rb->bit_offset = 0; | 
 |   rb->error_handler = error_handler; | 
 |   rb->error_handler_data = &pbi->common; | 
 |   rb->bit_buffer = data; | 
 |   rb->bit_buffer_end = data_end; | 
 |   return rb; | 
 | } | 
 |  | 
 | void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, | 
 |                          int num_bits_height, int *width, int *height) { | 
 |   *width = aom_rb_read_literal(rb, num_bits_width) + 1; | 
 |   *height = aom_rb_read_literal(rb, num_bits_height) + 1; | 
 | } | 
 |  | 
 | BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { | 
 |   int profile = aom_rb_read_literal(rb, PROFILE_BITS); | 
 |   return (BITSTREAM_PROFILE)profile; | 
 | } | 
 |  | 
 | uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, | 
 |                                             struct aom_read_bit_buffer *rb, | 
 |                                             const uint8_t *data, | 
 |                                             const uint8_t **p_data_end, | 
 |                                             int trailing_bits_present) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   const int num_planes = av1_num_planes(cm); | 
 |   MACROBLOCKD *const xd = &pbi->mb; | 
 |  | 
 | #if CONFIG_BITSTREAM_DEBUG | 
 |   bitstream_queue_set_frame_read(cm->current_frame.frame_number * 2 + | 
 |                                  cm->show_frame); | 
 | #endif | 
 | #if CONFIG_MISMATCH_DEBUG | 
 |   mismatch_move_frame_idx_r(); | 
 | #endif | 
 |  | 
 |   for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { | 
 |     cm->global_motion[i] = default_warp_params; | 
 |     cm->cur_frame->global_motion[i] = default_warp_params; | 
 |   } | 
 |   xd->global_motion = cm->global_motion; | 
 |  | 
 |   read_uncompressed_header(pbi, rb); | 
 |  | 
 |   if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); | 
 |  | 
 |   // If cm->single_tile_decoding = 0, the independent decoding of a single tile | 
 |   // or a section of a frame is not allowed. | 
 |   if (!cm->single_tile_decoding && | 
 |       (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { | 
 |     pbi->dec_tile_row = -1; | 
 |     pbi->dec_tile_col = -1; | 
 |   } | 
 |  | 
 |   const uint32_t uncomp_hdr_size = | 
 |       (uint32_t)aom_rb_bytes_read(rb);  // Size of the uncompressed header | 
 |   YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf; | 
 |   xd->cur_buf = new_fb; | 
 |   if (av1_allow_intrabc(cm)) { | 
 |     av1_setup_scale_factors_for_frame( | 
 |         &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, | 
 |         xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); | 
 |   } | 
 |  | 
 |   if (cm->show_existing_frame) { | 
 |     // showing a frame directly | 
 |     *p_data_end = data + uncomp_hdr_size; | 
 |     if (pbi->reset_decoder_state) { | 
 |       // Use the default frame context values. | 
 |       *cm->fc = *cm->default_frame_context; | 
 |       if (!cm->fc->initialized) | 
 |         aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                            "Uninitialized entropy context."); | 
 |     } | 
 |     return uncomp_hdr_size; | 
 |   } | 
 |   decode_mt_init(pbi); | 
 |   av1_setup_motion_field(pbi); | 
 |  | 
 |   av1_setup_block_planes(xd, cm->seq_params.subsampling_x, | 
 |                          cm->seq_params.subsampling_y, num_planes); | 
 |   if (cm->primary_ref_frame == PRIMARY_REF_NONE) { | 
 |     // use the default frame context values | 
 |     *cm->fc = *cm->default_frame_context; | 
 |   } else { | 
 |     *cm->fc = get_primary_ref_frame_buf(cm)->frame_context; | 
 |   } | 
 |   if (!cm->fc->initialized) | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Uninitialized entropy context."); | 
 |  | 
 |   xd->corrupted = 0; | 
 |   return uncomp_hdr_size; | 
 | } | 
 |  | 
 | // Once-per-frame initialization | 
 | static void setup_frame_info(AV1Decoder *pbi) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |  | 
 |   if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || | 
 |       cm->rst_info[1].frame_restoration_type != RESTORE_NONE || | 
 |       cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { | 
 |     av1_alloc_restoration_buffers(cm); | 
 |   } | 
 | } | 
 |  | 
 | void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, | 
 |                                     const uint8_t *data_end, | 
 |                                     const uint8_t **p_data_end, int start_tile, | 
 |                                     int end_tile, int initialize_flag) { | 
 |   AV1_COMMON *const cm = &pbi->common; | 
 |   MACROBLOCKD *const xd = &pbi->mb; | 
 |   if (initialize_flag) { | 
 |     setup_frame_info(pbi); | 
 |     av1_setup_frame(pbi, cm); | 
 |   } | 
 |   *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); | 
 |  | 
 |   if (end_tile != cm->tile_rows * cm->tile_cols - 1) { | 
 |     return; | 
 |   } | 
 |    | 
 |   if (!xd->corrupted) { | 
 |     if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { | 
 |       assert(cm->context_update_tile_id < pbi->allocated_tiles); | 
 |       *cm->fc = pbi->ctx_the_choosen_one; | 
 |       av1_reset_cdf_symbol_counters(cm->fc); | 
 |     } | 
 |   } else { | 
 |     aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, | 
 |                        "Decode failed. Frame data is corrupted."); | 
 |   } | 
 |  | 
 |   av1_decode_frame_gpu(pbi); | 
 |  | 
 |   // Non frame parallel update frame context here. | 
 |   if (!cm->large_scale_tile) { | 
 |     cm->cur_frame->frame_context = *cm->fc; | 
 |   } | 
 | } |