| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "onyxc_int.h" |
| #include "onyx_int.h" |
| #include "systemdependent.h" |
| #include "quantize.h" |
| #include "alloccommon.h" |
| #include "mcomp.h" |
| #include "firstpass.h" |
| #include "psnr.h" |
| #include "vpx_scale/vpxscale.h" |
| #include "extend.h" |
| #include "ratectrl.h" |
| #include "quant_common.h" |
| #include "segmentation.h" |
| #include "g_common.h" |
| #include "vpx_scale/yv12extend.h" |
| #include "postproc.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "swapyv12buffer.h" |
| #include "threading.h" |
| #include "vpx_ports/vpx_timer.h" |
| #include "vpxerrors.h" |
| #include "temporal_filter.h" |
| #if ARCH_ARM |
| #include "vpx_ports/arm.h" |
| #endif |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <limits.h> |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| #define IF_RTCD(x) (x) |
| #define RTCD(x) &cpi->common.rtcd.x |
| #else |
| #define IF_RTCD(x) NULL |
| #define RTCD(x) NULL |
| #endif |
| |
| extern void vp8cx_init_mv_bits_sadcost(); |
| extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); |
| extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val); |
| extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); |
| |
| extern void vp8_init_loop_filter(VP8_COMMON *cm); |
| extern void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val); |
| extern void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val, int sharpness_lvl); |
| extern void vp8_dmachine_specific_config(VP8_COMP *cpi); |
| extern void vp8_cmachine_specific_config(VP8_COMP *cpi); |
| extern void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi); |
| extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag); |
| extern void print_parms(VP8_CONFIG *ocf, char *filenam); |
| extern unsigned int vp8_get_processor_freq(); |
| extern void print_tree_update_probs(); |
| extern void vp8cx_create_encoder_threads(VP8_COMP *cpi); |
| extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi); |
| #if HAVE_ARMV7 |
| extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); |
| extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); |
| #endif |
| |
| int vp8_estimate_entropy_savings(VP8_COMP *cpi); |
| int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd); |
| int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd); |
| |
| extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi); |
| |
| static void set_default_lf_deltas(VP8_COMP *cpi); |
| |
| extern const int vp8_gf_interval_table[101]; |
| |
| #if CONFIG_PSNR |
| #include "math.h" |
| |
| extern double vp8_calc_ssim |
| ( |
| YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, |
| int lumamask, |
| double *weight |
| ); |
| |
| extern double vp8_calc_ssimg |
| ( |
| YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, |
| double *ssim_y, |
| double *ssim_u, |
| double *ssim_v |
| ); |
| |
| |
| #endif |
| |
| |
| #ifdef OUTPUT_YUV_SRC |
| FILE *yuv_file; |
| #endif |
| |
| #if 0 |
| FILE *framepsnr; |
| FILE *kf_list; |
| FILE *keyfile; |
| #endif |
| |
| #if 0 |
| extern int skip_true_count; |
| extern int skip_false_count; |
| #endif |
| |
| |
| #ifdef ENTROPY_STATS |
| extern int intra_mode_stats[10][10][10]; |
| #endif |
| |
| #ifdef SPEEDSTATS |
| unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned int tot_pm = 0; |
| unsigned int cnt_pm = 0; |
| unsigned int tot_ef = 0; |
| unsigned int cnt_ef = 0; |
| #endif |
| |
| #ifdef MODE_STATS |
| extern unsigned __int64 Sectionbits[50]; |
| extern int y_modes[5] ; |
| extern int uv_modes[4] ; |
| extern int b_modes[10] ; |
| |
| extern int inter_y_modes[10] ; |
| extern int inter_uv_modes[4] ; |
| extern unsigned int inter_b_modes[15]; |
| #endif |
| |
| extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch); |
| extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch); |
| |
| extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
| |
| extern const int qrounding_factors[129]; |
| extern const int qzbin_factors[129]; |
| extern void vp8cx_init_quantizer(VP8_COMP *cpi); |
| extern const int vp8cx_base_skip_false_prob[128]; |
| |
| // Tables relating active max Q to active min Q |
| static const int kf_low_motion_minq[QINDEX_RANGE] = |
| { |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2, |
| 3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6, |
| 6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11, |
| 11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16, |
| 16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23 |
| }; |
| static const int kf_high_motion_minq[QINDEX_RANGE] = |
| { |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
| 1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3, |
| 3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6, |
| 6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11, |
| 11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16, |
| 16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21, |
| 21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30 |
| }; |
| static const int gf_low_motion_minq[QINDEX_RANGE] = |
| { |
| 0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2, |
| 3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6, |
| 7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10, |
| 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18, |
| 19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26, |
| 27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34, |
| 35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42, |
| 43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58 |
| }; |
| static const int gf_mid_motion_minq[QINDEX_RANGE] = |
| { |
| 0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4, |
| 4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9, |
| 9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14, |
| 14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21, |
| 22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29, |
| 30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37, |
| 38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48, |
| 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64 |
| }; |
| static const int gf_high_motion_minq[QINDEX_RANGE] = |
| { |
| 0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4, |
| 4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9, |
| 9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16, |
| 17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24, |
| 25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32, |
| 33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40, |
| 41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54, |
| 55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80 |
| }; |
| static const int inter_minq[QINDEX_RANGE] = |
| { |
| 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, |
| 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, |
| 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, |
| 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, |
| 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, |
| 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, |
| 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, |
| 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 |
| }; |
| |
| void vp8_initialize() |
| { |
| static int init_done = 0; |
| |
| if (!init_done) |
| { |
| vp8_scale_machine_specific_config(); |
| vp8_initialize_common(); |
| //vp8_dmachine_specific_config(); |
| vp8_tokenize_initialize(); |
| |
| vp8cx_init_mv_bits_sadcost(); |
| init_done = 1; |
| } |
| } |
| #ifdef PACKET_TESTING |
| extern FILE *vpxlogc; |
| #endif |
| |
| static void setup_features(VP8_COMP *cpi) |
| { |
| // Set up default state for MB feature flags |
| cpi->mb.e_mbd.segmentation_enabled = 0; |
| cpi->mb.e_mbd.update_mb_segmentation_map = 0; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 0; |
| vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs)); |
| vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data)); |
| |
| cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; |
| vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| |
| set_default_lf_deltas(cpi); |
| |
| } |
| |
| |
| void vp8_dealloc_compressor_data(VP8_COMP *cpi) |
| { |
| vpx_free(cpi->tplist); |
| cpi->tplist = NULL; |
| |
| // Delete last frame MV storage buffers |
| vpx_free(cpi->lfmv); |
| |
| cpi->lfmv = 0; |
| |
| vpx_free(cpi->lf_ref_frame_sign_bias); |
| |
| cpi->lf_ref_frame_sign_bias = 0; |
| |
| vpx_free(cpi->lf_ref_frame); |
| |
| cpi->lf_ref_frame = 0; |
| |
| // Delete sementation map |
| vpx_free(cpi->segmentation_map); |
| |
| cpi->segmentation_map = 0; |
| |
| vpx_free(cpi->active_map); |
| |
| cpi->active_map = 0; |
| |
| // Delete first pass motion map |
| vpx_free(cpi->fp_motion_map); |
| |
| cpi->fp_motion_map = 0; |
| |
| vp8_de_alloc_frame_buffers(&cpi->common); |
| |
| vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf); |
| vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); |
| #if VP8_TEMPORAL_ALT_REF |
| vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer); |
| #endif |
| { |
| int i; |
| |
| for (i = 0; i < MAX_LAG_BUFFERS; i++) |
| vp8_yv12_de_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer); |
| |
| cpi->source_buffer_count = 0; |
| } |
| |
| vpx_free(cpi->tok); |
| cpi->tok = 0; |
| |
| // Structure used to monitor GF usage |
| vpx_free(cpi->gf_active_flags); |
| |
| cpi->gf_active_flags = 0; |
| |
| vpx_free(cpi->mb.pip); |
| |
| cpi->mb.pip = 0; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| vpx_free(cpi->total_stats); |
| |
| cpi->total_stats = 0; |
| |
| vpx_free(cpi->this_frame_stats); |
| |
| cpi->this_frame_stats = 0; |
| #endif |
| } |
| |
| static void enable_segmentation(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Set the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| static void disable_segmentation(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Clear the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 0; |
| } |
| |
| // Valid values for a segment are 0 to 3 |
| // Segmentation map is arrange as [Rows][Columns] |
| static void set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| // Copy in the new segmentation map |
| vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols)); |
| |
| // Signal that the map should be updated. |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| // The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values. |
| // |
| // Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF) |
| // Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF) |
| // |
| // abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given). |
| // |
| // |
| static void set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; |
| vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data)); |
| } |
| |
| |
| static void segmentation_test_function(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| unsigned char *seg_map; |
| signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; |
| |
| // Create a temporary map for segmentation data. |
| CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); |
| |
| // MB loop to set local segmentation map |
| /*for ( i = 0; i < cpi->common.mb_rows; i++ ) |
| { |
| for ( j = 0; j < cpi->common.mb_cols; j++ ) |
| { |
| //seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2); |
| //if ( j < cpi->common.mb_cols/2 ) |
| |
| // Segment 1 around the edge else 0 |
| if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) ) |
| seg_map[(i*cpi->common.mb_cols) + j] = 1; |
| //else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) ) |
| // seg_map[(i*cpi->common.mb_cols) + j] = 2; |
| //else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) ) |
| // seg_map[(i*cpi->common.mb_cols) + j] = 3; |
| else |
| seg_map[(i*cpi->common.mb_cols) + j] = 0; |
| } |
| }*/ |
| |
| // Set the segmentation Map |
| set_segmentation_map(ptr, seg_map); |
| |
| // Activate segmentation. |
| enable_segmentation(ptr); |
| |
| // Set up the quant segment data |
| feature_data[MB_LVL_ALT_Q][0] = 0; |
| feature_data[MB_LVL_ALT_Q][1] = 4; |
| feature_data[MB_LVL_ALT_Q][2] = 0; |
| feature_data[MB_LVL_ALT_Q][3] = 0; |
| // Set up the loop segment data |
| feature_data[MB_LVL_ALT_LF][0] = 0; |
| feature_data[MB_LVL_ALT_LF][1] = 0; |
| feature_data[MB_LVL_ALT_LF][2] = 0; |
| feature_data[MB_LVL_ALT_LF][3] = 0; |
| |
| // Initialise the feature data structure |
| // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 |
| set_segment_data(ptr, &feature_data[0][0], SEGMENT_DELTADATA); |
| |
| // Delete sementation map |
| vpx_free(seg_map); |
| |
| seg_map = 0; |
| |
| } |
| |
| // A simple function to cyclically refresh the background at a lower Q |
| static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) |
| { |
| unsigned char *seg_map; |
| signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; |
| int i; |
| int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; |
| int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols; |
| |
| // Create a temporary map for segmentation data. |
| CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); |
| |
| cpi->cyclic_refresh_q = Q; |
| |
| for (i = Q; i > 0; i--) |
| { |
| if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64)) |
| //if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) ) |
| { |
| break; |
| } |
| } |
| |
| cpi->cyclic_refresh_q = i; |
| |
| // Only update for inter frames |
| if (cpi->common.frame_type != KEY_FRAME) |
| { |
| // Cycle through the macro_block rows |
| // MB loop to set local segmentation map |
| for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++) |
| { |
| // If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1) |
| // The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0 |
| // as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks. |
| if (cpi->cyclic_refresh_map[i] == 0) |
| { |
| seg_map[i] = 1; |
| } |
| else |
| { |
| seg_map[i] = 0; |
| |
| // Skip blocks that have been refreshed recently anyway. |
| if (cpi->cyclic_refresh_map[i] < 0) |
| //cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16; |
| cpi->cyclic_refresh_map[i]++; |
| } |
| |
| |
| if (block_count > 0) |
| block_count--; |
| else |
| break; |
| |
| } |
| |
| // If we have gone through the frame reset to the start |
| cpi->cyclic_refresh_mode_index = i; |
| |
| if (cpi->cyclic_refresh_mode_index >= mbs_in_frame) |
| cpi->cyclic_refresh_mode_index = 0; |
| } |
| |
| // Set the segmentation Map |
| set_segmentation_map((VP8_PTR)cpi, seg_map); |
| |
| // Activate segmentation. |
| enable_segmentation((VP8_PTR)cpi); |
| |
| // Set up the quant segment data |
| feature_data[MB_LVL_ALT_Q][0] = 0; |
| feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q); |
| feature_data[MB_LVL_ALT_Q][2] = 0; |
| feature_data[MB_LVL_ALT_Q][3] = 0; |
| |
| // Set up the loop segment data |
| feature_data[MB_LVL_ALT_LF][0] = 0; |
| feature_data[MB_LVL_ALT_LF][1] = lf_adjustment; |
| feature_data[MB_LVL_ALT_LF][2] = 0; |
| feature_data[MB_LVL_ALT_LF][3] = 0; |
| |
| // Initialise the feature data structure |
| // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 |
| set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); |
| |
| // Delete sementation map |
| vpx_free(seg_map); |
| |
| seg_map = 0; |
| |
| } |
| |
| static void set_default_lf_deltas(VP8_COMP *cpi) |
| { |
| cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; |
| |
| vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); |
| vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); |
| |
| // Test of ref frame deltas |
| cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; |
| cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; |
| cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; |
| cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; |
| |
| cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED |
| cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero |
| cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv |
| cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv |
| } |
| |
| void vp8_set_speed_features(VP8_COMP *cpi) |
| { |
| SPEED_FEATURES *sf = &cpi->sf; |
| int Mode = cpi->compressor_speed; |
| int Speed = cpi->Speed; |
| int i; |
| VP8_COMMON *cm = &cpi->common; |
| int last_improved_quant = sf->improved_quant; |
| |
| // Initialise default mode frequency sampling variables |
| for (i = 0; i < MAX_MODES; i ++) |
| { |
| cpi->mode_check_freq[i] = 0; |
| cpi->mode_test_hit_counts[i] = 0; |
| cpi->mode_chosen_counts[i] = 0; |
| } |
| |
| cpi->mbs_tested_so_far = 0; |
| |
| // best quality defaults |
| sf->RD = 1; |
| sf->search_method = NSTEP; |
| sf->improved_quant = 1; |
| sf->improved_dct = 1; |
| sf->auto_filter = 1; |
| sf->recode_loop = 1; |
| sf->quarter_pixel_search = 1; |
| sf->half_pixel_search = 1; |
| sf->full_freq[0] = 7; |
| sf->full_freq[1] = 7; |
| sf->min_fs_radius = 8; |
| sf->max_fs_radius = 32; |
| sf->iterative_sub_pixel = 1; |
| sf->optimize_coefficients = 1; |
| sf->use_fastquant_for_pick = 0; |
| sf->no_skip_block4x4_search = 1; |
| |
| sf->first_step = 0; |
| sf->max_step_search_steps = MAX_MVSEARCH_STEPS; |
| sf->improved_mv_pred = 1; |
| |
| cpi->do_full[0] = 0; |
| cpi->do_full[1] = 0; |
| |
| // default thresholds to 0 |
| for (i = 0; i < MAX_MODES; i++) |
| sf->thresh_mult[i] = 0; |
| |
| switch (Mode) |
| { |
| #if !(CONFIG_REALTIME_ONLY) |
| case 0: // best quality mode |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_ZEROG ] = 0; |
| sf->thresh_mult[THR_ZEROA ] = 0; |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_NEARESTG ] = 0; |
| sf->thresh_mult[THR_NEARESTA ] = 0; |
| sf->thresh_mult[THR_NEARMV ] = 0; |
| sf->thresh_mult[THR_NEARG ] = 0; |
| sf->thresh_mult[THR_NEARA ] = 0; |
| |
| sf->thresh_mult[THR_DC ] = 0; |
| |
| sf->thresh_mult[THR_V_PRED ] = 1000; |
| sf->thresh_mult[THR_H_PRED ] = 1000; |
| sf->thresh_mult[THR_B_PRED ] = 2000; |
| sf->thresh_mult[THR_TM ] = 1000; |
| |
| sf->thresh_mult[THR_NEWMV ] = 1000; |
| sf->thresh_mult[THR_NEWG ] = 1000; |
| sf->thresh_mult[THR_NEWA ] = 1000; |
| |
| sf->thresh_mult[THR_SPLITMV ] = 2500; |
| sf->thresh_mult[THR_SPLITG ] = 5000; |
| sf->thresh_mult[THR_SPLITA ] = 5000; |
| |
| sf->full_freq[0] = 7; |
| sf->full_freq[1] = 15; |
| |
| sf->first_step = 0; |
| sf->max_step_search_steps = MAX_MVSEARCH_STEPS; |
| break; |
| case 1: |
| case 3: |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_DC ] = 0; |
| sf->thresh_mult[THR_NEARMV ] = 0; |
| sf->thresh_mult[THR_V_PRED ] = 1000; |
| sf->thresh_mult[THR_H_PRED ] = 1000; |
| sf->thresh_mult[THR_B_PRED ] = 2500; |
| sf->thresh_mult[THR_TM ] = 1000; |
| |
| sf->thresh_mult[THR_NEARESTG ] = 1000; |
| sf->thresh_mult[THR_NEARESTA ] = 1000; |
| |
| sf->thresh_mult[THR_ZEROG ] = 1000; |
| sf->thresh_mult[THR_ZEROA ] = 1000; |
| sf->thresh_mult[THR_NEARG ] = 1000; |
| sf->thresh_mult[THR_NEARA ] = 1000; |
| |
| #if 1 |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_ZEROG ] = 0; |
| sf->thresh_mult[THR_ZEROA ] = 0; |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_NEARESTG ] = 0; |
| sf->thresh_mult[THR_NEARESTA ] = 0; |
| sf->thresh_mult[THR_NEARMV ] = 0; |
| sf->thresh_mult[THR_NEARG ] = 0; |
| sf->thresh_mult[THR_NEARA ] = 0; |
| |
| // sf->thresh_mult[THR_DC ] = 0; |
| |
| // sf->thresh_mult[THR_V_PRED ] = 1000; |
| // sf->thresh_mult[THR_H_PRED ] = 1000; |
| // sf->thresh_mult[THR_B_PRED ] = 2000; |
| // sf->thresh_mult[THR_TM ] = 1000; |
| |
| sf->thresh_mult[THR_NEWMV ] = 1000; |
| sf->thresh_mult[THR_NEWG ] = 1000; |
| sf->thresh_mult[THR_NEWA ] = 1000; |
| |
| sf->thresh_mult[THR_SPLITMV ] = 1700; |
| sf->thresh_mult[THR_SPLITG ] = 4500; |
| sf->thresh_mult[THR_SPLITA ] = 4500; |
| #else |
| sf->thresh_mult[THR_NEWMV ] = 1500; |
| sf->thresh_mult[THR_NEWG ] = 1500; |
| sf->thresh_mult[THR_NEWA ] = 1500; |
| |
| sf->thresh_mult[THR_SPLITMV ] = 5000; |
| sf->thresh_mult[THR_SPLITG ] = 10000; |
| sf->thresh_mult[THR_SPLITA ] = 10000; |
| #endif |
| sf->full_freq[0] = 15; |
| sf->full_freq[1] = 31; |
| |
| if (Speed > 0) |
| { |
| /* Disable coefficient optimization above speed 0 */ |
| sf->optimize_coefficients = 0; |
| sf->use_fastquant_for_pick = 1; |
| sf->no_skip_block4x4_search = 0; |
| |
| sf->first_step = 1; |
| |
| cpi->mode_check_freq[THR_SPLITG] = 2; |
| cpi->mode_check_freq[THR_SPLITA] = 2; |
| cpi->mode_check_freq[THR_SPLITMV] = 0; |
| } |
| |
| if (Speed > 1) |
| { |
| cpi->mode_check_freq[THR_SPLITG] = 4; |
| cpi->mode_check_freq[THR_SPLITA] = 4; |
| cpi->mode_check_freq[THR_SPLITMV] = 2; |
| |
| sf->thresh_mult[THR_TM ] = 1500; |
| sf->thresh_mult[THR_V_PRED ] = 1500; |
| sf->thresh_mult[THR_H_PRED ] = 1500; |
| sf->thresh_mult[THR_B_PRED ] = 5000; |
| |
| if (cpi->ref_frame_flags & VP8_LAST_FLAG) |
| { |
| sf->thresh_mult[THR_NEWMV ] = 2000; |
| sf->thresh_mult[THR_SPLITMV ] = 10000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 1500; |
| sf->thresh_mult[THR_ZEROG ] = 1500; |
| sf->thresh_mult[THR_NEARG ] = 1500; |
| sf->thresh_mult[THR_NEWG ] = 2000; |
| sf->thresh_mult[THR_SPLITG ] = 20000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 1500; |
| sf->thresh_mult[THR_ZEROA ] = 1500; |
| sf->thresh_mult[THR_NEARA ] = 1500; |
| sf->thresh_mult[THR_NEWA ] = 2000; |
| sf->thresh_mult[THR_SPLITA ] = 20000; |
| } |
| } |
| |
| if (Speed > 2) |
| { |
| cpi->mode_check_freq[THR_SPLITG] = 15; |
| cpi->mode_check_freq[THR_SPLITA] = 15; |
| cpi->mode_check_freq[THR_SPLITMV] = 7; |
| |
| sf->thresh_mult[THR_TM ] = 2000; |
| sf->thresh_mult[THR_V_PRED ] = 2000; |
| sf->thresh_mult[THR_H_PRED ] = 2000; |
| sf->thresh_mult[THR_B_PRED ] = 7500; |
| |
| if (cpi->ref_frame_flags & VP8_LAST_FLAG) |
| { |
| sf->thresh_mult[THR_NEWMV ] = 2000; |
| sf->thresh_mult[THR_SPLITMV ] = 25000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 2000; |
| sf->thresh_mult[THR_ZEROG ] = 2000; |
| sf->thresh_mult[THR_NEARG ] = 2000; |
| sf->thresh_mult[THR_NEWG ] = 2500; |
| sf->thresh_mult[THR_SPLITG ] = 50000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 2000; |
| sf->thresh_mult[THR_ZEROA ] = 2000; |
| sf->thresh_mult[THR_NEARA ] = 2000; |
| sf->thresh_mult[THR_NEWA ] = 2500; |
| sf->thresh_mult[THR_SPLITA ] = 50000; |
| } |
| |
| sf->improved_quant = 0; |
| sf->improved_dct = 0; |
| |
| // Only do recode loop on key frames, golden frames and |
| // alt ref frames |
| sf->recode_loop = 2; |
| |
| sf->full_freq[0] = 31; |
| sf->full_freq[1] = 63; |
| } |
| |
| if (Speed > 3) |
| { |
| sf->thresh_mult[THR_SPLITA ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITG ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITMV ] = INT_MAX; |
| |
| cpi->mode_check_freq[THR_V_PRED] = 0; |
| cpi->mode_check_freq[THR_H_PRED] = 0; |
| cpi->mode_check_freq[THR_B_PRED] = 0; |
| cpi->mode_check_freq[THR_NEARG] = 0; |
| cpi->mode_check_freq[THR_NEWG] = 0; |
| cpi->mode_check_freq[THR_NEARA] = 0; |
| cpi->mode_check_freq[THR_NEWA] = 0; |
| |
| sf->auto_filter = 1; |
| sf->recode_loop = 0; // recode loop off |
| sf->RD = 0; // Turn rd off |
| |
| sf->full_freq[0] = 63; |
| sf->full_freq[1] = 127; |
| } |
| |
| if (Speed > 4) |
| { |
| sf->auto_filter = 0; // Faster selection of loop filter |
| sf->full_freq[0] = INT_MAX; |
| sf->full_freq[1] = INT_MAX; |
| |
| cpi->mode_check_freq[THR_V_PRED] = 2; |
| cpi->mode_check_freq[THR_H_PRED] = 2; |
| cpi->mode_check_freq[THR_B_PRED] = 2; |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARG] = 2; |
| cpi->mode_check_freq[THR_NEWG] = 4; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARA] = 2; |
| cpi->mode_check_freq[THR_NEWA] = 4; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 2000; |
| sf->thresh_mult[THR_ZEROG ] = 2000; |
| sf->thresh_mult[THR_NEARG ] = 2000; |
| sf->thresh_mult[THR_NEWG ] = 4000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 2000; |
| sf->thresh_mult[THR_ZEROA ] = 2000; |
| sf->thresh_mult[THR_NEARA ] = 2000; |
| sf->thresh_mult[THR_NEWA ] = 4000; |
| } |
| } |
| |
| break; |
| #endif |
| case 2: |
| sf->optimize_coefficients = 0; |
| sf->recode_loop = 0; |
| sf->auto_filter = 1; |
| sf->iterative_sub_pixel = 1; |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_DC ] = 0; |
| sf->thresh_mult[THR_TM ] = 0; |
| sf->thresh_mult[THR_NEARMV ] = 0; |
| sf->thresh_mult[THR_V_PRED ] = 1000; |
| sf->thresh_mult[THR_H_PRED ] = 1000; |
| sf->thresh_mult[THR_B_PRED ] = 2500; |
| sf->thresh_mult[THR_NEARESTG ] = 1000; |
| sf->thresh_mult[THR_ZEROG ] = 1000; |
| sf->thresh_mult[THR_NEARG ] = 1000; |
| sf->thresh_mult[THR_NEARESTA ] = 1000; |
| sf->thresh_mult[THR_ZEROA ] = 1000; |
| sf->thresh_mult[THR_NEARA ] = 1000; |
| sf->thresh_mult[THR_NEWMV ] = 2000; |
| sf->thresh_mult[THR_NEWG ] = 2000; |
| sf->thresh_mult[THR_NEWA ] = 2000; |
| sf->thresh_mult[THR_SPLITMV ] = 5000; |
| sf->thresh_mult[THR_SPLITG ] = 10000; |
| sf->thresh_mult[THR_SPLITA ] = 10000; |
| sf->full_freq[0] = 15; |
| sf->full_freq[1] = 31; |
| sf->search_method = NSTEP; |
| |
| if (Speed > 0) |
| { |
| cpi->mode_check_freq[THR_SPLITG] = 4; |
| cpi->mode_check_freq[THR_SPLITA] = 4; |
| cpi->mode_check_freq[THR_SPLITMV] = 2; |
| |
| sf->thresh_mult[THR_DC ] = 0; |
| sf->thresh_mult[THR_TM ] = 1000; |
| sf->thresh_mult[THR_V_PRED ] = 2000; |
| sf->thresh_mult[THR_H_PRED ] = 2000; |
| sf->thresh_mult[THR_B_PRED ] = 5000; |
| |
| if (cpi->ref_frame_flags & VP8_LAST_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTMV] = 0; |
| sf->thresh_mult[THR_ZEROMV ] = 0; |
| sf->thresh_mult[THR_NEARMV ] = 0; |
| sf->thresh_mult[THR_NEWMV ] = 2000; |
| sf->thresh_mult[THR_SPLITMV ] = 10000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 1000; |
| sf->thresh_mult[THR_ZEROG ] = 1000; |
| sf->thresh_mult[THR_NEARG ] = 1000; |
| sf->thresh_mult[THR_NEWG ] = 2000; |
| sf->thresh_mult[THR_SPLITG ] = 20000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 1000; |
| sf->thresh_mult[THR_ZEROA ] = 1000; |
| sf->thresh_mult[THR_NEARA ] = 1000; |
| sf->thresh_mult[THR_NEWA ] = 2000; |
| sf->thresh_mult[THR_SPLITA ] = 20000; |
| } |
| |
| sf->improved_quant = 0; |
| sf->improved_dct = 0; |
| } |
| |
| if (Speed > 1) |
| { |
| cpi->mode_check_freq[THR_SPLITMV] = 7; |
| cpi->mode_check_freq[THR_SPLITG] = 15; |
| cpi->mode_check_freq[THR_SPLITA] = 15; |
| |
| sf->thresh_mult[THR_TM ] = 2000; |
| sf->thresh_mult[THR_V_PRED ] = 2000; |
| sf->thresh_mult[THR_H_PRED ] = 2000; |
| sf->thresh_mult[THR_B_PRED ] = 5000; |
| |
| if (cpi->ref_frame_flags & VP8_LAST_FLAG) |
| { |
| sf->thresh_mult[THR_NEWMV ] = 2000; |
| sf->thresh_mult[THR_SPLITMV ] = 25000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 2000; |
| sf->thresh_mult[THR_ZEROG ] = 2000; |
| sf->thresh_mult[THR_NEARG ] = 2000; |
| sf->thresh_mult[THR_NEWG ] = 2500; |
| sf->thresh_mult[THR_SPLITG ] = 50000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 2000; |
| sf->thresh_mult[THR_ZEROA ] = 2000; |
| sf->thresh_mult[THR_NEARA ] = 2000; |
| sf->thresh_mult[THR_NEWA ] = 2500; |
| sf->thresh_mult[THR_SPLITA ] = 50000; |
| } |
| |
| sf->full_freq[0] = 31; |
| sf->full_freq[1] = 63; |
| } |
| |
| if (Speed > 2) |
| { |
| sf->auto_filter = 0; // Faster selection of loop filter |
| |
| cpi->mode_check_freq[THR_V_PRED] = 2; |
| cpi->mode_check_freq[THR_H_PRED] = 2; |
| cpi->mode_check_freq[THR_B_PRED] = 2; |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARG] = 2; |
| cpi->mode_check_freq[THR_NEWG] = 4; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARA] = 2; |
| cpi->mode_check_freq[THR_NEWA] = 4; |
| } |
| |
| sf->thresh_mult[THR_SPLITMV ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITG ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITA ] = INT_MAX; |
| |
| sf->full_freq[0] = 63; |
| sf->full_freq[1] = 127; |
| } |
| |
| if (Speed > 3) |
| { |
| sf->RD = 0; |
| sf->full_freq[0] = INT_MAX; |
| sf->full_freq[1] = INT_MAX; |
| |
| sf->auto_filter = 1; |
| } |
| |
| if (Speed > 4) |
| { |
| sf->auto_filter = 0; // Faster selection of loop filter |
| |
| #if CONFIG_REALTIME_ONLY |
| sf->search_method = HEX; |
| #else |
| sf->search_method = DIAMOND; |
| #endif |
| sf->iterative_sub_pixel = 0; |
| |
| cpi->mode_check_freq[THR_V_PRED] = 4; |
| cpi->mode_check_freq[THR_H_PRED] = 4; |
| cpi->mode_check_freq[THR_B_PRED] = 4; |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARG] = 2; |
| cpi->mode_check_freq[THR_NEWG] = 4; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| cpi->mode_check_freq[THR_NEARA] = 2; |
| cpi->mode_check_freq[THR_NEWA] = 4; |
| } |
| |
| sf->thresh_mult[THR_TM ] = 2000; |
| sf->thresh_mult[THR_B_PRED ] = 5000; |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = 2000; |
| sf->thresh_mult[THR_ZEROG ] = 2000; |
| sf->thresh_mult[THR_NEARG ] = 2000; |
| sf->thresh_mult[THR_NEWG ] = 4000; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = 2000; |
| sf->thresh_mult[THR_ZEROA ] = 2000; |
| sf->thresh_mult[THR_NEARA ] = 2000; |
| sf->thresh_mult[THR_NEWA ] = 4000; |
| } |
| } |
| |
| if (Speed > 5) |
| { |
| // Disable split MB intra prediction mode |
| sf->thresh_mult[THR_B_PRED] = INT_MAX; |
| } |
| |
| if (Speed > 6) |
| { |
| unsigned int i, sum = 0; |
| unsigned int total_mbs = cm->MBs; |
| int thresh; |
| int total_skip; |
| |
| int min = 2000; |
| |
| if (cpi->oxcf.encode_breakout > 2000) |
| min = cpi->oxcf.encode_breakout; |
| |
| min >>= 7; |
| |
| for (i = 0; i < min; i++) |
| { |
| sum += cpi->error_bins[i]; |
| } |
| |
| total_skip = sum; |
| sum = 0; |
| |
| // i starts from 2 to make sure thresh started from 2048 |
| for (; i < 1024; i++) |
| { |
| sum += cpi->error_bins[i]; |
| |
| if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip)) |
| break; |
| } |
| |
| i--; |
| thresh = (i << 7); |
| |
| if (thresh < 2000) |
| thresh = 2000; |
| |
| if (cpi->ref_frame_flags & VP8_LAST_FLAG) |
| { |
| sf->thresh_mult[THR_NEWMV] = thresh; |
| sf->thresh_mult[THR_NEARESTMV ] = thresh >> 1; |
| sf->thresh_mult[THR_NEARMV ] = thresh >> 1; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| sf->thresh_mult[THR_NEWG] = thresh << 1; |
| sf->thresh_mult[THR_NEARESTG ] = thresh; |
| sf->thresh_mult[THR_NEARG ] = thresh; |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| sf->thresh_mult[THR_NEWA] = thresh << 1; |
| sf->thresh_mult[THR_NEARESTA ] = thresh; |
| sf->thresh_mult[THR_NEARA ] = thresh; |
| } |
| |
| // Disable other intra prediction modes |
| sf->thresh_mult[THR_TM] = INT_MAX; |
| sf->thresh_mult[THR_V_PRED] = INT_MAX; |
| sf->thresh_mult[THR_H_PRED] = INT_MAX; |
| |
| sf->improved_mv_pred = 0; |
| } |
| |
| if (Speed > 8) |
| { |
| sf->quarter_pixel_search = 0; |
| } |
| |
| if (Speed > 9) |
| { |
| int Tmp = cpi->Speed - 8; |
| |
| if (Tmp > 4) |
| Tmp = 4; |
| |
| if (cpi->ref_frame_flags & VP8_GOLD_FLAG) |
| { |
| cpi->mode_check_freq[THR_ZEROG] = 1 << (Tmp - 1); |
| cpi->mode_check_freq[THR_NEARESTG] = 1 << (Tmp - 1); |
| cpi->mode_check_freq[THR_NEARG] = 1 << Tmp; |
| cpi->mode_check_freq[THR_NEWG] = 1 << (Tmp + 1); |
| } |
| |
| if (cpi->ref_frame_flags & VP8_ALT_FLAG) |
| { |
| cpi->mode_check_freq[THR_ZEROA] = 1 << (Tmp - 1); |
| cpi->mode_check_freq[THR_NEARESTA] = 1 << (Tmp - 1); |
| cpi->mode_check_freq[THR_NEARA] = 1 << Tmp; |
| cpi->mode_check_freq[THR_NEWA] = 1 << (Tmp + 1); |
| } |
| |
| cpi->mode_check_freq[THR_NEWMV] = 1 << (Tmp - 1); |
| } |
| |
| cm->filter_type = NORMAL_LOOPFILTER; |
| |
| if (Speed >= 14) |
| cm->filter_type = SIMPLE_LOOPFILTER; |
| |
| if (Speed >= 15) |
| { |
| sf->half_pixel_search = 0; // This has a big hit on quality. Last resort |
| } |
| |
| vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins)); |
| |
| }; /* switch */ |
| |
| /* disable frame modes if flags not set */ |
| if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) |
| { |
| sf->thresh_mult[THR_NEWMV ] = INT_MAX; |
| sf->thresh_mult[THR_NEARESTMV] = INT_MAX; |
| sf->thresh_mult[THR_ZEROMV ] = INT_MAX; |
| sf->thresh_mult[THR_NEARMV ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITMV ] = INT_MAX; |
| } |
| |
| if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) |
| { |
| sf->thresh_mult[THR_NEARESTG ] = INT_MAX; |
| sf->thresh_mult[THR_ZEROG ] = INT_MAX; |
| sf->thresh_mult[THR_NEARG ] = INT_MAX; |
| sf->thresh_mult[THR_NEWG ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITG ] = INT_MAX; |
| } |
| |
| if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) |
| { |
| sf->thresh_mult[THR_NEARESTA ] = INT_MAX; |
| sf->thresh_mult[THR_ZEROA ] = INT_MAX; |
| sf->thresh_mult[THR_NEARA ] = INT_MAX; |
| sf->thresh_mult[THR_NEWA ] = INT_MAX; |
| sf->thresh_mult[THR_SPLITA ] = INT_MAX; |
| } |
| |
| |
| // Slow quant, dct and trellis not worthwhile for first pass |
| // so make sure they are always turned off. |
| if ( cpi->pass == 1 ) |
| { |
| sf->improved_quant = 0; |
| sf->optimize_coefficients = 0; |
| sf->improved_dct = 0; |
| } |
| |
| if (cpi->sf.search_method == NSTEP) |
| { |
| vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); |
| } |
| else if (cpi->sf.search_method == DIAMOND) |
| { |
| vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); |
| } |
| |
| if (cpi->sf.improved_dct) |
| { |
| cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4); |
| cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4); |
| } |
| else |
| { |
| cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4); |
| cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4); |
| } |
| |
| cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4); |
| |
| if (cpi->sf.improved_quant) |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); |
| } |
| else |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); |
| } |
| if (cpi->sf.improved_quant != last_improved_quant) |
| vp8cx_init_quantizer(cpi); |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| cpi->mb.e_mbd.rtcd = &cpi->common.rtcd; |
| #endif |
| |
| if (cpi->sf.iterative_sub_pixel == 1) |
| { |
| cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; |
| } |
| else if (cpi->sf.quarter_pixel_search) |
| { |
| cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; |
| } |
| else if (cpi->sf.half_pixel_search) |
| { |
| cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; |
| } |
| else |
| { |
| cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; |
| } |
| |
| if (cpi->sf.optimize_coefficients == 1) |
| cpi->mb.optimize = 1 + cpi->is_next_src_alt_ref; |
| else |
| cpi->mb.optimize = 0; |
| |
| if (cpi->common.full_pixel) |
| cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; |
| |
| #ifdef SPEEDSTATS |
| frames_at_speed[cpi->Speed]++; |
| #endif |
| } |
| static void alloc_raw_frame_buffers(VP8_COMP *cpi) |
| { |
| int i, buffers; |
| |
| buffers = cpi->oxcf.lag_in_frames; |
| |
| if (buffers > MAX_LAG_BUFFERS) |
| buffers = MAX_LAG_BUFFERS; |
| |
| if (buffers < 1) |
| buffers = 1; |
| |
| for (i = 0; i < buffers; i++) |
| if (vp8_yv12_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer, |
| cpi->oxcf.Width, cpi->oxcf.Height, |
| 16)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate lag buffer"); |
| |
| #if VP8_TEMPORAL_ALT_REF |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer, |
| cpi->oxcf.Width, cpi->oxcf.Height, 16)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate altref buffer"); |
| |
| #endif |
| |
| cpi->source_buffer_count = 0; |
| } |
| |
| static int vp8_alloc_partition_data(VP8_COMP *cpi) |
| { |
| vpx_free(cpi->mb.pip); |
| |
| cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) * |
| (cpi->common.mb_rows + 1), |
| sizeof(PARTITION_INFO)); |
| if(!cpi->mb.pip) |
| return ALLOC_FAILURE; |
| |
| cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; |
| |
| return 0; |
| } |
| |
| void vp8_alloc_compressor_data(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = & cpi->common; |
| |
| int width = cm->Width; |
| int height = cm->Height; |
| |
| if (vp8_alloc_frame_buffers(cm, width, height)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffers"); |
| |
| if (vp8_alloc_partition_data(cpi)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate partition data"); |
| |
| |
| if ((width & 0xf) != 0) |
| width += 16 - (width & 0xf); |
| |
| if ((height & 0xf) != 0) |
| height += 16 - (height & 0xf); |
| |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf, |
| width, height, VP8BORDERINPIXELS)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate last frame buffer"); |
| |
| if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, 16)) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate scaled source buffer"); |
| |
| |
| vpx_free(cpi->tok); |
| |
| { |
| unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; |
| |
| CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); |
| } |
| |
| // Data used for real time vc mode to see if gf needs refreshing |
| cpi->inter_zz_count = 0; |
| cpi->gf_bad_count = 0; |
| cpi->gf_update_recommended = 0; |
| |
| |
| // Structures used to minitor GF usage |
| vpx_free(cpi->gf_active_flags); |
| |
| CHECK_MEM_ERROR(cpi->gf_active_flags, vpx_calloc(1, cm->mb_rows * cm->mb_cols)); |
| |
| cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| vpx_free(cpi->total_stats); |
| |
| cpi->total_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs)); |
| |
| vpx_free(cpi->this_frame_stats); |
| |
| cpi->this_frame_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs)); |
| |
| if(!cpi->total_stats || !cpi->this_frame_stats) |
| vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, |
| "Failed to allocate firstpass stats"); |
| #endif |
| |
| #if CONFIG_MULTITHREAD |
| if (width < 640) |
| cpi->mt_sync_range = 1; |
| else if (width <= 1280) |
| cpi->mt_sync_range = 4; |
| else if (width <= 2560) |
| cpi->mt_sync_range = 8; |
| else |
| cpi->mt_sync_range = 16; |
| #endif |
| |
| vpx_free(cpi->tplist); |
| |
| CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cpi->common.mb_rows)); |
| } |
| |
| |
| // Quant MOD |
| static const int q_trans[] = |
| { |
| 0, 1, 2, 3, 4, 5, 7, 8, |
| 9, 10, 12, 13, 15, 17, 18, 19, |
| 20, 21, 23, 24, 25, 26, 27, 28, |
| 29, 30, 31, 33, 35, 37, 39, 41, |
| 43, 45, 47, 49, 51, 53, 55, 57, |
| 59, 61, 64, 67, 70, 73, 76, 79, |
| 82, 85, 88, 91, 94, 97, 100, 103, |
| 106, 109, 112, 115, 118, 121, 124, 127, |
| }; |
| |
| int vp8_reverse_trans(int x) |
| { |
| int i; |
| |
| for (i = 0; i < 64; i++) |
| if (q_trans[i] >= x) |
| return i; |
| |
| return 63; |
| }; |
| void vp8_new_frame_rate(VP8_COMP *cpi, double framerate) |
| { |
| if(framerate < .1) |
| framerate = 30; |
| |
| cpi->oxcf.frame_rate = framerate; |
| cpi->output_frame_rate = cpi->oxcf.frame_rate; |
| cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); |
| cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); |
| cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| // Set Maximum gf/arf interval |
| cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2); |
| |
| if(cpi->max_gf_interval < 12) |
| cpi->max_gf_interval = 12; |
| |
| // Extended interval for genuinely static scenes |
| cpi->static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; |
| |
| // Special conditions when altr ref frame enabled in lagged compress mode |
| if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) |
| { |
| if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) |
| cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| |
| if (cpi->static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) |
| cpi->static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; |
| } |
| |
| if ( cpi->max_gf_interval > cpi->static_scene_max_gf_interval ) |
| cpi->max_gf_interval = cpi->static_scene_max_gf_interval; |
| } |
| |
| |
| static int |
| rescale(int val, int num, int denom) |
| { |
| int64_t llnum = num; |
| int64_t llden = denom; |
| int64_t llval = val; |
| |
| return llval * llnum / llden; |
| } |
| |
| |
| void vp8_init_config(VP8_PTR ptr, VP8_CONFIG *oxcf) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| VP8_COMMON *cm = &cpi->common; |
| |
| if (!cpi) |
| return; |
| |
| cpi->auto_gold = 1; |
| cpi->auto_adjust_gold_quantizer = 1; |
| cpi->goldquantizer = 1; |
| cpi->goldfreq = 7; |
| cpi->auto_adjust_key_quantizer = 1; |
| cpi->keyquantizer = 1; |
| |
| cm->version = oxcf->Version; |
| vp8_setup_version(cm); |
| |
| if (oxcf == 0) |
| { |
| cpi->pass = 0; |
| |
| cpi->auto_worst_q = 0; |
| cpi->oxcf.best_allowed_q = MINQ; |
| cpi->oxcf.worst_allowed_q = MAXQ; |
| cpi->oxcf.cq_level = MINQ; |
| |
| cpi->oxcf.end_usage = USAGE_STREAM_FROM_SERVER; |
| cpi->oxcf.starting_buffer_level = 4000; |
| cpi->oxcf.optimal_buffer_level = 5000; |
| cpi->oxcf.maximum_buffer_size = 6000; |
| cpi->oxcf.under_shoot_pct = 90; |
| cpi->oxcf.allow_df = 0; |
| cpi->oxcf.drop_frames_water_mark = 20; |
| |
| cpi->oxcf.allow_spatial_resampling = 0; |
| cpi->oxcf.resample_down_water_mark = 40; |
| cpi->oxcf.resample_up_water_mark = 60; |
| |
| cpi->oxcf.fixed_q = cpi->interquantizer; |
| |
| cpi->filter_type = NORMAL_LOOPFILTER; |
| |
| if (cm->simpler_lpf) |
| cpi->filter_type = SIMPLE_LOOPFILTER; |
| |
| cpi->compressor_speed = 1; |
| cpi->horiz_scale = 0; |
| cpi->vert_scale = 0; |
| cpi->oxcf.two_pass_vbrbias = 50; |
| cpi->oxcf.two_pass_vbrmax_section = 400; |
| cpi->oxcf.two_pass_vbrmin_section = 0; |
| |
| cpi->oxcf.Sharpness = 0; |
| cpi->oxcf.noise_sensitivity = 0; |
| } |
| else |
| cpi->oxcf = *oxcf; |
| |
| |
| switch (cpi->oxcf.Mode) |
| { |
| |
| case MODE_REALTIME: |
| cpi->pass = 0; |
| cpi->compressor_speed = 2; |
| |
| if (cpi->oxcf.cpu_used < -16) |
| { |
| cpi->oxcf.cpu_used = -16; |
| } |
| |
| if (cpi->oxcf.cpu_used > 16) |
| cpi->oxcf.cpu_used = 16; |
| |
| break; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| case MODE_GOODQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) |
| { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) |
| cpi->oxcf.cpu_used = 5; |
| |
| break; |
| |
| case MODE_BESTQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 0; |
| break; |
| |
| case MODE_FIRSTPASS: |
| cpi->pass = 1; |
| cpi->compressor_speed = 1; |
| break; |
| case MODE_SECONDPASS: |
| cpi->pass = 2; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) |
| { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) |
| cpi->oxcf.cpu_used = 5; |
| |
| break; |
| case MODE_SECONDPASS_BEST: |
| cpi->pass = 2; |
| cpi->compressor_speed = 0; |
| break; |
| #endif |
| } |
| |
| if (cpi->pass == 0) |
| cpi->auto_worst_q = 1; |
| |
| cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; |
| cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; |
| cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; |
| |
| if (oxcf->fixed_q >= 0) |
| { |
| if (oxcf->worst_allowed_q < 0) |
| cpi->oxcf.fixed_q = q_trans[0]; |
| else |
| cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; |
| |
| if (oxcf->alt_q < 0) |
| cpi->oxcf.alt_q = q_trans[0]; |
| else |
| cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; |
| |
| if (oxcf->key_q < 0) |
| cpi->oxcf.key_q = q_trans[0]; |
| else |
| cpi->oxcf.key_q = q_trans[oxcf->key_q]; |
| |
| if (oxcf->gold_q < 0) |
| cpi->oxcf.gold_q = q_trans[0]; |
| else |
| cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; |
| |
| } |
| |
| cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; |
| cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; |
| |
| //cpi->use_golden_frame_only = 0; |
| //cpi->use_last_frame_only = 0; |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 1; |
| cm->refresh_entropy_probs = 1; |
| |
| if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) |
| cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions; |
| |
| setup_features(cpi); |
| |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) |
| cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; |
| } |
| |
| // At the moment the first order values may not be > MAXQ |
| if (cpi->oxcf.fixed_q > MAXQ) |
| cpi->oxcf.fixed_q = MAXQ; |
| |
| // local file playback mode == really big buffer |
| if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) |
| { |
| cpi->oxcf.starting_buffer_level = 60000; |
| cpi->oxcf.optimal_buffer_level = 60000; |
| cpi->oxcf.maximum_buffer_size = 240000; |
| |
| } |
| |
| |
| // Convert target bandwidth from Kbit/s to Bit/s |
| cpi->oxcf.target_bandwidth *= 1000; |
| cpi->oxcf.starting_buffer_level = |
| rescale(cpi->oxcf.starting_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| if (cpi->oxcf.optimal_buffer_level == 0) |
| cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.optimal_buffer_level = |
| rescale(cpi->oxcf.optimal_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| if (cpi->oxcf.maximum_buffer_size == 0) |
| cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.maximum_buffer_size = |
| rescale(cpi->oxcf.maximum_buffer_size, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| cpi->buffer_level = cpi->oxcf.starting_buffer_level; |
| cpi->bits_off_target = cpi->oxcf.starting_buffer_level; |
| |
| vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate); |
| cpi->worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; |
| cpi->best_quality = cpi->oxcf.best_allowed_q; |
| cpi->active_best_quality = cpi->oxcf.best_allowed_q; |
| cpi->cq_target_quality = cpi->oxcf.cq_level; |
| |
| cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE; |
| |
| cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| |
| cpi->total_actual_bits = 0; |
| cpi->total_target_vs_actual = 0; |
| |
| // Only allow dropped frames in buffered mode |
| cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; |
| |
| cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type; |
| |
| if (!cm->use_bilinear_mc_filter) |
| cm->mcomp_filter_type = SIXTAP; |
| else |
| cm->mcomp_filter_type = BILINEAR; |
| |
| cpi->target_bandwidth = cpi->oxcf.target_bandwidth; |
| |
| cm->Width = cpi->oxcf.Width ; |
| cm->Height = cpi->oxcf.Height ; |
| |
| cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8 |
| |
| cm->horiz_scale = cpi->horiz_scale; |
| cm->vert_scale = cpi->vert_scale ; |
| |
| // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) |
| if (cpi->oxcf.Sharpness > 7) |
| cpi->oxcf.Sharpness = 7; |
| |
| cm->sharpness_level = cpi->oxcf.Sharpness; |
| |
| if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) |
| { |
| int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); |
| int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); |
| |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| |
| // always go to the next whole number |
| cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; |
| cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; |
| } |
| |
| if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width || |
| ((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height || |
| cm->yv12_fb[cm->lst_fb_idx].y_width == 0) |
| { |
| alloc_raw_frame_buffers(cpi); |
| vp8_alloc_compressor_data(cpi); |
| } |
| |
| // Clamp KF frame size to quarter of data rate |
| if (cpi->intra_frame_target > cpi->target_bandwidth >> 2) |
| cpi->intra_frame_target = cpi->target_bandwidth >> 2; |
| |
| if (cpi->oxcf.fixed_q >= 0) |
| { |
| cpi->last_q[0] = cpi->oxcf.fixed_q; |
| cpi->last_q[1] = cpi->oxcf.fixed_q; |
| } |
| |
| cpi->Speed = cpi->oxcf.cpu_used; |
| |
| // force to allowlag to 0 if lag_in_frames is 0; |
| if (cpi->oxcf.lag_in_frames == 0) |
| { |
| cpi->oxcf.allow_lag = 0; |
| } |
| // Limit on lag buffers as these are not currently dynamically allocated |
| else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) |
| cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; |
| |
| // YX Temp |
| cpi->last_alt_ref_sei = -1; |
| cpi->is_src_frame_alt_ref = 0; |
| cpi->is_next_src_alt_ref = 0; |
| |
| #if 0 |
| // Experimental RD Code |
| cpi->frame_distortion = 0; |
| cpi->last_frame_distortion = 0; |
| #endif |
| |
| #if VP8_TEMPORAL_ALT_REF |
| |
| cpi->use_weighted_temporal_filter = 0; |
| |
| { |
| int i; |
| |
| cpi->fixed_divide[0] = 0; |
| |
| for (i = 1; i < 512; i++) |
| cpi->fixed_divide[i] = 0x80000 / i; |
| } |
| #endif |
| } |
| |
| /* |
| * This function needs more clean up, i.e. be more tuned torwards |
| * change_config rather than init_config !!!!!!!!!!!!!!!! |
| * YX - 5/28/2009 |
| * |
| */ |
| |
| void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| VP8_COMMON *cm = &cpi->common; |
| |
| if (!cpi) |
| return; |
| |
| if (!oxcf) |
| return; |
| |
| if (cm->version != oxcf->Version) |
| { |
| cm->version = oxcf->Version; |
| vp8_setup_version(cm); |
| } |
| |
| cpi->oxcf = *oxcf; |
| |
| switch (cpi->oxcf.Mode) |
| { |
| |
| case MODE_REALTIME: |
| cpi->pass = 0; |
| cpi->compressor_speed = 2; |
| |
| if (cpi->oxcf.cpu_used < -16) |
| { |
| cpi->oxcf.cpu_used = -16; |
| } |
| |
| if (cpi->oxcf.cpu_used > 16) |
| cpi->oxcf.cpu_used = 16; |
| |
| break; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| case MODE_GOODQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) |
| { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) |
| cpi->oxcf.cpu_used = 5; |
| |
| break; |
| |
| case MODE_BESTQUALITY: |
| cpi->pass = 0; |
| cpi->compressor_speed = 0; |
| break; |
| |
| case MODE_FIRSTPASS: |
| cpi->pass = 1; |
| cpi->compressor_speed = 1; |
| break; |
| case MODE_SECONDPASS: |
| cpi->pass = 2; |
| cpi->compressor_speed = 1; |
| |
| if (cpi->oxcf.cpu_used < -5) |
| { |
| cpi->oxcf.cpu_used = -5; |
| } |
| |
| if (cpi->oxcf.cpu_used > 5) |
| cpi->oxcf.cpu_used = 5; |
| |
| break; |
| case MODE_SECONDPASS_BEST: |
| cpi->pass = 2; |
| cpi->compressor_speed = 0; |
| break; |
| #endif |
| } |
| |
| if (cpi->pass == 0) |
| cpi->auto_worst_q = 1; |
| |
| cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; |
| cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; |
| cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; |
| |
| if (oxcf->fixed_q >= 0) |
| { |
| if (oxcf->worst_allowed_q < 0) |
| cpi->oxcf.fixed_q = q_trans[0]; |
| else |
| cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; |
| |
| if (oxcf->alt_q < 0) |
| cpi->oxcf.alt_q = q_trans[0]; |
| else |
| cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; |
| |
| if (oxcf->key_q < 0) |
| cpi->oxcf.key_q = q_trans[0]; |
| else |
| cpi->oxcf.key_q = q_trans[oxcf->key_q]; |
| |
| if (oxcf->gold_q < 0) |
| cpi->oxcf.gold_q = q_trans[0]; |
| else |
| cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; |
| |
| } |
| |
| cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; |
| |
| cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; |
| |
| //cpi->use_golden_frame_only = 0; |
| //cpi->use_last_frame_only = 0; |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 1; |
| cm->refresh_entropy_probs = 1; |
| |
| if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) |
| cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions; |
| |
| setup_features(cpi); |
| |
| { |
| int i; |
| |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) |
| cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; |
| } |
| |
| // At the moment the first order values may not be > MAXQ |
| if (cpi->oxcf.fixed_q > MAXQ) |
| cpi->oxcf.fixed_q = MAXQ; |
| |
| // local file playback mode == really big buffer |
| if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) |
| { |
| cpi->oxcf.starting_buffer_level = 60000; |
| cpi->oxcf.optimal_buffer_level = 60000; |
| cpi->oxcf.maximum_buffer_size = 240000; |
| |
| } |
| |
| // Convert target bandwidth from Kbit/s to Bit/s |
| cpi->oxcf.target_bandwidth *= 1000; |
| |
| cpi->oxcf.starting_buffer_level = |
| rescale(cpi->oxcf.starting_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| if (cpi->oxcf.optimal_buffer_level == 0) |
| cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.optimal_buffer_level = |
| rescale(cpi->oxcf.optimal_buffer_level, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| if (cpi->oxcf.maximum_buffer_size == 0) |
| cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; |
| else |
| cpi->oxcf.maximum_buffer_size = |
| rescale(cpi->oxcf.maximum_buffer_size, |
| cpi->oxcf.target_bandwidth, 1000); |
| |
| cpi->buffer_level = cpi->oxcf.starting_buffer_level; |
| cpi->bits_off_target = cpi->oxcf.starting_buffer_level; |
| |
| vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate); |
| cpi->worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; |
| cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; |
| cpi->best_quality = cpi->oxcf.best_allowed_q; |
| cpi->active_best_quality = cpi->oxcf.best_allowed_q; |
| cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE; |
| |
| cpi->cq_target_quality = cpi->oxcf.cq_level; |
| |
| cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; |
| cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; |
| |
| cpi->total_actual_bits = 0; |
| cpi->total_target_vs_actual = 0; |
| |
| // Only allow dropped frames in buffered mode |
| cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; |
| |
| cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type; |
| |
| if (!cm->use_bilinear_mc_filter) |
| cm->mcomp_filter_type = SIXTAP; |
| else |
| cm->mcomp_filter_type = BILINEAR; |
| |
| cpi->target_bandwidth = cpi->oxcf.target_bandwidth; |
| |
| cm->Width = cpi->oxcf.Width ; |
| cm->Height = cpi->oxcf.Height ; |
| |
| cm->horiz_scale = cpi->horiz_scale; |
| cm->vert_scale = cpi->vert_scale ; |
| |
| cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8 |
| |
| // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) |
| if (cpi->oxcf.Sharpness > 7) |
| cpi->oxcf.Sharpness = 7; |
| |
| cm->sharpness_level = cpi->oxcf.Sharpness; |
| |
| if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) |
| { |
| int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); |
| int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); |
| |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| |
| // always go to the next whole number |
| cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; |
| cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; |
| } |
| |
| if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width || |
| ((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height || |
| cm->yv12_fb[cm->lst_fb_idx].y_width == 0) |
| { |
| alloc_raw_frame_buffers(cpi); |
| vp8_alloc_compressor_data(cpi); |
| } |
| |
| // Clamp KF frame size to quarter of data rate |
| if (cpi->intra_frame_target > cpi->target_bandwidth >> 2) |
| cpi->intra_frame_target = cpi->target_bandwidth >> 2; |
| |
| if (cpi->oxcf.fixed_q >= 0) |
| { |
| cpi->last_q[0] = cpi->oxcf.fixed_q; |
| cpi->last_q[1] = cpi->oxcf.fixed_q; |
| } |
| |
| cpi->Speed = cpi->oxcf.cpu_used; |
| |
| // force to allowlag to 0 if lag_in_frames is 0; |
| if (cpi->oxcf.lag_in_frames == 0) |
| { |
| cpi->oxcf.allow_lag = 0; |
| } |
| // Limit on lag buffers as these are not currently dynamically allocated |
| else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) |
| cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; |
| |
| // YX Temp |
| cpi->last_alt_ref_sei = -1; |
| cpi->is_src_frame_alt_ref = 0; |
| cpi->is_next_src_alt_ref = 0; |
| |
| #if 0 |
| // Experimental RD Code |
| cpi->frame_distortion = 0; |
| cpi->last_frame_distortion = 0; |
| #endif |
| |
| } |
| |
| #define M_LOG2_E 0.693147180559945309417 |
| #define log2f(x) (log (x) / (float) M_LOG2_E) |
| static void cal_mvsadcosts(int *mvsadcost[2]) |
| { |
| int i = 1; |
| |
| mvsadcost [0] [0] = 300; |
| mvsadcost [1] [0] = 300; |
| |
| do |
| { |
| double z = 256 * (2 * (log2f(2 * i) + .6)); |
| mvsadcost [0][i] = (int) z; |
| mvsadcost [1][i] = (int) z; |
| mvsadcost [0][-i] = (int) z; |
| mvsadcost [1][-i] = (int) z; |
| } |
| while (++i <= mv_max); |
| } |
| |
| VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf) |
| { |
| int i; |
| volatile union |
| { |
| VP8_COMP *cpi; |
| VP8_PTR ptr; |
| } ctx; |
| |
| VP8_COMP *cpi; |
| VP8_COMMON *cm; |
| |
| cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP)); |
| // Check that the CPI instance is valid |
| if (!cpi) |
| return 0; |
| |
| cm = &cpi->common; |
| |
| vpx_memset(cpi, 0, sizeof(VP8_COMP)); |
| |
| if (setjmp(cm->error.jmp)) |
| { |
| VP8_PTR ptr = ctx.ptr; |
| |
| ctx.cpi->common.error.setjmp = 0; |
| vp8_remove_compressor(&ptr); |
| return 0; |
| } |
| |
| cpi->common.error.setjmp = 1; |
| |
| CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); |
| |
| vp8_create_common(&cpi->common); |
| vp8_cmachine_specific_config(cpi); |
| |
| vp8_init_config((VP8_PTR)cpi, oxcf); |
| |
| memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob)); |
| cpi->common.current_video_frame = 0; |
| cpi->kf_overspend_bits = 0; |
| cpi->kf_bitrate_adjustment = 0; |
| cpi->frames_till_gf_update_due = 0; |
| cpi->gf_overspend_bits = 0; |
| cpi->non_gf_bitrate_adjustment = 0; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| cpi->prob_intra_coded = 63; |
| |
| // Prime the recent reference frame useage counters. |
| // Hereafter they will be maintained as a sort of moving average |
| cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; |
| cpi->recent_ref_frame_usage[LAST_FRAME] = 1; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; |
| |
| // Set reference frame sign bias for ALTREF frame to 1 (for now) |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; |
| |
| cpi->gf_decay_rate = 0; |
| cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; |
| |
| cpi->gold_is_last = 0 ; |
| cpi->alt_is_last = 0 ; |
| cpi->gold_is_alt = 0 ; |
| |
| // allocate memory for storing last frame's MVs for MV prediction. |
| CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int_mv))); |
| CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int))); |
| CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int))); |
| |
| // Create the encoder segmentation map and set all entries to 0 |
| CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); |
| CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); |
| vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols)); |
| cpi->active_map_enabled = 0; |
| |
| // Create the first pass motion map structure and set to 0 |
| // Allocate space for maximum of 15 buffers |
| CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(15*cpi->common.MBs, 1)); |
| |
| #if 0 |
| // Experimental code for lagged and one pass |
| // Initialise one_pass GF frames stats |
| // Update stats used for GF selection |
| if (cpi->pass == 0) |
| { |
| cpi->one_pass_frame_index = 0; |
| |
| for (i = 0; i < MAX_LAG_BUFFERS; i++) |
| { |
| cpi->one_pass_frame_stats[i].frames_so_far = 0; |
| cpi->one_pass_frame_stats[i].frame_intra_error = 0.0; |
| cpi->one_pass_frame_stats[i].frame_coded_error = 0.0; |
| cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0; |
| cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvr = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvc = 0.0; |
| cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0; |
| } |
| } |
| #endif |
| |
| // Should we use the cyclic refresh method. |
| // Currently this is tied to error resilliant mode |
| cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode; |
| cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40; |
| cpi->cyclic_refresh_mode_index = 0; |
| cpi->cyclic_refresh_q = 32; |
| |
| if (cpi->cyclic_refresh_mode_enabled) |
| { |
| CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); |
| } |
| else |
| cpi->cyclic_refresh_map = (signed char *) NULL; |
| |
| // Test function for segmentation |
| //segmentation_test_function((VP8_PTR) cpi); |
| |
| #ifdef ENTROPY_STATS |
| init_context_counters(); |
| #endif |
| |
| /*Initialize the feed-forward activity masking.*/ |
| cpi->activity_avg = 90<<12; |
| |
| cpi->frames_since_key = 8; // Give a sensible default for the first frame. |
| cpi->key_frame_frequency = cpi->oxcf.key_freq; |
| cpi->this_key_frame_forced = FALSE; |
| cpi->next_key_frame_forced = FALSE; |
| |
| cpi->source_alt_ref_pending = FALSE; |
| cpi->source_alt_ref_active = FALSE; |
| cpi->common.refresh_alt_ref_frame = 0; |
| |
| cpi->b_calculate_psnr = CONFIG_PSNR; |
| #if CONFIG_PSNR |
| cpi->b_calculate_ssimg = 0; |
| |
| cpi->count = 0; |
| cpi->bytes = 0; |
| |
| if (cpi->b_calculate_psnr) |
| { |
| cpi->total_sq_error = 0.0; |
| cpi->total_sq_error2 = 0.0; |
| cpi->total_y = 0.0; |
| cpi->total_u = 0.0; |
| cpi->total_v = 0.0; |
| cpi->total = 0.0; |
| cpi->totalp_y = 0.0; |
| cpi->totalp_u = 0.0; |
| cpi->totalp_v = 0.0; |
| cpi->totalp = 0.0; |
| cpi->tot_recode_hits = 0; |
| cpi->summed_quality = 0; |
| cpi->summed_weights = 0; |
| } |
| |
| if (cpi->b_calculate_ssimg) |
| { |
| cpi->total_ssimg_y = 0; |
| cpi->total_ssimg_u = 0; |
| cpi->total_ssimg_v = 0; |
| cpi->total_ssimg_all = 0; |
| } |
| |
| #ifndef LLONG_MAX |
| #define LLONG_MAX 9223372036854775807LL |
| #endif |
| cpi->first_time_stamp_ever = LLONG_MAX; |
| |
| #endif |
| |
| cpi->frames_till_gf_update_due = 0; |
| cpi->key_frame_count = 1; |
| cpi->tot_key_frame_bits = 0; |
| |
| cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; |
| cpi->ni_tot_qi = 0; |
| cpi->ni_frames = 0; |
| cpi->total_byte_count = 0; |
| |
| cpi->drop_frame = 0; |
| cpi->drop_count = 0; |
| cpi->max_drop_count = 0; |
| cpi->max_consec_dropped_frames = 4; |
| |
| cpi->rate_correction_factor = 1.0; |
| cpi->key_frame_rate_correction_factor = 1.0; |
| cpi->gf_rate_correction_factor = 1.0; |
| cpi->est_max_qcorrection_factor = 1.0; |
| |
| cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1]; |
| cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1]; |
| cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mv_max+1]; |
| cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mv_max+1]; |
| |
| cal_mvsadcosts(cpi->mb.mvsadcost); |
| |
| for (i = 0; i < KEY_FRAME_CONTEXT; i++) |
| { |
| cpi->prior_key_frame_size[i] = cpi->intra_frame_target; |
| cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate; |
| } |
| |
| cpi->check_freq[0] = 15; |
| cpi->check_freq[1] = 15; |
| |
| #ifdef OUTPUT_YUV_SRC |
| yuv_file = fopen("bd.yuv", "ab"); |
| #endif |
| |
| #if 0 |
| framepsnr = fopen("framepsnr.stt", "a"); |
| kf_list = fopen("kf_list.stt", "w"); |
| #endif |
| |
| cpi->output_pkt_list = oxcf->output_pkt_list; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->pass == 1) |
| { |
| vp8_init_first_pass(cpi); |
| } |
| else if (cpi->pass == 2) |
| { |
| size_t packet_sz = vp8_firstpass_stats_sz(cpi->common.MBs); |
| int packets = oxcf->two_pass_stats_in.sz / packet_sz; |
| |
| cpi->stats_in = oxcf->two_pass_stats_in.buf; |
| cpi->stats_in_end = (void*)((char *)cpi->stats_in |
| + (packets - 1) * packet_sz); |
| vp8_init_second_pass(cpi); |
| } |
| |
| #endif |
| |
| if (cpi->compressor_speed == 2) |
| { |
| cpi->cpu_freq = 0; //vp8_get_processor_freq(); |
| cpi->avg_encode_time = 0; |
| cpi->avg_pick_mode_time = 0; |
| } |
| |
| vp8_set_speed_features(cpi); |
| |
| // Set starting values of RD threshold multipliers (128 = *1) |
| for (i = 0; i < MAX_MODES; i++) |
| { |
| cpi->rd_thresh_mult[i] = 128; |
| } |
| |
| #ifdef ENTROPY_STATS |
| init_mv_ref_counts(); |
| #endif |
| |
| #if CONFIG_MULTITHREAD |
| vp8cx_create_encoder_threads(cpi); |
| #endif |
| |
| cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16); |
| cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16); |
| cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16); |
| cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h); |
| cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v); |
| cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv); |
| cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3); |
| cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8); |
| cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d); |
| |
| cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8); |
| cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8); |
| cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8); |
| cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL; |
| cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL; |
| cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL; |
| cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3); |
| cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8); |
| cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d); |
| |
| cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16); |
| cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16); |
| cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16); |
| cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL; |
| cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL; |
| cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL; |
| cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3); |
| cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8); |
| cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d); |
| |
| cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8); |
| cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8); |
| cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8); |
| cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL; |
| cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL; |
| cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL; |
| cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3); |
| cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8); |
| cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d); |
| |
| cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4); |
| cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4); |
| cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4); |
| cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL; |
| cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL; |
| cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL; |
| cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3); |
| cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8); |
| cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d); |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search); |
| #endif |
| cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search); |
| |
| cpi->ready_for_new_frame = 1; |
| |
| cpi->source_encode_index = 0; |
| |
| // make sure frame 1 is okay |
| cpi->error_bins[0] = cpi->common.MBs; |
| |
| //vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later |
| //when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame. |
| vp8cx_init_quantizer(cpi); |
| { |
| vp8_init_loop_filter(cm); |
| cm->last_frame_type = KEY_FRAME; |
| cm->last_filter_type = cm->filter_type; |
| cm->last_sharpness_level = cm->sharpness_level; |
| } |
| cpi->common.error.setjmp = 0; |
| return (VP8_PTR) cpi; |
| |
| } |
| |
| |
| void vp8_remove_compressor(VP8_PTR *ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(*ptr); |
| |
| if (!cpi) |
| return; |
| |
| if (cpi && (cpi->common.current_video_frame > 0)) |
| { |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->pass == 2) |
| { |
| vp8_end_second_pass(cpi); |
| } |
| |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| print_context_counters(); |
| print_tree_update_probs(); |
| print_mode_context(); |
| #endif |
| |
| #if CONFIG_PSNR |
| |
| if (cpi->pass != 1) |
| { |
| FILE *f = fopen("opsnr.stt", "a"); |
| double time_encoded = (cpi->source_end_time_stamp - cpi->first_time_stamp_ever) / 10000000.000; |
| double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; |
| double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; |
| |
| if (cpi->b_calculate_psnr) |
| { |
| YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
| double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height; |
| double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error); |
| double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2); |
| double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); |
| |
| fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n"); |
| fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f %8.0f\n", |
| dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim, |
| total_encode_time); |
| } |
| |
| if (cpi->b_calculate_ssimg) |
| { |
| fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n"); |
| fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, |
| cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, |
| cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); |
| } |
| |
| fclose(f); |
| #if 0 |
| f = fopen("qskip.stt", "a"); |
| fprintf(f, "minq:%d -maxq:%d skipture:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount); |
| fclose(f); |
| #endif |
| |
| } |
| |
| #endif |
| |
| |
| #ifdef SPEEDSTATS |
| |
| if (cpi->compressor_speed == 2) |
| { |
| int i; |
| FILE *f = fopen("cxspeed.stt", "a"); |
| cnt_pm /= cpi->common.MBs; |
| |
| for (i = 0; i < 16; i++) |
| fprintf(f, "%5d", frames_at_speed[i]); |
| |
| fprintf(f, "\n"); |
| //fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0); |
| fclose(f); |
| } |
| |
| #endif |
| |
| |
| #ifdef MODE_STATS |
| { |
| extern int count_mb_seg[4]; |
| FILE *f = fopen("modes.stt", "a"); |
| double dr = (double)cpi->oxcf.frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ; |
| fprintf(f, "intra_mode in Intra Frames:\n"); |
| fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]); |
| fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]); |
| fprintf(f, "B: "); |
| { |
| int i; |
| |
| for (i = 0; i < 10; i++) |
| fprintf(f, "%8d, ", b_modes[i]); |
| |
| fprintf(f, "\n"); |
| |
| } |
| |
| fprintf(f, "Modes in Inter Frames:\n"); |
| fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", |
| inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4], |
| inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]); |
| fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]); |
| fprintf(f, "B: "); |
| { |
| int i; |
| |
| for (i = 0; i < 15; i++) |
| fprintf(f, "%8d, ", inter_b_modes[i]); |
| |
| fprintf(f, "\n"); |
| |
| } |
| fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]); |
| fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]); |
| |
| |
| |
| fclose(f); |
| } |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| { |
| int i, j, k; |
| FILE *fmode = fopen("modecontext.c", "w"); |
| |
| fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); |
| fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); |
| fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); |
| |
| for (i = 0; i < 10; i++) |
| { |
| |
| fprintf(fmode, " { //Above Mode : %d\n", i); |
| |
| for (j = 0; j < 10; j++) |
| { |
| |
| fprintf(fmode, " {"); |
| |
| for (k = 0; k < 10; k++) |
| { |
| if (!intra_mode_stats[i][j][k]) |
| fprintf(fmode, " %5d, ", 1); |
| else |
| fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); |
| } |
| |
| fprintf(fmode, "}, // left_mode %d\n", j); |
| |
| } |
| |
| fprintf(fmode, " },\n"); |
| |
| } |
| |
| fprintf(fmode, "};\n"); |
| fclose(fmode); |
| } |
| #endif |
| |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| |
| if (0) |
| { |
| int i; |
| FILE *f = fopen("tokenbits.stt", "a"); |
| |
| for (i = 0; i < 28; i++) |
| fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); |
| |
| fprintf(f, "\n"); |
| fclose(f); |
| } |
| |
| #endif |
| |
| #if 0 |
| { |
| printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); |
| printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); |
| printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); |
| } |
| #endif |
| |
| } |
| |
| #if CONFIG_MULTITHREAD |
| vp8cx_remove_encoder_threads(cpi); |
| #endif |
| |
| vp8_dealloc_compressor_data(cpi); |
| vpx_free(cpi->mb.ss); |
| vpx_free(cpi->tok); |
| vpx_free(cpi->cyclic_refresh_map); |
| |
| vp8_remove_common(&cpi->common); |
| vpx_free(cpi); |
| *ptr = 0; |
| |
| #ifdef OUTPUT_YUV_SRC |
| fclose(yuv_file); |
| #endif |
| |
| #if 0 |
| |
| if (keyfile) |
| fclose(keyfile); |
| |
| if (framepsnr) |
| fclose(framepsnr); |
| |
| if (kf_list) |
| fclose(kf_list); |
| |
| #endif |
| |
| } |
| |
| |
| static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, |
| unsigned char *recon, int recon_stride, |
| unsigned int cols, unsigned int rows, |
| vp8_variance_rtcd_vtable_t *rtcd) |
| { |
| unsigned int row, col; |
| uint64_t total_sse = 0; |
| int diff; |
| |
| for (row = 0; row + 16 <= rows; row += 16) |
| { |
| for (col = 0; col + 16 <= cols; col += 16) |
| { |
| unsigned int sse; |
| |
| VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride, |
| recon + col, recon_stride, |
| &sse); |
| total_sse += sse; |
| } |
| |
| /* Handle odd-sized width */ |
| if (col < cols) |
| { |
| unsigned int border_row, border_col; |
| unsigned char *border_orig = orig; |
| unsigned char *border_recon = recon; |
| |
| for (border_row = 0; border_row < 16; border_row++) |
| { |
| for (border_col = col; border_col < cols; border_col++) |
| { |
| diff = border_orig[border_col] - border_recon[border_col]; |
| total_sse += diff * diff; |
| } |
| |
| border_orig += orig_stride; |
| border_recon += recon_stride; |
| } |
| } |
| |
| orig += orig_stride * 16; |
| recon += recon_stride * 16; |
| } |
| |
| /* Handle odd-sized height */ |
| for (; row < rows; row++) |
| { |
| for (col = 0; col < cols; col++) |
| { |
| diff = orig[col] - recon[col]; |
| total_sse += diff * diff; |
| } |
| |
| orig += orig_stride; |
| recon += recon_stride; |
| } |
| |
| return total_sse; |
| } |
| |
| |
| static void generate_psnr_packet(VP8_COMP *cpi) |
| { |
| YV12_BUFFER_CONFIG *orig = cpi->Source; |
| YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; |
| struct vpx_codec_cx_pkt pkt; |
| uint64_t sse; |
| int i; |
| unsigned int width = cpi->common.Width; |
| unsigned int height = cpi->common.Height; |
| |
| pkt.kind = VPX_CODEC_PSNR_PKT; |
| sse = calc_plane_error(orig->y_buffer, orig->y_stride, |
| recon->y_buffer, recon->y_stride, |
| width, height, |
| IF_RTCD(&cpi->rtcd.variance)); |
| pkt.data.psnr.sse[0] = sse; |
| pkt.data.psnr.sse[1] = sse; |
| pkt.data.psnr.samples[0] = width * height; |
| pkt.data.psnr.samples[1] = width * height; |
| |
| width = (width + 1) / 2; |
| height = (height + 1) / 2; |
| |
| sse = calc_plane_error(orig->u_buffer, orig->uv_stride, |
| recon->u_buffer, recon->uv_stride, |
| width, height, |
| IF_RTCD(&cpi->rtcd.variance)); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[2] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[2] = width * height; |
| |
| sse = calc_plane_error(orig->v_buffer, orig->uv_stride, |
| recon->v_buffer, recon->uv_stride, |
| width, height, |
| IF_RTCD(&cpi->rtcd.variance)); |
| pkt.data.psnr.sse[0] += sse; |
| pkt.data.psnr.sse[3] = sse; |
| pkt.data.psnr.samples[0] += width * height; |
| pkt.data.psnr.samples[3] = width * height; |
| |
| for (i = 0; i < 4; i++) |
| pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0, |
| pkt.data.psnr.sse[i]); |
| |
| vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); |
| } |
| |
| |
| int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| if (ref_frame_flags > 7) |
| return -1 ; |
| |
| cpi->ref_frame_flags = ref_frame_flags; |
| return 0; |
| } |
| int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| |
| if (ref_frame_flags > 7) |
| return -1 ; |
| |
| cpi->common.refresh_golden_frame = 0; |
| cpi->common.refresh_alt_ref_frame = 0; |
| cpi->common.refresh_last_frame = 0; |
| |
| if (ref_frame_flags & VP8_LAST_FLAG) |
| cpi->common.refresh_last_frame = 1; |
| |
| if (ref_frame_flags & VP8_GOLD_FLAG) |
| cpi->common.refresh_golden_frame = 1; |
| |
| if (ref_frame_flags & VP8_ALT_FLAG) |
| cpi->common.refresh_alt_ref_frame = 1; |
| |
| return 0; |
| } |
| |
| int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| VP8_COMMON *cm = &cpi->common; |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP8_LAST_FLAG) |
| ref_fb_idx = cm->lst_fb_idx; |
| else if (ref_frame_flag == VP8_GOLD_FLAG) |
| ref_fb_idx = cm->gld_fb_idx; |
| else if (ref_frame_flag == VP8_ALT_FLAG) |
| ref_fb_idx = cm->alt_fb_idx; |
| else |
| return -1; |
| |
| vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd); |
| |
| return 0; |
| } |
| int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) |
| { |
| VP8_COMP *cpi = (VP8_COMP *)(ptr); |
| VP8_COMMON *cm = &cpi->common; |
| |
| int ref_fb_idx; |
| |
| if (ref_frame_flag == VP8_LAST_FLAG) |
| ref_fb_idx = cm->lst_fb_idx; |
| else if (ref_frame_flag == VP8_GOLD_FLAG) |
| ref_fb_idx = cm->gld_fb_idx; |
| else if (ref_frame_flag == VP8_ALT_FLAG) |
| ref_fb_idx = cm->alt_fb_idx; |
| else |
| return -1; |
| |
| vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]); |
| |
| return 0; |
| } |
| int vp8_update_entropy(VP8_PTR comp, int update) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) comp; |
| VP8_COMMON *cm = &cpi->common; |
| cm->refresh_entropy_probs = update; |
| |
| return 0; |
| } |
| |
| |
| #if OUTPUT_YUV_SRC |
| void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s) |
| { |
| FILE *yuv_file = fopen(name, "ab"); |
| unsigned char *src = s->y_buffer; |
| int h = s->y_height; |
| |
| do |
| { |
| fwrite(src, s->y_width, 1, yuv_file); |
| src += s->y_stride; |
| } |
| while (--h); |
| |
| src = s->u_buffer; |
| h = s->uv_height; |
| |
| do |
| { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } |
| while (--h); |
| |
| src = s->v_buffer; |
| h = s->uv_height; |
| |
| do |
| { |
| fwrite(src, s->uv_width, 1, yuv_file); |
| src += s->uv_stride; |
| } |
| while (--h); |
| |
| fclose(yuv_file); |
| } |
| #endif |
| |
| |
| static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| // are we resizing the image |
| if (cm->horiz_scale != 0 || cm->vert_scale != 0) |
| { |
| #if CONFIG_SPATIAL_RESAMPLING |
| int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); |
| int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); |
| int tmp_height; |
| |
| if (cm->vert_scale == 3) |
| tmp_height = 9; |
| else |
| tmp_height = 11; |
| |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| |
| vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer, |
| tmp_height, hs, hr, vs, vr, 0); |
| |
| cpi->Source = &cpi->scaled_source; |
| #endif |
| } |
| // we may need to copy to a buffer so we can extend the image... |
| else if (cm->Width != cm->yv12_fb[cm->lst_fb_idx].y_width || |
| cm->Height != cm->yv12_fb[cm->lst_fb_idx].y_height) |
| { |
| //vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source); |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_yv12_copy_src_frame_func_neon(sd, &cpi->scaled_source); |
| } |
| #if CONFIG_RUNTIME_CPU_DETECT |
| else |
| #endif |
| #endif |
| #if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT |
| { |
| vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source); |
| } |
| #endif |
| |
| cpi->Source = &cpi->scaled_source; |
| } |
| |
| vp8_extend_to_multiple_of16(cpi->Source, cm->Width, cm->Height); |
| |
| } |
| static void resize_key_frame(VP8_COMP *cpi) |
| { |
| #if CONFIG_SPATIAL_RESAMPLING |
| VP8_COMMON *cm = &cpi->common; |
| |
| // Do we need to apply resampling for one pass cbr. |
| // In one pass this is more limited than in two pass cbr |
| // The test and any change is only made one per key frame sequence |
| if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) |
| { |
| int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); |
| int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); |
| int new_width, new_height; |
| |
| // If we are below the resample DOWN watermark then scale down a notch. |
| if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) |
| { |
| cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO; |
| cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO; |
| } |
| // Should we now start scaling back up |
| else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)) |
| { |
| cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL; |
| cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL; |
| } |
| |
| // Get the new hieght and width |
| Scale2Ratio(cm->horiz_scale, &hr, &hs); |
| Scale2Ratio(cm->vert_scale, &vr, &vs); |
| new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
| new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
| |
| // If the image size has changed we need to reallocate the buffers |
| // and resample the source image |
| if ((cm->Width != new_width) || (cm->Height != new_height)) |
| { |
| cm->Width = new_width; |
| cm->Height = new_height; |
| vp8_alloc_compressor_data(cpi); |
| scale_and_extend_source(cpi->un_scaled_source, cpi); |
| } |
| } |
| |
| #endif |
| } |
| // return of 0 means drop frame |
| static int pick_frame_size(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| // First Frame is a special case |
| if (cm->current_video_frame == 0) |
| { |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->pass == 2) |
| vp8_calc_auto_iframe_target_size(cpi); |
| |
| // 1 Pass there is no information on which to base size so use bandwidth per second * fixed fraction |
| else |
| #endif |
| cpi->this_frame_target = cpi->oxcf.target_bandwidth / 2; |
| |
| // in error resilient mode the first frame is bigger since it likely contains |
| // all the static background |
| if (cpi->oxcf.error_resilient_mode == 1 || (cpi->compressor_speed == 2)) |
| { |
| cpi->this_frame_target *= 3; // 5; |
| } |
| |
| // Key frame from VFW/auto-keyframe/first frame |
| cm->frame_type = KEY_FRAME; |
| |
| } |
| // Special case for forced key frames |
| // The frame sizing here is still far from ideal for 2 pass. |
| else if (cm->frame_flags & FRAMEFLAGS_KEY) |
| { |
| cm->frame_type = KEY_FRAME; |
| resize_key_frame(cpi); |
| vp8_calc_iframe_target_size(cpi); |
| } |
| else if (cm->frame_type == KEY_FRAME) |
| { |
| vp8_calc_auto_iframe_target_size(cpi); |
| } |
| else |
| { |
| // INTER frame: compute target frame size |
| cm->frame_type = INTER_FRAME; |
| vp8_calc_pframe_target_size(cpi); |
| |
| // Check if we're dropping the frame: |
| if (cpi->drop_frame) |
| { |
| cpi->drop_frame = FALSE; |
| cpi->drop_count++; |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void set_quantizer(VP8_COMP *cpi, int Q) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| MACROBLOCKD *mbd = &cpi->mb.e_mbd; |
| int update = 0; |
| |
| update |= cm->base_qindex != Q; |
| cm->base_qindex = Q; |
| |
| cm->y1dc_delta_q = 0; |
| cm->y2dc_delta_q = 0; |
| cm->y2ac_delta_q = 0; |
| cm->uvdc_delta_q = 0; |
| cm->uvac_delta_q = 0; |
| |
| if(Q<4) |
| { |
| update |= cm->y2dc_delta_q != 4-Q; |
| cm->y2dc_delta_q = 4-Q; |
| } |
| |
| // Set Segment specific quatizers |
| mbd->segment_feature_data[MB_LVL_ALT_Q][0] = cpi->segment_feature_data[MB_LVL_ALT_Q][0]; |
| mbd->segment_feature_data[MB_LVL_ALT_Q][1] = cpi->segment_feature_data[MB_LVL_ALT_Q][1]; |
| mbd->segment_feature_data[MB_LVL_ALT_Q][2] = cpi->segment_feature_data[MB_LVL_ALT_Q][2]; |
| mbd->segment_feature_data[MB_LVL_ALT_Q][3] = cpi->segment_feature_data[MB_LVL_ALT_Q][3]; |
| |
| if(update) |
| vp8cx_init_quantizer(cpi); |
| |
| } |
| |
| static void update_alt_ref_frame_and_stats(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| // Update the golden frame buffer |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]); |
| |
| // Select an interval before next GF or altref |
| if (!cpi->auto_gold) |
| cpi->frames_till_gf_update_due = cpi->goldfreq; |
| |
| if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) |
| { |
| cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| |
| // Set the bits per frame that we should try and recover in subsequent inter frames |
| // to account for the extra GF spend... note that his does not apply for GF updates |
| // that occur coincident with a key frame as the extra cost of key frames is dealt |
| // with elsewhere. |
| |
| cpi->gf_overspend_bits += cpi->projected_frame_size; |
| cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; |
| } |
| |
| // Update data structure that monitors level of reference to last GF |
| vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); |
| cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
| |
| // this frame refreshes means next frames don't unless specified by user |
| cpi->common.frames_since_golden = 0; |
| |
| // Clear the alternate reference update pending flag. |
| cpi->source_alt_ref_pending = FALSE; |
| |
| // Set the alternate refernce frame active flag |
| cpi->source_alt_ref_active = TRUE; |
| |
| |
| } |
| static void update_golden_frame_and_stats(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| // Update the Golden frame reconstruction buffer if signalled and the GF usage counts. |
| if (cm->refresh_golden_frame) |
| { |
| // Update the golden frame buffer |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]); |
| |
| // Select an interval before next GF |
| if (!cpi->auto_gold) |
| cpi->frames_till_gf_update_due = cpi->goldfreq; |
| |
| if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) |
| { |
| cpi->current_gf_interval = cpi->frames_till_gf_update_due; |
| |
| // Set the bits per frame that we should try and recover in subsequent inter frames |
| // to account for the extra GF spend... note that his does not apply for GF updates |
| // that occur coincident with a key frame as the extra cost of key frames is dealt |
| // with elsewhere. |
| if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) |
| { |
| // Calcluate GF bits to be recovered |
| // Projected size - av frame bits available for inter frames for clip as a whole |
| cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target); |
| } |
| |
| cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; |
| |
| } |
| |
| // Update data structure that monitors level of reference to last GF |
| vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); |
| cpi->gf_active_count = cm->mb_rows * cm->mb_cols; |
| |
| // this frame refreshes means next frames don't unless specified by user |
| cm->refresh_golden_frame = 0; |
| cpi->common.frames_since_golden = 0; |
| |
| //if ( cm->frame_type == KEY_FRAME ) |
| //{ |
| cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; |
| cpi->recent_ref_frame_usage[LAST_FRAME] = 1; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; |
| //} |
| //else |
| //{ |
| // // Carry a potrtion of count over to begining of next gf sequence |
| // cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5; |
| // cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5; |
| //} |
| |
| // ******** Fixed Q test code only ************ |
| // If we are going to use the ALT reference for the next group of frames set a flag to say so. |
| if (cpi->oxcf.fixed_q >= 0 && |
| cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame) |
| { |
| cpi->source_alt_ref_pending = TRUE; |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| } |
| |
| if (!cpi->source_alt_ref_pending) |
| cpi->source_alt_ref_active = FALSE; |
| |
| // Decrement count down till next gf |
| if (cpi->frames_till_gf_update_due > 0) |
| cpi->frames_till_gf_update_due--; |
| |
| } |
| else if (!cpi->common.refresh_alt_ref_frame) |
| { |
| // Decrement count down till next gf |
| if (cpi->frames_till_gf_update_due > 0) |
| cpi->frames_till_gf_update_due--; |
| |
| if (cpi->common.frames_till_alt_ref_frame) |
| cpi->common.frames_till_alt_ref_frame --; |
| |
| cpi->common.frames_since_golden ++; |
| |
| if (cpi->common.frames_since_golden > 1) |
| { |
| cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME]; |
| cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME]; |
| cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]; |
| cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; |
| } |
| } |
| } |
| |
| // This function updates the reference frame probability estimates that |
| // will be used during mode selection |
| static void update_rd_ref_frame_probs(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| #if 0 |
| const int *const rfct = cpi->recent_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| cpi->prob_intra_coded = 255; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| } |
| else if (!(rf_intra + rf_inter)) |
| { |
| // This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank. |
| cpi->prob_intra_coded = 63; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| } |
| else |
| { |
| cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); |
| |
| if (cpi->prob_intra_coded < 1) |
| cpi->prob_intra_coded = 1; |
| |
| if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) |
| { |
| cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; |
| |
| if (cpi->prob_last_coded < 1) |
| cpi->prob_last_coded = 1; |
| |
| cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) |
| ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; |
| |
| if (cpi->prob_gf_coded < 1) |
| cpi->prob_gf_coded = 1; |
| } |
| } |
| |
| #else |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| cpi->prob_intra_coded = 255; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| } |
| else if (!(rf_intra + rf_inter)) |
| { |
| // This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank. |
| cpi->prob_intra_coded = 63; |
| cpi->prob_last_coded = 128; |
| cpi->prob_gf_coded = 128; |
| } |
| else |
| { |
| cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); |
| |
| if (cpi->prob_intra_coded < 1) |
| cpi->prob_intra_coded = 1; |
| |
| cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; |
| |
| if (cpi->prob_last_coded < 1) |
| cpi->prob_last_coded = 1; |
| |
| cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) |
| ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; |
| |
| if (cpi->prob_gf_coded < 1) |
| cpi->prob_gf_coded = 1; |
| } |
| |
| // update reference frame costs since we can do better than what we got last frame. |
| |
| if (cpi->common.refresh_alt_ref_frame) |
| { |
| cpi->prob_intra_coded += 40; |
| cpi->prob_last_coded = 200; |
| cpi->prob_gf_coded = 1; |
| } |
| else if (cpi->common.frames_since_golden == 0) |
| { |
| cpi->prob_last_coded = 214; |
| cpi->prob_gf_coded = 1; |
| } |
| else if (cpi->common.frames_since_golden == 1) |
| { |
| cpi->prob_last_coded = 192; |
| cpi->prob_gf_coded = 220; |
| } |
| else if (cpi->source_alt_ref_active) |
| { |
| //int dist = cpi->common.frames_till_alt_ref_frame + cpi->common.frames_since_golden; |
| cpi->prob_gf_coded -= 20; |
| |
| if (cpi->prob_gf_coded < 10) |
| cpi->prob_gf_coded = 10; |
| } |
| |
| #endif |
| } |
| |
| |
| // 1 = key, 0 = inter |
| static int decide_key_frame(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| |
| int code_key_frame = FALSE; |
| |
| cpi->kf_boost = 0; |
| |
| if (cpi->Speed > 11) |
| return FALSE; |
| |
| // Clear down mmx registers |
| vp8_clear_system_state(); //__asm emms; |
| |
| if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) |
| { |
| double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error); |
| double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error); |
| double minerror = cm->MBs * 256; |
| |
| #if 0 |
| |
| if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15 |
| && cpi->prediction_error > minerror |
| && (change > .25 || change2 > .25)) |
| { |
| FILE *f = fopen("intra_inter.stt", "a"); |
| |
| if (cpi->prediction_error <= 0) |
| cpi->prediction_error = 1; |
| |
| fprintf(f, "%d %d %d %d %14.4f\n", |
| cm->current_video_frame, |
| (int) cpi->prediction_error, |
| (int) cpi->intra_error, |
| (int)((10 * cpi->intra_error) / cpi->prediction_error), |
| change); |
| |
| fclose(f); |
| } |
| |
| #endif |
| |
| cpi->last_intra_error = cpi->intra_error; |
| cpi->last_prediction_error = cpi->prediction_error; |
| |
| if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15 |
| && cpi->prediction_error > minerror |
| && (change > .25 || change2 > .25)) |
| { |
| /*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/ |
| return TRUE; |
| } |
| |
| return FALSE; |
| |
| } |
| |
| // If the following are true we might as well code a key frame |
| if (((cpi->this_frame_percent_intra == 100) && |
| (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) || |
| ((cpi->this_frame_percent_intra > 95) && |
| (cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5)))) |
| { |
| code_key_frame = TRUE; |
| } |
| // in addition if the following are true and this is not a golden frame then code a key frame |
| // Note that on golden frames there often seems to be a pop in intra useage anyway hence this |
| // restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated. |
| else if (((cpi->this_frame_percent_intra > 60) && |
| (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) || |
| ((cpi->this_frame_percent_intra > 75) && |
| (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) || |
| ((cpi->this_frame_percent_intra > 90) && |
| (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10)))) |
| { |
| if (!cm->refresh_golden_frame) |
| code_key_frame = TRUE; |
| } |
| |
| return code_key_frame; |
| |
| } |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) |
| { |
| (void) size; |
| (void) dest; |
| (void) frame_flags; |
| set_quantizer(cpi, 26); |
| |
| scale_and_extend_source(cpi->un_scaled_source, cpi); |
| vp8_first_pass(cpi); |
| } |
| #endif |
| |
| #if 0 |
| void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) |
| { |
| |
| // write the frame |
| FILE *yframe; |
| int i; |
| char filename[255]; |
| |
| sprintf(filename, "cx\\y%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->y_height; i++) |
| fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); |
| |
| fclose(yframe); |
| sprintf(filename, "cx\\u%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->uv_height; i++) |
| fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); |
| |
| fclose(yframe); |
| sprintf(filename, "cx\\v%04d.raw", this_frame); |
| yframe = fopen(filename, "wb"); |
| |
| for (i = 0; i < frame->uv_height; i++) |
| fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); |
| |
| fclose(yframe); |
| } |
| #endif |
| // return of 0 means drop frame |
| |
| // Function to test for conditions that indeicate we should loop |
| // back and recode a frame. |
| static BOOL recode_loop_test( VP8_COMP *cpi, |
| int high_limit, int low_limit, |
| int q, int maxq, int minq ) |
| { |
| BOOL force_recode = FALSE; |
| VP8_COMMON *cm = &cpi->common; |
| |
| // Is frame recode allowed at all |
| // Yes if either recode mode 1 is selected or mode two is selcted |
| // and the frame is a key frame. golden frame or alt_ref_frame |
| if ( (cpi->sf.recode_loop == 1) || |
| ( (cpi->sf.recode_loop == 2) && |
| ( (cm->frame_type == KEY_FRAME) || |
| cm->refresh_golden_frame || |
| cm->refresh_alt_ref_frame ) ) ) |
| { |
| // General over and under shoot tests |
| if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) || |
| ((cpi->projected_frame_size < low_limit) && (q > minq)) ) |
| { |
| force_recode = TRUE; |
| } |
| // Special Constrained quality tests |
| else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) |
| { |
| // Undershoot and below auto cq level |
| if ( (q > cpi->cq_target_quality) && |
| (cpi->projected_frame_size < |
| ((cpi->this_frame_target * 7) >> 3))) |
| { |
| force_recode = TRUE; |
| } |
| // Severe undershoot and between auto and user cq level |
| else if ( (q > cpi->oxcf.cq_level) && |
| (cpi->projected_frame_size < cpi->min_frame_bandwidth) && |
| (cpi->active_best_quality > cpi->oxcf.cq_level)) |
| { |
| force_recode = TRUE; |
| cpi->active_best_quality = cpi->oxcf.cq_level; |
| } |
| } |
| } |
| |
| return force_recode; |
| } |
| |
| static void encode_frame_to_data_rate |
| ( |
| VP8_COMP *cpi, |
| unsigned long *size, |
| unsigned char *dest, |
| unsigned int *frame_flags |
| ) |
| { |
| int Q; |
| int frame_over_shoot_limit; |
| int frame_under_shoot_limit; |
| |
| int Loop = FALSE; |
| int loop_count; |
| int this_q; |
| int last_zbin_oq; |
| |
| int q_low; |
| int q_high; |
| int zbin_oq_high; |
| int zbin_oq_low = 0; |
| int top_index; |
| int bottom_index; |
| VP8_COMMON *cm = &cpi->common; |
| int active_worst_qchanged = FALSE; |
| |
| int overshoot_seen = FALSE; |
| int undershoot_seen = FALSE; |
| int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100; |
| int drop_mark75 = drop_mark * 2 / 3; |
| int drop_mark50 = drop_mark / 4; |
| int drop_mark25 = drop_mark / 8; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| vp8_clear_system_state(); |
| |
| // Test code for segmentation of gf/arf (0,0) |
| //segmentation_test_function((VP8_PTR) cpi); |
| |
| #if CONFIG_REALTIME_ONLY |
| if(cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME) |
| { |
| if(cpi->force_next_frame_intra) |
| { |
| cm->frame_type = KEY_FRAME; /* delayed intra frame */ |
| } |
| } |
| cpi->force_next_frame_intra = 0; |
| #endif |
| |
| // For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->pass == 2) |
| { |
| if (cpi->common.refresh_alt_ref_frame) |
| { |
| cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for the alt ref frame |
| cpi->target_bandwidth = cpi->gf_bits * cpi->output_frame_rate; // per second target bitrate |
| } |
| } |
| else |
| #endif |
| cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate); |
| |
| // Default turn off buffer to buffer copying |
| cm->copy_buffer_to_gf = 0; |
| cm->copy_buffer_to_arf = 0; |
| |
| // Clear zbin over-quant value and mode boost values. |
| cpi->zbin_over_quant = 0; |
| cpi->zbin_mode_boost = 0; |
| |
| // Enable or disable mode based tweaking of the zbin |
| // For 2 Pass Only used where GF/ARF prediction quality |
| // is above a threshold |
| cpi->zbin_mode_boost = 0; |
| cpi->zbin_mode_boost_enabled = TRUE; |
| if (cpi->pass == 2) |
| { |
| if ( cpi->gfu_boost <= 400 ) |
| { |
| cpi->zbin_mode_boost_enabled = FALSE; |
| } |
| } |
| |
| // Current default encoder behaviour for the altref sign bias |
| if (cpi->source_alt_ref_active) |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; |
| else |
| cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0; |
| |
| // Check to see if a key frame is signalled |
| // For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass. |
| if ((cm->current_video_frame == 0) || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) |
| { |
| // Key frame from VFW/auto-keyframe/first frame |
| cm->frame_type = KEY_FRAME; |
| } |
| |
| // Set default state for segment and mode based loop filter update flags |
| cpi->mb.e_mbd.update_mb_segmentation_map = 0; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 0; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; |
| |
| // Set various flags etc to special state if it is a key frame |
| if (cm->frame_type == KEY_FRAME) |
| { |
| int i; |
| |
| // Reset the loop filter deltas and segmentation map |
| setup_features(cpi); |
| |
| // If segmentation is enabled force a map update for key frames |
| if (cpi->mb.e_mbd.segmentation_enabled) |
| { |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| // The alternate reference frame cannot be active for a key frame |
| cpi->source_alt_ref_active = FALSE; |
| |
| // Reset the RD threshold multipliers to default of * 1 (128) |
| for (i = 0; i < MAX_MODES; i++) |
| { |
| cpi->rd_thresh_mult[i] = 128; |
| } |
| } |
| |
| // Test code for segmentation |
| //if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0)) |
| //if ( (cm->current_video_frame % 2) == 0 ) |
| // enable_segmentation((VP8_PTR)cpi); |
| //else |
| // disable_segmentation((VP8_PTR)cpi); |
| |
| #if 0 |
| // Experimental code for lagged compress and one pass |
| // Initialise one_pass GF frames stats |
| // Update stats used for GF selection |
| //if ( cpi->pass == 0 ) |
| { |
| cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS; |
| |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0; |
| } |
| #endif |
| |
| update_rd_ref_frame_probs(cpi); |
| |
| if (cpi->drop_frames_allowed) |
| { |
| // The reset to decimation 0 is only done here for one pass. |
| // Once it is set two pass leaves decimation on till the next kf. |
| if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) |
| cpi->decimation_factor --; |
| |
| if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) |
| cpi->decimation_factor = 1; |
| |
| else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) |
| { |
| cpi->decimation_factor = 3; |
| } |
| else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) |
| { |
| cpi->decimation_factor = 2; |
| } |
| else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) |
| { |
| cpi->decimation_factor = 1; |
| } |
| |
| //vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor); |
| } |
| |
| // The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate) |
| // This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in |
| // some situations to drop frame rate but throw more bits at each frame. |
| // |
| // Note that dropping a key frame can be problematic if spatial resampling is also active |
| if (cpi->decimation_factor > 0) |
| { |
| switch (cpi->decimation_factor) |
| { |
| case 1: |
| cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2; |
| break; |
| case 2: |
| cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; |
| break; |
| case 3: |
| cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; |
| break; |
| } |
| |
| // Note that we should not throw out a key frame (especially when spatial resampling is enabled). |
| if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling ) |
| { |
| cpi->decimation_count = cpi->decimation_factor; |
| } |
| else if (cpi->decimation_count > 0) |
| { |
| cpi->decimation_count --; |
| cpi->bits_off_target += cpi->av_per_frame_bandwidth; |
| cm->current_video_frame++; |
| cpi->frames_since_key++; |
| |
| #if CONFIG_PSNR |
| cpi->count ++; |
| #endif |
| |
| cpi->buffer_level = cpi->bits_off_target; |
| |
| return; |
| } |
| else |
| cpi->decimation_count = cpi->decimation_factor; |
| } |
| |
| // Decide how big to make the frame |
| if (!pick_frame_size(cpi)) |
| { |
| cm->current_video_frame++; |
| cpi->frames_since_key++; |
| return; |
| } |
| |
| // Reduce active_worst_allowed_q for CBR if our buffer is getting too full. |
| // This has a knock on effect on active best quality as well. |
| // For CBR if the buffer reaches its maximum level then we can no longer |
| // save up bits for later frames so we might as well use them up |
| // on the current frame. |
| if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
| (cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode) |
| { |
| int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4 |
| |
| if (Adjustment) |
| { |
| int buff_lvl_step; |
| int tmp_lvl = cpi->buffer_level; |
| |
| if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) |
| { |
| buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment; |
| |
| if (buff_lvl_step) |
| { |
| Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step; |
| cpi->active_worst_quality -= Adjustment; |
| } |
| } |
| else |
| { |
| cpi->active_worst_quality -= Adjustment; |
| } |
| } |
| } |
| |
| // Set an active best quality and if necessary active worst quality |
| // There is some odd behaviour for one pass here that needs attention. |
| if ( (cpi->pass == 2) || (cpi->ni_frames > 150)) |
| { |
| vp8_clear_system_state(); |
| |
| Q = cpi->active_worst_quality; |
| |
| if ( cm->frame_type == KEY_FRAME ) |
| { |
| if ( cpi->pass == 2 ) |
| { |
| if (cpi->gfu_boost > 600) |
| cpi->active_best_quality = kf_low_motion_minq[Q]; |
| else |
| cpi->active_best_quality = kf_high_motion_minq[Q]; |
| |
| // Special case for key frames forced because we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping |
| if ( cpi->this_key_frame_forced ) |
| { |
| if ( cpi->active_best_quality > cpi->avg_frame_qindex * 7/8) |
| cpi->active_best_quality = cpi->avg_frame_qindex * 7/8; |
| else if ( cpi->active_best_quality < cpi->avg_frame_qindex >> 2 ) |
| cpi->active_best_quality = cpi->avg_frame_qindex >> 2; |
| } |
| } |
| // One pass more conservative |
| else |
| cpi->active_best_quality = kf_high_motion_minq[Q]; |
| } |
| |
| else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame) |
| { |
| // Use the lower of cpi->active_worst_quality and recent |
| // average Q as basis for GF/ARF Q limit unless last frame was |
| // a key frame. |
| if ( (cpi->frames_since_key > 1) && |
| (cpi->avg_frame_qindex < cpi->active_worst_quality) ) |
| { |
| Q = cpi->avg_frame_qindex; |
| |
| if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (Q < cpi->oxcf.cq_level) ) |
| { |
| Q = cpi->oxcf.cq_level; |
| } |
| } |
| |
| if ( cpi->pass == 2 ) |
| { |
| if ( cpi->gfu_boost > 1000 ) |
| cpi->active_best_quality = gf_low_motion_minq[Q]; |
| else if ( cpi->gfu_boost < 400 ) |
| cpi->active_best_quality = gf_high_motion_minq[Q]; |
| else |
| cpi->active_best_quality = gf_mid_motion_minq[Q]; |
| } |
| // One pass more conservative |
| else |
| cpi->active_best_quality = gf_high_motion_minq[Q]; |
| } |
| else |
| { |
| cpi->active_best_quality = inter_minq[Q]; |
| |
| // For the constant/constrained quality mode we dont want |
| // the quality to rise above the cq level. |
| if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (cpi->active_best_quality < cpi->cq_target_quality) ) |
| { |
| // If we are strongly undershooting the target rate in the last |
| // frames then use the user passed in cq value not the auto |
| // cq value. |
| if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth ) |
| cpi->active_best_quality = cpi->oxcf.cq_level; |
| else |
| cpi->active_best_quality = cpi->cq_target_quality; |
| } |
| } |
| |
| // If CBR and the buffer is as full then it is reasonable to allow higher quality on the frames |
| // to prevent bits just going to waste. |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| // Note that the use of >= here elliminates the risk of a devide by 0 error in the else if clause |
| if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) |
| cpi->active_best_quality = cpi->best_quality; |
| |
| else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) |
| { |
| int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level); |
| int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128; |
| |
| cpi->active_best_quality -= min_qadjustment; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| if (cpi->active_worst_quality > cpi->worst_quality) |
| cpi->active_worst_quality = cpi->worst_quality; |
| |
| if (cpi->active_best_quality < cpi->best_quality) |
| cpi->active_best_quality = cpi->best_quality; |
| else if (cpi->active_best_quality > cpi->active_worst_quality) |
| cpi->active_best_quality = cpi->active_worst_quality; |
| |
| // Determine initial Q to try |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| last_zbin_oq = cpi->zbin_over_quant; |
| |
| // Set highest allowed value for Zbin over quant |
| if (cm->frame_type == KEY_FRAME) |
| zbin_oq_high = 0; //ZBIN_OQ_MAX/16 |
| else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active)) |
| zbin_oq_high = 16; |
| else |
| zbin_oq_high = ZBIN_OQ_MAX; |
| |
| // Setup background Q adjustment for error resilliant mode |
| if (cpi->cyclic_refresh_mode_enabled) |
| cyclic_background_refresh(cpi, Q, 0); |
| |
| vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); |
| |
| // Limit Q range for the adaptive loop. |
| bottom_index = cpi->active_best_quality; |
| top_index = cpi->active_worst_quality; |
| q_low = cpi->active_best_quality; |
| q_high = cpi->active_worst_quality; |
| |
| vp8_save_coding_context(cpi); |
| |
| loop_count = 0; |
| |
| |
| scale_and_extend_source(cpi->un_scaled_source, cpi); |
| #if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC |
| |
| if (cpi->oxcf.noise_sensitivity > 0) |
| { |
| unsigned char *src; |
| int l = 0; |
| |
| switch (cpi->oxcf.noise_sensitivity) |
| { |
| case 1: |
| l = 20; |
| break; |
| case 2: |
| l = 40; |
| break; |
| case 3: |
| l = 60; |
| break; |
| case 4: |
| l = 80; |
| break; |
| case 5: |
| l = 100; |
| break; |
| case 6: |
| l = 150; |
| break; |
| } |
| |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc)); |
| } |
| else |
| { |
| vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc)); |
| |
| src = cpi->Source->y_buffer; |
| |
| if (cpi->Source->y_stride < 0) |
| { |
| src += cpi->Source->y_stride * (cpi->Source->y_height - 1); |
| } |
| } |
| } |
| |
| #endif |
| |
| #ifdef OUTPUT_YUV_SRC |
| vp8_write_yuv_frame(cpi->Source); |
| #endif |
| |
| do |
| { |
| vp8_clear_system_state(); //__asm emms; |
| |
| /* |
| if(cpi->is_src_frame_alt_ref) |
| Q = 127; |
| */ |
| |
| set_quantizer(cpi, Q); |
| this_q = Q; |
| |
| // setup skip prob for costing in mode/mv decision |
| if (cpi->common.mb_no_coeff_skip) |
| { |
| cpi->prob_skip_false = cpi->base_skip_false_prob[Q]; |
| |
| if (cm->frame_type != KEY_FRAME) |
| { |
| if (cpi->common.refresh_alt_ref_frame) |
| { |
| if (cpi->last_skip_false_probs[2] != 0) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[2]; |
| |
| /* |
| if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 ) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[2]; |
| else if (cpi->last_skip_false_probs[2]!=0) |
| cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2; |
| */ |
| } |
| else if (cpi->common.refresh_golden_frame) |
| { |
| if (cpi->last_skip_false_probs[1] != 0) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[1]; |
| |
| /* |
| if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 ) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[1]; |
| else if (cpi->last_skip_false_probs[1]!=0) |
| cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2; |
| */ |
| } |
| else |
| { |
| if (cpi->last_skip_false_probs[0] != 0) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[0]; |
| |
| /* |
| if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 ) |
| cpi->prob_skip_false = cpi->last_skip_false_probs[0]; |
| else if(cpi->last_skip_false_probs[0]!=0) |
| cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2; |
| */ |
| } |
| |
| //as this is for cost estimate, let's make sure it does not go extreme eitehr way |
| if (cpi->prob_skip_false < 5) |
| cpi->prob_skip_false = 5; |
| |
| if (cpi->prob_skip_false > 250) |
| cpi->prob_skip_false = 250; |
| |
| if (cpi->is_src_frame_alt_ref) |
| cpi->prob_skip_false = 1; |
| |
| |
| } |
| |
| #if 0 |
| |
| if (cpi->pass != 1) |
| { |
| FILE *f = fopen("skip.stt", "a"); |
| fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false); |
| fclose(f); |
| } |
| |
| #endif |
| |
| } |
| |
| if (cm->frame_type == KEY_FRAME) |
| vp8_setup_key_frame(cpi); |
| |
| // transform / motion compensation build reconstruction frame |
| |
| vp8_encode_frame(cpi); |
| cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi); |
| cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0; |
| |
| vp8_clear_system_state(); //__asm emms; |
| |
| // Test to see if the stats generated for this frame indicate that we should have coded a key frame |
| // (assuming that we didn't)! |
| if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME) |
| { |
| |
| #if CONFIG_REALTIME_ONLY |
| { |
| /* we don't do re-encoding in realtime mode |
| * if key frame is decided than we force it on next frame */ |
| cpi->force_next_frame_intra = decide_key_frame(cpi); |
| } |
| #else |
| if (decide_key_frame(cpi)) |
| { |
| vp8_calc_auto_iframe_target_size(cpi); |
| |
| // Reset all our sizing numbers and recode |
| cm->frame_type = KEY_FRAME; |
| |
| // Clear the Alt reference frame active flag when we have a key frame |
| cpi->source_alt_ref_active = FALSE; |
| |
| // Reset the loop filter deltas and segmentation map |
| setup_features(cpi); |
| |
| // If segmentation is enabled force a map update for key frames |
| if (cpi->mb.e_mbd.segmentation_enabled) |
| { |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| vp8_restore_coding_context(cpi); |
| |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| |
| vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); |
| |
| // Limit Q range for the adaptive loop. |
| bottom_index = cpi->active_best_quality; |
| top_index = cpi->active_worst_quality; |
| q_low = cpi->active_best_quality; |
| q_high = cpi->active_worst_quality; |
| |
| loop_count++; |
| Loop = TRUE; |
| |
| resize_key_frame(cpi); |
| continue; |
| } |
| #endif |
| } |
| |
| vp8_clear_system_state(); |
| |
| if (frame_over_shoot_limit == 0) |
| frame_over_shoot_limit = 1; |
| |
| // Are we are overshooting and up against the limit of active max Q. |
| if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) && |
| (Q == cpi->active_worst_quality) && |
| (cpi->active_worst_quality < cpi->worst_quality) && |
| (cpi->projected_frame_size > frame_over_shoot_limit)) |
| { |
| int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit; |
| |
| // If so is there any scope for relaxing it |
| while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0)) |
| { |
| cpi->active_worst_quality++; |
| top_index = cpi->active_worst_quality; |
| over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size. |
| } |
| |
| // If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop. |
| active_worst_qchanged = TRUE; |
| } |
| else |
| active_worst_qchanged = FALSE; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| // Special case handling for forced key frames |
| if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced ) |
| { |
| int last_q = Q; |
| int kf_err = vp8_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx], |
| IF_RTCD(&cpi->rtcd.variance)); |
| |
| // The key frame is not good enough |
| if ( kf_err > ((cpi->ambient_err * 7) >> 3) ) |
| { |
| // Lower q_high |
| q_high = (Q > q_low) ? (Q - 1) : q_low; |
| |
| // Adjust Q |
| Q = (q_high + q_low) >> 1; |
| } |
| // The key frame is much better than the previous frame |
| else if ( kf_err < (cpi->ambient_err >> 1) ) |
| { |
| // Raise q_low |
| q_low = (Q < q_high) ? (Q + 1) : q_high; |
| |
| // Adjust Q |
| Q = (q_high + q_low + 1) >> 1; |
| } |
| |
| // Clamp Q to upper and lower limits: |
| if (Q > q_high) |
| Q = q_high; |
| else if (Q < q_low) |
| Q = q_low; |
| |
| Loop = ((Q != last_q)) ? TRUE : FALSE; |
| } |
| |
| // Is the projected frame size out of range and are we allowed to attempt to recode. |
| else if ( recode_loop_test( cpi, |
| frame_over_shoot_limit, frame_under_shoot_limit, |
| Q, top_index, bottom_index ) ) |
| { |
| int last_q = Q; |
| int Retries = 0; |
| |
| // Frame size out of permitted range: |
| // Update correction factor & compute new Q to try... |
| |
| // Frame is too large |
| if (cpi->projected_frame_size > cpi->this_frame_target) |
| { |
| //if ( cpi->zbin_over_quant == 0 ) |
| q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value |
| |
| if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low |
| zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; |
| |
| //if ( undershoot_seen || (Q == MAXQ) ) |
| if (undershoot_seen) |
| { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp8_update_rate_correction_factors(cpi, 1); |
| |
| Q = (q_high + q_low + 1) / 2; |
| |
| // Adjust cpi->zbin_over_quant (only allowed when Q is max) |
| if (Q < MAXQ) |
| cpi->zbin_over_quant = 0; |
| else |
| { |
| zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; |
| cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; |
| } |
| } |
| else |
| { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp8_update_rate_correction_factors(cpi, 0); |
| |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| |
| while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10)) |
| { |
| vp8_update_rate_correction_factors(cpi, 0); |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| Retries ++; |
| } |
| } |
| |
| overshoot_seen = TRUE; |
| } |
| // Frame is too small |
| else |
| { |
| if (cpi->zbin_over_quant == 0) |
| q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant |
| else // else lower zbin_oq_high |
| zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low; |
| |
| if (overshoot_seen) |
| { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp8_update_rate_correction_factors(cpi, 1); |
| |
| Q = (q_high + q_low) / 2; |
| |
| // Adjust cpi->zbin_over_quant (only allowed when Q is max) |
| if (Q < MAXQ) |
| cpi->zbin_over_quant = 0; |
| else |
| cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; |
| } |
| else |
| { |
| // Update rate_correction_factor unless cpi->active_worst_quality has changed. |
| if (!active_worst_qchanged) |
| vp8_update_rate_correction_factors(cpi, 0); |
| |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| |
| // Special case reset for qlow for constrained quality. |
| // This should only trigger where there is very substantial |
| // undershoot on a frame and the auto cq level is above |
| // the user passsed in value. |
| if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (Q < q_low) ) |
| { |
| q_low = Q; |
| } |
| |
| while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10)) |
| { |
| vp8_update_rate_correction_factors(cpi, 0); |
| Q = vp8_regulate_q(cpi, cpi->this_frame_target); |
| Retries ++; |
| } |
| } |
| |
| undershoot_seen = TRUE; |
| } |
| |
| // Clamp Q to upper and lower limits: |
| if (Q > q_high) |
| Q = q_high; |
| else if (Q < q_low) |
| Q = q_low; |
| |
| // Clamp cpi->zbin_over_quant |
| cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant; |
| |
| //Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE; |
| Loop = ((Q != last_q)) ? TRUE : FALSE; |
| last_zbin_oq = cpi->zbin_over_quant; |
| } |
| else |
| #endif |
| Loop = FALSE; |
| |
| if (cpi->is_src_frame_alt_ref) |
| Loop = FALSE; |
| |
| if (Loop == TRUE) |
| { |
| vp8_restore_coding_context(cpi); |
| loop_count++; |
| #if CONFIG_PSNR |
| cpi->tot_recode_hits++; |
| #endif |
| } |
| } |
| while (Loop == TRUE); |
| |
| #if 0 |
| // Experimental code for lagged and one pass |
| // Update stats used for one pass GF selection |
| { |
| /* |
| int frames_so_far; |
| double frame_intra_error; |
| double frame_coded_error; |
| double frame_pcnt_inter; |
| double frame_pcnt_motion; |
| double frame_mvr; |
| double frame_mvr_abs; |
| double frame_mvc; |
| double frame_mvc_abs; |
| */ |
| |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error; |
| cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0; |
| } |
| #endif |
| |
| // Special case code to reduce pulsing when key frames are forced at a |
| // fixed interval. Note the reconstruction error if it is the frame before |
| // the force key frame |
| if ( cpi->next_key_frame_forced && (cpi->frames_to_key == 0) ) |
| { |
| cpi->ambient_err = vp8_calc_ss_err(cpi->Source, |
| &cm->yv12_fb[cm->new_fb_idx], |
| IF_RTCD(&cpi->rtcd.variance)); |
| } |
| |
| // This frame's MVs are saved and will be used in next frame's MV prediction. |
| // Last frame has one more line(add to bottom) and one more column(add to right) than cm->mip. The edge elements are initialized to 0. |
| if(cm->show_frame) //do not save for altref frame |
| { |
| int mb_row; |
| int mb_col; |
| MODE_INFO *tmp = cm->mip; //point to beginning of allocated MODE_INFO arrays. |
| |
| if(cm->frame_type != KEY_FRAME) |
| { |
| for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++) |
| { |
| for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++) |
| { |
| if(tmp->mbmi.ref_frame != INTRA_FRAME) |
| cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int; |
| |
| cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]; |
| cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame; |
| tmp++; |
| } |
| } |
| } |
| } |
| |
| // Update the GF useage maps. |
| // This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter |
| // This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter |
| vp8_update_gf_useage_maps(cpi, cm, &cpi->mb); |
| |
| if (cm->frame_type == KEY_FRAME) |
| cm->refresh_last_frame = 1; |
| |
| #if 0 |
| { |
| FILE *f = fopen("gfactive.stt", "a"); |
| fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame); |
| fclose(f); |
| } |
| #endif |
| |
| // For inter frames the current default behaviour is that when cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer |
| // This is purely an encoder descision at present. |
| if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) |
| cm->copy_buffer_to_arf = 2; |
| else |
| cm->copy_buffer_to_arf = 0; |
| |
| if (cm->refresh_last_frame) |
| { |
| vp8_swap_yv12_buffer(&cm->yv12_fb[cm->lst_fb_idx], &cm->yv12_fb[cm->new_fb_idx]); |
| cm->frame_to_show = &cm->yv12_fb[cm->lst_fb_idx]; |
| } |
| else |
| cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; |
| |
| //#pragma omp parallel sections |
| { |
| |
| //#pragma omp section |
| { |
| |
| struct vpx_usec_timer timer; |
| |
| vpx_usec_timer_start(&timer); |
| |
| if (cpi->sf.auto_filter == 0) |
| vp8cx_pick_filter_level_fast(cpi->Source, cpi); |
| else |
| vp8cx_pick_filter_level(cpi->Source, cpi); |
| |
| vpx_usec_timer_mark(&timer); |
| |
| cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); |
| |
| if (cm->no_lpf) |
| cm->filter_level = 0; |
| |
| if (cm->filter_level > 0) |
| { |
| vp8cx_set_alt_lf_level(cpi, cm->filter_level); |
| vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level); |
| cm->last_filter_type = cm->filter_type; |
| cm->last_sharpness_level = cm->sharpness_level; |
| } |
| /* Move storing frame_type out of the above loop since it is also needed in motion search besides loopfilter */ |
| cm->last_frame_type = cm->frame_type; |
| |
| vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show); |
| |
| if (cpi->oxcf.error_resilient_mode == 1) |
| { |
| cm->refresh_entropy_probs = 0; |
| } |
| |
| } |
| //#pragma omp section |
| { |
| // build the bitstream |
| vp8_pack_bitstream(cpi, dest, size); |
| } |
| } |
| |
| { |
| YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
| YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
| YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
| YV12_BUFFER_CONFIG *alt_yv12 = &cm->yv12_fb[cm->alt_fb_idx]; |
| // At this point the new frame has been encoded coded. |
| // If any buffer copy / swaping is signalled it should be done here. |
| if (cm->frame_type == KEY_FRAME) |
| { |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, gld_yv12); |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, alt_yv12); |
| } |
| else // For non key frames |
| { |
| // Code to copy between reference buffers |
| if (cm->copy_buffer_to_arf) |
| { |
| if (cm->copy_buffer_to_arf == 1) |
| { |
| if (cm->refresh_last_frame) |
| // We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set. |
| vp8_yv12_copy_frame_ptr(new_yv12, alt_yv12); |
| else |
| vp8_yv12_copy_frame_ptr(lst_yv12, alt_yv12); |
| } |
| else if (cm->copy_buffer_to_arf == 2) |
| vp8_yv12_copy_frame_ptr(gld_yv12, alt_yv12); |
| } |
| |
| if (cm->copy_buffer_to_gf) |
| { |
| if (cm->copy_buffer_to_gf == 1) |
| { |
| if (cm->refresh_last_frame) |
| // We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set. |
| vp8_yv12_copy_frame_ptr(new_yv12, gld_yv12); |
| else |
| vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); |
| } |
| else if (cm->copy_buffer_to_gf == 2) |
| vp8_yv12_copy_frame_ptr(alt_yv12, gld_yv12); |
| } |
| } |
| } |
| |
| // Update rate control heuristics |
| cpi->total_byte_count += (*size); |
| cpi->projected_frame_size = (*size) << 3; |
| |
| if (!active_worst_qchanged) |
| vp8_update_rate_correction_factors(cpi, 2); |
| |
| cpi->last_q[cm->frame_type] = cm->base_qindex; |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| vp8_adjust_key_frame_context(cpi); |
| } |
| |
| // Keep a record of ambient average Q. |
| if (cm->frame_type != KEY_FRAME) |
| cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; |
| |
| // Keep a record from which we can calculate the average Q excluding GF updates and key frames |
| if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame) |
| { |
| cpi->ni_frames++; |
| |
| // Calculate the average Q for normal inter frames (not key or GFU |
| // frames). |
| if ( cpi->pass == 2 ) |
| { |
| cpi->ni_tot_qi += Q; |
| cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); |
| } |
| else |
| { |
| // Damp value for first few frames |
| if (cpi->ni_frames > 150 ) |
| { |
| cpi->ni_tot_qi += Q; |
| cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); |
| } |
| // For one pass, early in the clip ... average the current frame Q |
| // value with the worstq entered by the user as a dampening measure |
| else |
| { |
| cpi->ni_tot_qi += Q; |
| cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2; |
| } |
| |
| // If the average Q is higher than what was used in the last frame |
| // (after going through the recode loop to keep the frame size within range) |
| // then use the last frame value - 1. |
| // The -1 is designed to stop Q and hence the data rate, from progressively |
| // falling away during difficult sections, but at the same time reduce the number of |
| // itterations around the recode loop. |
| if (Q > cpi->ni_av_qi) |
| cpi->ni_av_qi = Q - 1; |
| } |
| } |
| |
| #if 0 |
| |
| // If the frame was massively oversize and we are below optimal buffer level drop next frame |
| if ((cpi->drop_frames_allowed) && |
| (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && |
| (cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) && |
| (cpi->projected_frame_size > (4 * cpi->this_frame_target))) |
| { |
| cpi->drop_frame = TRUE; |
| } |
| |
| #endif |
| |
| // Set the count for maximum consequative dropped frames based upon the ratio of |
| // this frame size to the target average per frame bandwidth. |
| // (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0. |
| if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0)) |
| { |
| cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth; |
| |
| if (cpi->max_drop_count > cpi->max_consec_dropped_frames) |
| cpi->max_drop_count = cpi->max_consec_dropped_frames; |
| } |
| |
| // Update the buffer level variable. |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if ( !cm->show_frame ) |
| cpi->bits_off_target -= cpi->projected_frame_size; |
| else |
| cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; |
| |
| // Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass. |
| cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; |
| cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; |
| cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; |
| cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32; |
| |
| // Actual bits spent |
| cpi->total_actual_bits += cpi->projected_frame_size; |
| |
| // Debug stats |
| cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); |
| |
| cpi->buffer_level = cpi->bits_off_target; |
| |
| // Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames |
| if (cm->frame_type == KEY_FRAME) |
| { |
| cpi->kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; |
| |
| if (cpi->kf_group_bits < 0) |
| cpi->kf_group_bits = 0 ; |
| } |
| else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) |
| { |
| cpi->gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; |
| |
| if (cpi->gf_group_bits < 0) |
| cpi->gf_group_bits = 0 ; |
| } |
| |
| if (cm->frame_type != KEY_FRAME) |
| { |
| if (cpi->common.refresh_alt_ref_frame) |
| { |
| cpi->last_skip_false_probs[2] = cpi->prob_skip_false; |
| cpi->last_skip_probs_q[2] = cm->base_qindex; |
| } |
| else if (cpi->common.refresh_golden_frame) |
| { |
| cpi->last_skip_false_probs[1] = cpi->prob_skip_false; |
| cpi->last_skip_probs_q[1] = cm->base_qindex; |
| } |
| else |
| { |
| cpi->last_skip_false_probs[0] = cpi->prob_skip_false; |
| cpi->last_skip_probs_q[0] = cm->base_qindex; |
| |
| //update the baseline |
| cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false; |
| |
| } |
| } |
| |
| #if 0 && CONFIG_PSNR |
| { |
| FILE *f = fopen("tmp.stt", "a"); |
| |
| vp8_clear_system_state(); //__asm emms; |
| |
| if (cpi->total_coded_error_left != 0.0) |
| fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld" |
| "%6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f" |
| "%10.3f %8ld\n", |
| cpi->common.current_video_frame, cpi->this_frame_target, |
| cpi->projected_frame_size, |
| (cpi->projected_frame_size - cpi->this_frame_target), |
| (int)cpi->total_target_vs_actual, |
| (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), |
| (int)cpi->total_actual_bits, cm->base_qindex, |
| cpi->active_best_quality, cpi->active_worst_quality, |
| cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant, |
| //cpi->avg_frame_qindex, cpi->zbin_over_quant, |
| cm->refresh_golden_frame, cm->refresh_alt_ref_frame, |
| cm->frame_type, cpi->gfu_boost, |
| cpi->est_max_qcorrection_factor, (int)cpi->bits_left, |
| cpi->total_coded_error_left, |
| (double)cpi->bits_left / cpi->total_coded_error_left, |
| cpi->tot_recode_hits); |
| else |
| fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld" |
| "%6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f" |
| "%8ld\n", |
| cpi->common.current_video_frame, |
| cpi->this_frame_target, cpi->projected_frame_size, |
| (cpi->projected_frame_size - cpi->this_frame_target), |
| (int)cpi->total_target_vs_actual, |
| (cpi->oxcf.starting_buffer_level-cpi->bits_off_target), |
| (int)cpi->total_actual_bits, cm->base_qindex, |
| cpi->active_best_quality, cpi->active_worst_quality, |
| cpi->ni_av_qi, cpi->cq_target_quality, cpi->zbin_over_quant, |
| //cpi->avg_frame_qindex, cpi->zbin_over_quant, |
| cm->refresh_golden_frame, cm->refresh_alt_ref_frame, |
| cm->frame_type, cpi->gfu_boost, |
| cpi->est_max_qcorrection_factor, (int)cpi->bits_left, |
| cpi->total_coded_error_left, cpi->tot_recode_hits); |
| |
| fclose(f); |
| |
| { |
| FILE *fmodes = fopen("Modes.stt", "a"); |
| int i; |
| |
| fprintf(fmodes, "%6d:%1d:%1d:%1d ", |
| cpi->common.current_video_frame, |
| cm->frame_type, cm->refresh_golden_frame, |
| cm->refresh_alt_ref_frame); |
| |
| for (i = 0; i < MAX_MODES; i++) |
| fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); |
| |
| fprintf(fmodes, "\n"); |
| |
| fclose(fmodes); |
| } |
| } |
| |
| #endif |
| |
| // If this was a kf or Gf note the Q |
| if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame) |
| cm->last_kf_gf_q = cm->base_qindex; |
| |
| if (cm->refresh_golden_frame == 1) |
| cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; |
| else |
| cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN; |
| |
| if (cm->refresh_alt_ref_frame == 1) |
| cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; |
| else |
| cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF; |
| |
| |
| if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed |
| cpi->gold_is_last = 1; |
| else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other |
| cpi->gold_is_last = 0; |
| |
| if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed |
| cpi->alt_is_last = 1; |
| else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other |
| cpi->alt_is_last = 0; |
| |
| if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed |
| cpi->gold_is_alt = 1; |
| else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other |
| cpi->gold_is_alt = 0; |
| |
| cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; |
| |
| if (cpi->gold_is_last) |
| cpi->ref_frame_flags &= ~VP8_GOLD_FLAG; |
| |
| if (cpi->alt_is_last) |
| cpi->ref_frame_flags &= ~VP8_ALT_FLAG; |
| |
| if (cpi->gold_is_alt) |
| cpi->ref_frame_flags &= ~VP8_ALT_FLAG; |
| |
| |
| if (cpi->oxcf.error_resilient_mode) |
| { |
| // Is this an alternate reference update |
| if (cpi->common.refresh_alt_ref_frame) |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]); |
| |
| if (cpi->common.refresh_golden_frame) |
| vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]); |
| } |
| else |
| { |
| if (cpi->oxcf.play_alternate && cpi->common.refresh_alt_ref_frame && (cpi->common.frame_type != KEY_FRAME)) |
| // Update the alternate reference frame and stats as appropriate. |
| update_alt_ref_frame_and_stats(cpi); |
| else |
| // Update the Golden frame and golden frame and stats as appropriate. |
| update_golden_frame_and_stats(cpi); |
| } |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| // Tell the caller that the frame was coded as a key frame |
| *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; |
| |
| // As this frame is a key frame the next defaults to an inter frame. |
| cm->frame_type = INTER_FRAME; |
| |
| cpi->last_frame_percent_intra = 100; |
| } |
| else |
| { |
| *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; |
| |
| cpi->last_frame_percent_intra = cpi->this_frame_percent_intra; |
| } |
| |
| // Clear the one shot update flags for segmentation map and mode/ref loop filter deltas. |
| cpi->mb.e_mbd.update_mb_segmentation_map = 0; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 0; |
| cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; |
| |
| |
| // Dont increment frame counters if this was an altref buffer update not a real frame |
| if (cm->show_frame) |
| { |
| cm->current_video_frame++; |
| cpi->frames_since_key++; |
| } |
| |
| // reset to normal state now that we are done. |
| |
| |
| |
| #if 0 |
| { |
| char filename[512]; |
| FILE *recon_file; |
| sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); |
| recon_file = fopen(filename, "wb"); |
| fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc, |
| cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| #endif |
| |
| // DEBUG |
| //vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); |
| |
| |
| } |
| |
| int vp8_is_gf_update_needed(VP8_PTR ptr) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) ptr; |
| int ret_val; |
| |
| ret_val = cpi->gf_update_recommended; |
| cpi->gf_update_recommended = 0; |
| |
| return ret_val; |
| } |
| |
| void vp8_check_gf_quality(VP8_COMP *cpi) |
| { |
| VP8_COMMON *cm = &cpi->common; |
| int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols); |
| int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols); |
| int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols); |
| |
| // Gf refresh is not currently being signalled |
| if (cpi->gf_update_recommended == 0) |
| { |
| if (cpi->common.frames_since_golden > 7) |
| { |
| // Low use of gf |
| if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15)) |
| { |
| // ...but last frame zero zero usage is reasonbable so a new gf might be appropriate |
| if (last_ref_zz_useage >= 25) |
| { |
| cpi->gf_bad_count ++; |
| |
| if (cpi->gf_bad_count >= 8) // Check that the condition is stable |
| { |
| cpi->gf_update_recommended = 1; |
| cpi->gf_bad_count = 0; |
| } |
| } |
| else |
| cpi->gf_bad_count = 0; // Restart count as the background is not stable enough |
| } |
| else |
| cpi->gf_bad_count = 0; // Gf useage has picked up so reset count |
| } |
| } |
| // If the signal is set but has not been read should we cancel it. |
| else if (last_ref_zz_useage < 15) |
| { |
| cpi->gf_update_recommended = 0; |
| cpi->gf_bad_count = 0; |
| } |
| |
| #if 0 |
| { |
| FILE *f = fopen("gfneeded.stt", "a"); |
| fprintf(f, "%10d %10d %10d %10d %10ld \n", |
| cm->current_video_frame, |
| cpi->common.frames_since_golden, |
| gf_active_pct, gf_ref_usage_pct, |
| cpi->gf_update_recommended); |
| fclose(f); |
| } |
| |
| #endif |
| } |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) |
| { |
| |
| if (!cpi->common.refresh_alt_ref_frame) |
| vp8_second_pass(cpi); |
| |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags); |
| cpi->bits_left -= 8 * *size; |
| |
| if (!cpi->common.refresh_alt_ref_frame) |
| { |
| double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth |
| *cpi->oxcf.two_pass_vbrmin_section / 100); |
| cpi->bits_left += (long long)(two_pass_min_rate / cpi->oxcf.frame_rate); |
| } |
| } |
| #endif |
| |
| //For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us. |
| #if HAVE_ARMV7 |
| extern void vp8_push_neon(INT64 *store); |
| extern void vp8_pop_neon(INT64 *store); |
| #endif |
| int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, INT64 time_stamp, INT64 end_time) |
| { |
| #if HAVE_ARMV7 |
| INT64 store_reg[8]; |
| #endif |
| VP8_COMP *cpi = (VP8_COMP *) ptr; |
| VP8_COMMON *cm = &cpi->common; |
| struct vpx_usec_timer timer; |
| |
| if (!cpi) |
| return -1; |
| |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_push_neon(store_reg); |
| } |
| #endif |
| |
| vpx_usec_timer_start(&timer); |
| |
| // no more room for frames; |
| if (cpi->source_buffer_count != 0 && cpi->source_buffer_count >= cpi->oxcf.lag_in_frames) |
| { |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_pop_neon(store_reg); |
| } |
| #endif |
| return -1; |
| } |
| |
| //printf("in-cpi->source_buffer_count: %d\n", cpi->source_buffer_count); |
| |
| cm->clr_type = sd->clrtype; |
| |
| // make a copy of the frame for use later... |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->oxcf.allow_lag) |
| { |
| int which_buffer = cpi->source_encode_index - 1; |
| SOURCE_SAMPLE *s; |
| |
| if (which_buffer == -1) |
| which_buffer = cpi->oxcf.lag_in_frames - 1; |
| |
| if (cpi->source_buffer_count < cpi->oxcf.lag_in_frames - 1) |
| which_buffer = cpi->source_buffer_count; |
| |
| s = &cpi->src_buffer[which_buffer]; |
| |
| s->source_time_stamp = time_stamp; |
| s->source_end_time_stamp = end_time; |
| s->source_frame_flags = frame_flags; |
| vp8_yv12_copy_frame_ptr(sd, &s->source_buffer); |
| |
| cpi->source_buffer_count ++; |
| } |
| else |
| #endif |
| { |
| SOURCE_SAMPLE *s; |
| s = &cpi->src_buffer[0]; |
| s->source_end_time_stamp = end_time; |
| s->source_time_stamp = time_stamp; |
| s->source_frame_flags = frame_flags; |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_yv12_copy_src_frame_func_neon(sd, &s->source_buffer); |
| } |
| #if CONFIG_RUNTIME_CPU_DETECT |
| else |
| #endif |
| #endif |
| #if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT |
| { |
| vp8_yv12_copy_frame_ptr(sd, &s->source_buffer); |
| } |
| #endif |
| cpi->source_buffer_count = 1; |
| } |
| |
| vpx_usec_timer_mark(&timer); |
| cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); |
| |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_pop_neon(store_reg); |
| } |
| #endif |
| |
| return 0; |
| } |
| int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, INT64 *time_stamp, INT64 *time_end, int flush) |
| { |
| #if HAVE_ARMV7 |
| INT64 store_reg[8]; |
| #endif |
| VP8_COMP *cpi = (VP8_COMP *) ptr; |
| VP8_COMMON *cm = &cpi->common; |
| struct vpx_usec_timer tsctimer; |
| struct vpx_usec_timer ticktimer; |
| struct vpx_usec_timer cmptimer; |
| |
| if (!cpi) |
| return -1; |
| |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_push_neon(store_reg); |
| } |
| #endif |
| |
| vpx_usec_timer_start(&cmptimer); |
| |
| |
| // flush variable tells us that even though we have less than 10 frames |
| // in our buffer we need to start producing compressed frames. |
| // Probably because we are at the end of a file.... |
| if ((cpi->source_buffer_count == cpi->oxcf.lag_in_frames && cpi->oxcf.lag_in_frames > 0) |
| || (!cpi->oxcf.allow_lag && cpi->source_buffer_count > 0) |
| || (flush && cpi->source_buffer_count > 0)) |
| { |
| |
| SOURCE_SAMPLE *s; |
| |
| s = &cpi->src_buffer[cpi->source_encode_index]; |
| cpi->source_time_stamp = s->source_time_stamp; |
| cpi->source_end_time_stamp = s->source_end_time_stamp; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| // Should we code an alternate reference frame |
| if (cpi->oxcf.error_resilient_mode == 0 && |
| cpi->oxcf.play_alternate && |
| cpi->source_alt_ref_pending && |
| (cpi->frames_till_gf_update_due < cpi->source_buffer_count) && |
| cpi->oxcf.lag_in_frames != 0) |
| { |
| cpi->last_alt_ref_sei = (cpi->source_encode_index + cpi->frames_till_gf_update_due) % cpi->oxcf.lag_in_frames; |
| |
| #if VP8_TEMPORAL_ALT_REF |
| |
| if (cpi->oxcf.arnr_max_frames > 0) |
| { |
| #if 0 |
| // my attempt at a loop that tests the results of strength filter. |
| int start_frame = cpi->last_alt_ref_sei - 3; |
| |
| int i, besti = -1, pastin = cpi->oxcf.arnr_strength; |
| |
| int besterr; |
| |
| if (start_frame < 0) |
| start_frame += cpi->oxcf.lag_in_frames; |
| |
| besterr = vp8_calc_low_ss_err(&cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer, |
| &cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance)); |
| |
| for (i = 0; i < 7; i++) |
| { |
| int thiserr; |
| cpi->oxcf.arnr_strength = i; |
| vp8_temporal_filter_prepare_c(cpi); |
| |
| thiserr = vp8_calc_low_ss_err(&cpi->alt_ref_buffer.source_buffer, |
| &cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance)); |
| |
| if (10 * thiserr < besterr * 8) |
| { |
| besterr = thiserr; |
| besti = i; |
| } |
| } |
| |
| if (besti != -1) |
| { |
| cpi->oxcf.arnr_strength = besti; |
| vp8_temporal_filter_prepare_c(cpi); |
| s = &cpi->alt_ref_buffer; |
| |
| // FWG not sure if I need to copy this data for the Alt Ref frame |
| s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp; |
| s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp; |
| s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags; |
| } |
| else |
| s = &cpi->src_buffer[cpi->last_alt_ref_sei]; |
| |
| #else |
| vp8_temporal_filter_prepare_c(cpi); |
| s = &cpi->alt_ref_buffer; |
| |
| // FWG not sure if I need to copy this data for the Alt Ref frame |
| s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp; |
| s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp; |
| s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags; |
| |
| #endif |
| } |
| else |
| #endif |
| s = &cpi->src_buffer[cpi->last_alt_ref_sei]; |
| |
| cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due; |
| cm->refresh_alt_ref_frame = 1; |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 0; |
| cm->show_frame = 0; |
| cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag. |
| cpi->is_src_frame_alt_ref = 0; |
| cpi->is_next_src_alt_ref = 0; |
| } |
| else |
| #endif |
| { |
| cm->show_frame = 1; |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->oxcf.allow_lag) |
| { |
| if (cpi->source_encode_index == cpi->last_alt_ref_sei) |
| { |
| cpi->is_src_frame_alt_ref = 1; |
| cpi->last_alt_ref_sei = -1; |
| } |
| else |
| cpi->is_src_frame_alt_ref = 0; |
| |
| cpi->source_encode_index = (cpi->source_encode_index + 1) % cpi->oxcf.lag_in_frames; |
| |
| if(cpi->source_encode_index == cpi->last_alt_ref_sei) |
| cpi->is_next_src_alt_ref = 1; |
| else |
| cpi->is_next_src_alt_ref = 0; |
| } |
| |
| #endif |
| cpi->source_buffer_count--; |
| } |
| |
| cpi->un_scaled_source = &s->source_buffer; |
| cpi->Source = &s->source_buffer; |
| cpi->source_frame_flags = s->source_frame_flags; |
| |
| *time_stamp = cpi->source_time_stamp; |
| *time_end = cpi->source_end_time_stamp; |
| } |
| else |
| { |
| *size = 0; |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (flush && cpi->pass == 1 && !cpi->first_pass_done) |
| { |
| vp8_end_first_pass(cpi); /* get last stats packet */ |
| cpi->first_pass_done = 1; |
| } |
| |
| #endif |
| |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_pop_neon(store_reg); |
| } |
| #endif |
| return -1; |
| } |
| |
| *frame_flags = cpi->source_frame_flags; |
| |
| if (cpi->source_time_stamp < cpi->first_time_stamp_ever) |
| { |
| cpi->first_time_stamp_ever = cpi->source_time_stamp; |
| cpi->last_end_time_stamp_seen = cpi->source_time_stamp; |
| } |
| |
| // adjust frame rates based on timestamps given |
| if (!cm->refresh_alt_ref_frame) |
| { |
| if (cpi->source_time_stamp == cpi->first_time_stamp_ever) |
| { |
| double this_fps = 10000000.000 / (cpi->source_end_time_stamp - cpi->source_time_stamp); |
| |
| vp8_new_frame_rate(cpi, this_fps); |
| } |
| else |
| { |
| long long nanosecs = cpi->source_end_time_stamp |
| - cpi->last_end_time_stamp_seen; |
| double this_fps = 10000000.000 / nanosecs; |
| |
| vp8_new_frame_rate(cpi, (7 * cpi->oxcf.frame_rate + this_fps) / 8); |
| |
| } |
| |
| cpi->last_time_stamp_seen = cpi->source_time_stamp; |
| cpi->last_end_time_stamp_seen = cpi->source_end_time_stamp; |
| } |
| |
| if (cpi->compressor_speed == 2) |
| { |
| vp8_check_gf_quality(cpi); |
| } |
| |
| if (!cpi) |
| { |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_pop_neon(store_reg); |
| } |
| #endif |
| return 0; |
| } |
| |
| if (cpi->compressor_speed == 2) |
| { |
| vpx_usec_timer_start(&tsctimer); |
| vpx_usec_timer_start(&ticktimer); |
| } |
| |
| // start with a 0 size frame |
| *size = 0; |
| |
| // Clear down mmx registers |
| vp8_clear_system_state(); //__asm emms; |
| |
| cm->frame_type = INTER_FRAME; |
| cm->frame_flags = *frame_flags; |
| |
| #if 0 |
| |
| if (cm->refresh_alt_ref_frame) |
| { |
| //cm->refresh_golden_frame = 1; |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 0; |
| } |
| else |
| { |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 1; |
| } |
| |
| #endif |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->pass == 1) |
| { |
| Pass1Encode(cpi, size, dest, frame_flags); |
| } |
| else if (cpi->pass == 2) |
| { |
| Pass2Encode(cpi, size, dest, frame_flags); |
| } |
| else |
| #endif |
| encode_frame_to_data_rate(cpi, size, dest, frame_flags); |
| |
| if (cpi->compressor_speed == 2) |
| { |
| unsigned int duration, duration2; |
| vpx_usec_timer_mark(&tsctimer); |
| vpx_usec_timer_mark(&ticktimer); |
| |
| duration = vpx_usec_timer_elapsed(&ticktimer); |
| duration2 = (unsigned int)((double)duration / 2); |
| |
| if (cm->frame_type != KEY_FRAME) |
| { |
| if (cpi->avg_encode_time == 0) |
| cpi->avg_encode_time = duration; |
| else |
| cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3; |
| } |
| |
| if (duration2) |
| { |
| //if(*frame_flags!=1) |
| { |
| |
| if (cpi->avg_pick_mode_time == 0) |
| cpi->avg_pick_mode_time = duration2; |
| else |
| cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3; |
| } |
| } |
| |
| } |
| |
| if (cm->refresh_entropy_probs == 0) |
| { |
| vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc)); |
| } |
| |
| // if its a dropped frame honor the requests on subsequent frames |
| if (*size > 0) |
| { |
| |
| // return to normal state |
| cm->refresh_entropy_probs = 1; |
| cm->refresh_alt_ref_frame = 0; |
| cm->refresh_golden_frame = 0; |
| cm->refresh_last_frame = 1; |
| cm->frame_type = INTER_FRAME; |
| |
| } |
| |
| cpi->ready_for_new_frame = 1; |
| |
| vpx_usec_timer_mark(&cmptimer); |
| cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); |
| |
| if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) |
| generate_psnr_packet(cpi); |
| |
| #if CONFIG_PSNR |
| |
| if (cpi->pass != 1) |
| { |
| cpi->bytes += *size; |
| |
| if (cm->show_frame) |
| { |
| |
| cpi->count ++; |
| |
| if (cpi->b_calculate_psnr) |
| { |
| double y, u, v; |
| double sq_error; |
| double frame_psnr = vp8_calc_psnr(cpi->Source, cm->frame_to_show, &y, &u, &v, &sq_error); |
| |
| cpi->total_y += y; |
| cpi->total_u += u; |
| cpi->total_v += v; |
| cpi->total_sq_error += sq_error; |
| cpi->total += frame_psnr; |
| { |
| double y2, u2, v2, frame_psnr2, frame_ssim2 = 0; |
| double weight = 0; |
| |
| vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc)); |
| vp8_clear_system_state(); |
| frame_psnr2 = vp8_calc_psnr(cpi->Source, &cm->post_proc_buffer, &y2, &u2, &v2, &sq_error); |
| frame_ssim2 = vp8_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight); |
| |
| cpi->summed_quality += frame_ssim2 * weight; |
| cpi->summed_weights += weight; |
| |
| cpi->totalp_y += y2; |
| cpi->totalp_u += u2; |
| cpi->totalp_v += v2; |
| cpi->totalp += frame_psnr2; |
| cpi->total_sq_error2 += sq_error; |
| |
| } |
| } |
| |
| if (cpi->b_calculate_ssimg) |
| { |
| double y, u, v, frame_all; |
| frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); |
| cpi->total_ssimg_y += y; |
| cpi->total_ssimg_u += u; |
| cpi->total_ssimg_v += v; |
| cpi->total_ssimg_all += frame_all; |
| } |
| |
| } |
| } |
| |
| #if 0 |
| |
| if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q) |
| { |
| skiptruecount += cpi->skip_true_count; |
| skipfalsecount += cpi->skip_false_count; |
| } |
| |
| #endif |
| #if 0 |
| |
| if (cpi->pass != 1) |
| { |
| FILE *f = fopen("skip.stt", "a"); |
| fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size); |
| |
| if (cpi->is_src_frame_alt_ref == 1) |
| fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size); |
| |
| fclose(f); |
| } |
| |
| #endif |
| #endif |
| |
| #if HAVE_ARMV7 |
| #if CONFIG_RUNTIME_CPU_DETECT |
| if (cm->rtcd.flags & HAS_NEON) |
| #endif |
| { |
| vp8_pop_neon(store_reg); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) comp; |
| |
| if (cpi->common.refresh_alt_ref_frame) |
| return -1; |
| else |
| { |
| int ret; |
| #if CONFIG_POSTPROC |
| ret = vp8_post_proc_frame(&cpi->common, dest, flags); |
| #else |
| |
| if (cpi->common.frame_to_show) |
| { |
| *dest = *cpi->common.frame_to_show; |
| dest->y_width = cpi->common.Width; |
| dest->y_height = cpi->common.Height; |
| dest->uv_height = cpi->common.Height / 2; |
| ret = 0; |
| } |
| else |
| { |
| ret = -1; |
| } |
| |
| #endif //!CONFIG_POSTPROC |
| vp8_clear_system_state(); |
| return ret; |
| } |
| } |
| |
| int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4]) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) comp; |
| signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; |
| |
| if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) |
| return -1; |
| |
| if (!map) |
| { |
| disable_segmentation((VP8_PTR)cpi); |
| return 0; |
| } |
| |
| // Set the segmentation Map |
| set_segmentation_map((VP8_PTR)cpi, map); |
| |
| // Activate segmentation. |
| enable_segmentation((VP8_PTR)cpi); |
| |
| // Set up the quant segment data |
| feature_data[MB_LVL_ALT_Q][0] = delta_q[0]; |
| feature_data[MB_LVL_ALT_Q][1] = delta_q[1]; |
| feature_data[MB_LVL_ALT_Q][2] = delta_q[2]; |
| feature_data[MB_LVL_ALT_Q][3] = delta_q[3]; |
| |
| // Set up the loop segment data s |
| feature_data[MB_LVL_ALT_LF][0] = delta_lf[0]; |
| feature_data[MB_LVL_ALT_LF][1] = delta_lf[1]; |
| feature_data[MB_LVL_ALT_LF][2] = delta_lf[2]; |
| feature_data[MB_LVL_ALT_LF][3] = delta_lf[3]; |
| |
| cpi->segment_encode_breakout[0] = threshold[0]; |
| cpi->segment_encode_breakout[1] = threshold[1]; |
| cpi->segment_encode_breakout[2] = threshold[2]; |
| cpi->segment_encode_breakout[3] = threshold[3]; |
| |
| // Initialise the feature data structure |
| // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 |
| set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); |
| |
| return 0; |
| } |
| |
| int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) comp; |
| |
| if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) |
| { |
| if (map) |
| { |
| vpx_memcpy(cpi->active_map, map, rows * cols); |
| cpi->active_map_enabled = 1; |
| } |
| else |
| cpi->active_map_enabled = 0; |
| |
| return 0; |
| } |
| else |
| { |
| //cpi->active_map_enabled = 0; |
| return -1 ; |
| } |
| } |
| |
| int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) comp; |
| |
| if (horiz_mode <= ONETWO) |
| cpi->common.horiz_scale = horiz_mode; |
| else |
| return -1; |
| |
| if (vert_mode <= ONETWO) |
| cpi->common.vert_scale = vert_mode; |
| else |
| return -1; |
| |
| return 0; |
| } |
| |
| |
| |
| int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd) |
| { |
| int i, j; |
| int Total = 0; |
| |
| unsigned char *src = source->y_buffer; |
| unsigned char *dst = dest->y_buffer; |
| (void)rtcd; |
| |
| // Loop through the Y plane raw and reconstruction data summing (square differences) |
| for (i = 0; i < source->y_height; i += 16) |
| { |
| for (j = 0; j < source->y_width; j += 16) |
| { |
| unsigned int sse; |
| Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse); |
| } |
| |
| src += 16 * source->y_stride; |
| dst += 16 * dest->y_stride; |
| } |
| |
| return Total; |
| } |
| int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd) |
| { |
| int i, j; |
| int Total = 0; |
| |
| unsigned char *src = source->y_buffer; |
| unsigned char *dst = dest->y_buffer; |
| (void)rtcd; |
| |
| // Loop through the Y plane raw and reconstruction data summing (square differences) |
| for (i = 0; i < source->y_height; i += 16) |
| { |
| for (j = 0; j < source->y_width; j += 16) |
| { |
| unsigned int sse; |
| VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse); |
| |
| if (sse < 8096) |
| Total += sse; |
| } |
| |
| src += 16 * source->y_stride; |
| dst += 16 * dest->y_stride; |
| } |
| |
| return Total; |
| } |
| |
| int vp8_get_speed(VP8_PTR c) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) c; |
| return cpi->Speed; |
| } |
| int vp8_get_quantizer(VP8_PTR c) |
| { |
| VP8_COMP *cpi = (VP8_COMP *) c; |
| return cpi->common.base_qindex; |
| } |