|  | /* | 
|  | *  Copyright (c) 2010 The WebM project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "./vpx_config.h" | 
|  | #include "./vp9_rtcd.h" | 
|  |  | 
|  | #include "vp9/common/vp9_blockd.h" | 
|  | #include "vp9/common/vp9_idct.h" | 
|  | #include "vp9/common/vp9_systemdependent.h" | 
|  |  | 
|  | static INLINE int fdct_round_shift(int input) { | 
|  | int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); | 
|  | assert(INT16_MIN <= rv && rv <= INT16_MAX); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static void fdct4(const int16_t *input, int16_t *output) { | 
|  | int16_t step[4]; | 
|  | int temp1, temp2; | 
|  |  | 
|  | step[0] = input[0] + input[3]; | 
|  | step[1] = input[1] + input[2]; | 
|  | step[2] = input[1] - input[2]; | 
|  | step[3] = input[0] - input[3]; | 
|  |  | 
|  | temp1 = (step[0] + step[1]) * cospi_16_64; | 
|  | temp2 = (step[0] - step[1]) * cospi_16_64; | 
|  | output[0] = fdct_round_shift(temp1); | 
|  | output[2] = fdct_round_shift(temp2); | 
|  | temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; | 
|  | temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; | 
|  | output[1] = fdct_round_shift(temp1); | 
|  | output[3] = fdct_round_shift(temp2); | 
|  | } | 
|  |  | 
|  | void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) { | 
|  | // The 2D transform is done with two passes which are actually pretty | 
|  | // similar. In the first one, we transform the columns and transpose | 
|  | // the results. In the second one, we transform the rows. To achieve that, | 
|  | // as the first pass results are transposed, we transpose the columns (that | 
|  | // is the transposed rows) and transpose the results (so that it goes back | 
|  | // in normal/row positions). | 
|  | int pass; | 
|  | // We need an intermediate buffer between passes. | 
|  | int16_t intermediate[4 * 4]; | 
|  | const int16_t *in = input; | 
|  | int16_t *out = intermediate; | 
|  | // Do the two transform/transpose passes | 
|  | for (pass = 0; pass < 2; ++pass) { | 
|  | /*canbe16*/ int input[4]; | 
|  | /*canbe16*/ int step[4]; | 
|  | /*needs32*/ int temp1, temp2; | 
|  | int i; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | // Load inputs. | 
|  | if (0 == pass) { | 
|  | input[0] = in[0 * stride] * 16; | 
|  | input[1] = in[1 * stride] * 16; | 
|  | input[2] = in[2 * stride] * 16; | 
|  | input[3] = in[3 * stride] * 16; | 
|  | if (i == 0 && input[0]) { | 
|  | input[0] += 1; | 
|  | } | 
|  | } else { | 
|  | input[0] = in[0 * 4]; | 
|  | input[1] = in[1 * 4]; | 
|  | input[2] = in[2 * 4]; | 
|  | input[3] = in[3 * 4]; | 
|  | } | 
|  | // Transform. | 
|  | step[0] = input[0] + input[3]; | 
|  | step[1] = input[1] + input[2]; | 
|  | step[2] = input[1] - input[2]; | 
|  | step[3] = input[0] - input[3]; | 
|  | temp1 = (step[0] + step[1]) * cospi_16_64; | 
|  | temp2 = (step[0] - step[1]) * cospi_16_64; | 
|  | out[0] = fdct_round_shift(temp1); | 
|  | out[2] = fdct_round_shift(temp2); | 
|  | temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; | 
|  | temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; | 
|  | out[1] = fdct_round_shift(temp1); | 
|  | out[3] = fdct_round_shift(temp2); | 
|  | // Do next column (which is a transposed row in second/horizontal pass) | 
|  | in++; | 
|  | out += 4; | 
|  | } | 
|  | // Setup in/out for next pass. | 
|  | in = intermediate; | 
|  | out = output; | 
|  | } | 
|  |  | 
|  | { | 
|  | int i, j; | 
|  | for (i = 0; i < 4; ++i) { | 
|  | for (j = 0; j < 4; ++j) | 
|  | output[j + i * 4] = (output[j + i * 4] + 1) >> 2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fadst4(const int16_t *input, int16_t *output) { | 
|  | int x0, x1, x2, x3; | 
|  | int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  |  | 
|  | x0 = input[0]; | 
|  | x1 = input[1]; | 
|  | x2 = input[2]; | 
|  | x3 = input[3]; | 
|  |  | 
|  | if (!(x0 | x1 | x2 | x3)) { | 
|  | output[0] = output[1] = output[2] = output[3] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | s0 = sinpi_1_9 * x0; | 
|  | s1 = sinpi_4_9 * x0; | 
|  | s2 = sinpi_2_9 * x1; | 
|  | s3 = sinpi_1_9 * x1; | 
|  | s4 = sinpi_3_9 * x2; | 
|  | s5 = sinpi_4_9 * x3; | 
|  | s6 = sinpi_2_9 * x3; | 
|  | s7 = x0 + x1 - x3; | 
|  |  | 
|  | x0 = s0 + s2 + s5; | 
|  | x1 = sinpi_3_9 * s7; | 
|  | x2 = s1 - s3 + s6; | 
|  | x3 = s4; | 
|  |  | 
|  | s0 = x0 + x3; | 
|  | s1 = x1; | 
|  | s2 = x2 - x3; | 
|  | s3 = x2 - x0 + x3; | 
|  |  | 
|  | // 1-D transform scaling factor is sqrt(2). | 
|  | output[0] = fdct_round_shift(s0); | 
|  | output[1] = fdct_round_shift(s1); | 
|  | output[2] = fdct_round_shift(s2); | 
|  | output[3] = fdct_round_shift(s3); | 
|  | } | 
|  |  | 
|  | static const transform_2d FHT_4[] = { | 
|  | { fdct4,  fdct4  },  // DCT_DCT  = 0 | 
|  | { fadst4, fdct4  },  // ADST_DCT = 1 | 
|  | { fdct4,  fadst4 },  // DCT_ADST = 2 | 
|  | { fadst4, fadst4 }   // ADST_ADST = 3 | 
|  | }; | 
|  |  | 
|  | void vp9_fht4x4_c(const int16_t *input, int16_t *output, | 
|  | int stride, int tx_type) { | 
|  | if (tx_type == DCT_DCT) { | 
|  | vp9_fdct4x4_c(input, output, stride); | 
|  | } else { | 
|  | int16_t out[4 * 4]; | 
|  | int16_t *outptr = &out[0]; | 
|  | int i, j; | 
|  | int16_t temp_in[4], temp_out[4]; | 
|  | const transform_2d ht = FHT_4[tx_type]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 4; ++i) { | 
|  | for (j = 0; j < 4; ++j) | 
|  | temp_in[j] = input[j * stride + i] * 16; | 
|  | if (i == 0 && temp_in[0]) | 
|  | temp_in[0] += 1; | 
|  | ht.cols(temp_in, temp_out); | 
|  | for (j = 0; j < 4; ++j) | 
|  | outptr[j * 4 + i] = temp_out[j]; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 4; ++i) { | 
|  | for (j = 0; j < 4; ++j) | 
|  | temp_in[j] = out[j + i * 4]; | 
|  | ht.rows(temp_in, temp_out); | 
|  | for (j = 0; j < 4; ++j) | 
|  | output[j + i * 4] = (temp_out[j] + 1) >> 2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fdct8(const int16_t *input, int16_t *output) { | 
|  | /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  | /*needs32*/ int t0, t1, t2, t3; | 
|  | /*canbe16*/ int x0, x1, x2, x3; | 
|  |  | 
|  | // stage 1 | 
|  | s0 = input[0] + input[7]; | 
|  | s1 = input[1] + input[6]; | 
|  | s2 = input[2] + input[5]; | 
|  | s3 = input[3] + input[4]; | 
|  | s4 = input[3] - input[4]; | 
|  | s5 = input[2] - input[5]; | 
|  | s6 = input[1] - input[6]; | 
|  | s7 = input[0] - input[7]; | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64; | 
|  | t3 = -x2 * cospi_8_64  + x3 * cospi_24_64; | 
|  | output[0] = fdct_round_shift(t0); | 
|  | output[2] = fdct_round_shift(t2); | 
|  | output[4] = fdct_round_shift(t1); | 
|  | output[6] = fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 *   cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 *  cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64; | 
|  | output[1] = fdct_round_shift(t0); | 
|  | output[3] = fdct_round_shift(t2); | 
|  | output[5] = fdct_round_shift(t1); | 
|  | output[7] = fdct_round_shift(t3); | 
|  | } | 
|  |  | 
|  | void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) { | 
|  | int i, j; | 
|  | int16_t intermediate[64]; | 
|  |  | 
|  | // Transform columns | 
|  | { | 
|  | int16_t *output = intermediate; | 
|  | /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  | /*needs32*/ int t0, t1, t2, t3; | 
|  | /*canbe16*/ int x0, x1, x2, x3; | 
|  |  | 
|  | int i; | 
|  | for (i = 0; i < 8; i++) { | 
|  | // stage 1 | 
|  | s0 = (input[0 * stride] + input[7 * stride]) * 4; | 
|  | s1 = (input[1 * stride] + input[6 * stride]) * 4; | 
|  | s2 = (input[2 * stride] + input[5 * stride]) * 4; | 
|  | s3 = (input[3 * stride] + input[4 * stride]) * 4; | 
|  | s4 = (input[3 * stride] - input[4 * stride]) * 4; | 
|  | s5 = (input[2 * stride] - input[5 * stride]) * 4; | 
|  | s6 = (input[1 * stride] - input[6 * stride]) * 4; | 
|  | s7 = (input[0 * stride] - input[7 * stride]) * 4; | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64; | 
|  | t3 = -x2 * cospi_8_64  + x3 * cospi_24_64; | 
|  | output[0 * 8] = fdct_round_shift(t0); | 
|  | output[2 * 8] = fdct_round_shift(t2); | 
|  | output[4 * 8] = fdct_round_shift(t1); | 
|  | output[6 * 8] = fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 *   cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 *  cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64; | 
|  | output[1 * 8] = fdct_round_shift(t0); | 
|  | output[3 * 8] = fdct_round_shift(t2); | 
|  | output[5 * 8] = fdct_round_shift(t1); | 
|  | output[7 * 8] = fdct_round_shift(t3); | 
|  | input++; | 
|  | output++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 8; ++i) { | 
|  | fdct8(&intermediate[i * 8], &final_output[i * 8]); | 
|  | for (j = 0; j < 8; ++j) | 
|  | final_output[j + i * 8] /= 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) { | 
|  | // The 2D transform is done with two passes which are actually pretty | 
|  | // similar. In the first one, we transform the columns and transpose | 
|  | // the results. In the second one, we transform the rows. To achieve that, | 
|  | // as the first pass results are transposed, we transpose the columns (that | 
|  | // is the transposed rows) and transpose the results (so that it goes back | 
|  | // in normal/row positions). | 
|  | int pass; | 
|  | // We need an intermediate buffer between passes. | 
|  | int16_t intermediate[256]; | 
|  | const int16_t *in = input; | 
|  | int16_t *out = intermediate; | 
|  | // Do the two transform/transpose passes | 
|  | for (pass = 0; pass < 2; ++pass) { | 
|  | /*canbe16*/ int step1[8]; | 
|  | /*canbe16*/ int step2[8]; | 
|  | /*canbe16*/ int step3[8]; | 
|  | /*canbe16*/ int input[8]; | 
|  | /*needs32*/ int temp1, temp2; | 
|  | int i; | 
|  | for (i = 0; i < 16; i++) { | 
|  | if (0 == pass) { | 
|  | // Calculate input for the first 8 results. | 
|  | input[0] = (in[0 * stride] + in[15 * stride]) * 4; | 
|  | input[1] = (in[1 * stride] + in[14 * stride]) * 4; | 
|  | input[2] = (in[2 * stride] + in[13 * stride]) * 4; | 
|  | input[3] = (in[3 * stride] + in[12 * stride]) * 4; | 
|  | input[4] = (in[4 * stride] + in[11 * stride]) * 4; | 
|  | input[5] = (in[5 * stride] + in[10 * stride]) * 4; | 
|  | input[6] = (in[6 * stride] + in[ 9 * stride]) * 4; | 
|  | input[7] = (in[7 * stride] + in[ 8 * stride]) * 4; | 
|  | // Calculate input for the next 8 results. | 
|  | step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4; | 
|  | step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4; | 
|  | step1[2] = (in[5 * stride] - in[10 * stride]) * 4; | 
|  | step1[3] = (in[4 * stride] - in[11 * stride]) * 4; | 
|  | step1[4] = (in[3 * stride] - in[12 * stride]) * 4; | 
|  | step1[5] = (in[2 * stride] - in[13 * stride]) * 4; | 
|  | step1[6] = (in[1 * stride] - in[14 * stride]) * 4; | 
|  | step1[7] = (in[0 * stride] - in[15 * stride]) * 4; | 
|  | } else { | 
|  | // Calculate input for the first 8 results. | 
|  | input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); | 
|  | input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); | 
|  | input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); | 
|  | input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); | 
|  | input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); | 
|  | input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); | 
|  | input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); | 
|  | input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); | 
|  | // Calculate input for the next 8 results. | 
|  | step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); | 
|  | step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); | 
|  | step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); | 
|  | step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); | 
|  | step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); | 
|  | step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); | 
|  | step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); | 
|  | step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); | 
|  | } | 
|  | // Work on the first eight values; fdct8(input, even_results); | 
|  | { | 
|  | /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  | /*needs32*/ int t0, t1, t2, t3; | 
|  | /*canbe16*/ int x0, x1, x2, x3; | 
|  |  | 
|  | // stage 1 | 
|  | s0 = input[0] + input[7]; | 
|  | s1 = input[1] + input[6]; | 
|  | s2 = input[2] + input[5]; | 
|  | s3 = input[3] + input[4]; | 
|  | s4 = input[3] - input[4]; | 
|  | s5 = input[2] - input[5]; | 
|  | s6 = input[1] - input[6]; | 
|  | s7 = input[0] - input[7]; | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 = x3 * cospi_8_64  + x2 * cospi_24_64; | 
|  | t3 = x3 * cospi_24_64 - x2 * cospi_8_64; | 
|  | out[0] = fdct_round_shift(t0); | 
|  | out[4] = fdct_round_shift(t2); | 
|  | out[8] = fdct_round_shift(t1); | 
|  | out[12] = fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 *   cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 *  cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64; | 
|  | out[2] = fdct_round_shift(t0); | 
|  | out[6] = fdct_round_shift(t2); | 
|  | out[10] = fdct_round_shift(t1); | 
|  | out[14] = fdct_round_shift(t3); | 
|  | } | 
|  | // Work on the next eight values; step1 -> odd_results | 
|  | { | 
|  | // step 2 | 
|  | temp1 = (step1[5] - step1[2]) * cospi_16_64; | 
|  | temp2 = (step1[4] - step1[3]) * cospi_16_64; | 
|  | step2[2] = fdct_round_shift(temp1); | 
|  | step2[3] = fdct_round_shift(temp2); | 
|  | temp1 = (step1[4] + step1[3]) * cospi_16_64; | 
|  | temp2 = (step1[5] + step1[2]) * cospi_16_64; | 
|  | step2[4] = fdct_round_shift(temp1); | 
|  | step2[5] = fdct_round_shift(temp2); | 
|  | // step 3 | 
|  | step3[0] = step1[0] + step2[3]; | 
|  | step3[1] = step1[1] + step2[2]; | 
|  | step3[2] = step1[1] - step2[2]; | 
|  | step3[3] = step1[0] - step2[3]; | 
|  | step3[4] = step1[7] - step2[4]; | 
|  | step3[5] = step1[6] - step2[5]; | 
|  | step3[6] = step1[6] + step2[5]; | 
|  | step3[7] = step1[7] + step2[4]; | 
|  | // step 4 | 
|  | temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64; | 
|  | temp2 = step3[2] * -cospi_24_64 - step3[5] *  cospi_8_64; | 
|  | step2[1] = fdct_round_shift(temp1); | 
|  | step2[2] = fdct_round_shift(temp2); | 
|  | temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64; | 
|  | temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64; | 
|  | step2[5] = fdct_round_shift(temp1); | 
|  | step2[6] = fdct_round_shift(temp2); | 
|  | // step 5 | 
|  | step1[0] = step3[0] + step2[1]; | 
|  | step1[1] = step3[0] - step2[1]; | 
|  | step1[2] = step3[3] - step2[2]; | 
|  | step1[3] = step3[3] + step2[2]; | 
|  | step1[4] = step3[4] + step2[5]; | 
|  | step1[5] = step3[4] - step2[5]; | 
|  | step1[6] = step3[7] - step2[6]; | 
|  | step1[7] = step3[7] + step2[6]; | 
|  | // step 6 | 
|  | temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64; | 
|  | temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; | 
|  | out[1] = fdct_round_shift(temp1); | 
|  | out[9] = fdct_round_shift(temp2); | 
|  | temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; | 
|  | temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64; | 
|  | out[5] = fdct_round_shift(temp1); | 
|  | out[13] = fdct_round_shift(temp2); | 
|  | temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64; | 
|  | temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; | 
|  | out[3] = fdct_round_shift(temp1); | 
|  | out[11] = fdct_round_shift(temp2); | 
|  | temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; | 
|  | temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64; | 
|  | out[7] = fdct_round_shift(temp1); | 
|  | out[15] = fdct_round_shift(temp2); | 
|  | } | 
|  | // Do next column (which is a transposed row in second/horizontal pass) | 
|  | in++; | 
|  | out += 16; | 
|  | } | 
|  | // Setup in/out for next pass. | 
|  | in = intermediate; | 
|  | out = output; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fadst8(const int16_t *input, int16_t *output) { | 
|  | int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  |  | 
|  | int x0 = input[7]; | 
|  | int x1 = input[0]; | 
|  | int x2 = input[5]; | 
|  | int x3 = input[2]; | 
|  | int x4 = input[3]; | 
|  | int x5 = input[4]; | 
|  | int x6 = input[1]; | 
|  | int x7 = input[6]; | 
|  |  | 
|  | // stage 1 | 
|  | s0 = cospi_2_64  * x0 + cospi_30_64 * x1; | 
|  | s1 = cospi_30_64 * x0 - cospi_2_64  * x1; | 
|  | s2 = cospi_10_64 * x2 + cospi_22_64 * x3; | 
|  | s3 = cospi_22_64 * x2 - cospi_10_64 * x3; | 
|  | s4 = cospi_18_64 * x4 + cospi_14_64 * x5; | 
|  | s5 = cospi_14_64 * x4 - cospi_18_64 * x5; | 
|  | s6 = cospi_26_64 * x6 + cospi_6_64  * x7; | 
|  | s7 = cospi_6_64  * x6 - cospi_26_64 * x7; | 
|  |  | 
|  | x0 = fdct_round_shift(s0 + s4); | 
|  | x1 = fdct_round_shift(s1 + s5); | 
|  | x2 = fdct_round_shift(s2 + s6); | 
|  | x3 = fdct_round_shift(s3 + s7); | 
|  | x4 = fdct_round_shift(s0 - s4); | 
|  | x5 = fdct_round_shift(s1 - s5); | 
|  | x6 = fdct_round_shift(s2 - s6); | 
|  | x7 = fdct_round_shift(s3 - s7); | 
|  |  | 
|  | // stage 2 | 
|  | s0 = x0; | 
|  | s1 = x1; | 
|  | s2 = x2; | 
|  | s3 = x3; | 
|  | s4 = cospi_8_64  * x4 + cospi_24_64 * x5; | 
|  | s5 = cospi_24_64 * x4 - cospi_8_64  * x5; | 
|  | s6 = - cospi_24_64 * x6 + cospi_8_64  * x7; | 
|  | s7 =   cospi_8_64  * x6 + cospi_24_64 * x7; | 
|  |  | 
|  | x0 = s0 + s2; | 
|  | x1 = s1 + s3; | 
|  | x2 = s0 - s2; | 
|  | x3 = s1 - s3; | 
|  | x4 = fdct_round_shift(s4 + s6); | 
|  | x5 = fdct_round_shift(s5 + s7); | 
|  | x6 = fdct_round_shift(s4 - s6); | 
|  | x7 = fdct_round_shift(s5 - s7); | 
|  |  | 
|  | // stage 3 | 
|  | s2 = cospi_16_64 * (x2 + x3); | 
|  | s3 = cospi_16_64 * (x2 - x3); | 
|  | s6 = cospi_16_64 * (x6 + x7); | 
|  | s7 = cospi_16_64 * (x6 - x7); | 
|  |  | 
|  | x2 = fdct_round_shift(s2); | 
|  | x3 = fdct_round_shift(s3); | 
|  | x6 = fdct_round_shift(s6); | 
|  | x7 = fdct_round_shift(s7); | 
|  |  | 
|  | output[0] =   x0; | 
|  | output[1] = - x4; | 
|  | output[2] =   x6; | 
|  | output[3] = - x2; | 
|  | output[4] =   x3; | 
|  | output[5] = - x7; | 
|  | output[6] =   x5; | 
|  | output[7] = - x1; | 
|  | } | 
|  |  | 
|  | static const transform_2d FHT_8[] = { | 
|  | { fdct8,  fdct8  },  // DCT_DCT  = 0 | 
|  | { fadst8, fdct8  },  // ADST_DCT = 1 | 
|  | { fdct8,  fadst8 },  // DCT_ADST = 2 | 
|  | { fadst8, fadst8 }   // ADST_ADST = 3 | 
|  | }; | 
|  |  | 
|  | void vp9_fht8x8_c(const int16_t *input, int16_t *output, | 
|  | int stride, int tx_type) { | 
|  | if (tx_type == DCT_DCT) { | 
|  | vp9_fdct8x8_c(input, output, stride); | 
|  | } else { | 
|  | int16_t out[64]; | 
|  | int16_t *outptr = &out[0]; | 
|  | int i, j; | 
|  | int16_t temp_in[8], temp_out[8]; | 
|  | const transform_2d ht = FHT_8[tx_type]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 8; ++i) { | 
|  | for (j = 0; j < 8; ++j) | 
|  | temp_in[j] = input[j * stride + i] * 4; | 
|  | ht.cols(temp_in, temp_out); | 
|  | for (j = 0; j < 8; ++j) | 
|  | outptr[j * 8 + i] = temp_out[j]; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 8; ++i) { | 
|  | for (j = 0; j < 8; ++j) | 
|  | temp_in[j] = out[j + i * 8]; | 
|  | ht.rows(temp_in, temp_out); | 
|  | for (j = 0; j < 8; ++j) | 
|  | output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per | 
|  | pixel. */ | 
|  | void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) { | 
|  | int i; | 
|  | int a1, b1, c1, d1, e1; | 
|  | const int16_t *ip = input; | 
|  | int16_t *op = output; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | a1 = ip[0 * stride]; | 
|  | b1 = ip[1 * stride]; | 
|  | c1 = ip[2 * stride]; | 
|  | d1 = ip[3 * stride]; | 
|  |  | 
|  | a1 += b1; | 
|  | d1 = d1 - c1; | 
|  | e1 = (a1 - d1) >> 1; | 
|  | b1 = e1 - b1; | 
|  | c1 = e1 - c1; | 
|  | a1 -= c1; | 
|  | d1 += b1; | 
|  | op[0] = a1; | 
|  | op[4] = c1; | 
|  | op[8] = d1; | 
|  | op[12] = b1; | 
|  |  | 
|  | ip++; | 
|  | op++; | 
|  | } | 
|  | ip = output; | 
|  | op = output; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | a1 = ip[0]; | 
|  | b1 = ip[1]; | 
|  | c1 = ip[2]; | 
|  | d1 = ip[3]; | 
|  |  | 
|  | a1 += b1; | 
|  | d1 -= c1; | 
|  | e1 = (a1 - d1) >> 1; | 
|  | b1 = e1 - b1; | 
|  | c1 = e1 - c1; | 
|  | a1 -= c1; | 
|  | d1 += b1; | 
|  | op[0] = a1 * UNIT_QUANT_FACTOR; | 
|  | op[1] = c1 * UNIT_QUANT_FACTOR; | 
|  | op[2] = d1 * UNIT_QUANT_FACTOR; | 
|  | op[3] = b1 * UNIT_QUANT_FACTOR; | 
|  |  | 
|  | ip += 4; | 
|  | op += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rewrote to use same algorithm as others. | 
|  | static void fdct16(const int16_t in[16], int16_t out[16]) { | 
|  | /*canbe16*/ int step1[8]; | 
|  | /*canbe16*/ int step2[8]; | 
|  | /*canbe16*/ int step3[8]; | 
|  | /*canbe16*/ int input[8]; | 
|  | /*needs32*/ int temp1, temp2; | 
|  |  | 
|  | // step 1 | 
|  | input[0] = in[0] + in[15]; | 
|  | input[1] = in[1] + in[14]; | 
|  | input[2] = in[2] + in[13]; | 
|  | input[3] = in[3] + in[12]; | 
|  | input[4] = in[4] + in[11]; | 
|  | input[5] = in[5] + in[10]; | 
|  | input[6] = in[6] + in[ 9]; | 
|  | input[7] = in[7] + in[ 8]; | 
|  |  | 
|  | step1[0] = in[7] - in[ 8]; | 
|  | step1[1] = in[6] - in[ 9]; | 
|  | step1[2] = in[5] - in[10]; | 
|  | step1[3] = in[4] - in[11]; | 
|  | step1[4] = in[3] - in[12]; | 
|  | step1[5] = in[2] - in[13]; | 
|  | step1[6] = in[1] - in[14]; | 
|  | step1[7] = in[0] - in[15]; | 
|  |  | 
|  | // fdct8(step, step); | 
|  | { | 
|  | /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7; | 
|  | /*needs32*/ int t0, t1, t2, t3; | 
|  | /*canbe16*/ int x0, x1, x2, x3; | 
|  |  | 
|  | // stage 1 | 
|  | s0 = input[0] + input[7]; | 
|  | s1 = input[1] + input[6]; | 
|  | s2 = input[2] + input[5]; | 
|  | s3 = input[3] + input[4]; | 
|  | s4 = input[3] - input[4]; | 
|  | s5 = input[2] - input[5]; | 
|  | s6 = input[1] - input[6]; | 
|  | s7 = input[0] - input[7]; | 
|  |  | 
|  | // fdct4(step, step); | 
|  | x0 = s0 + s3; | 
|  | x1 = s1 + s2; | 
|  | x2 = s1 - s2; | 
|  | x3 = s0 - s3; | 
|  | t0 = (x0 + x1) * cospi_16_64; | 
|  | t1 = (x0 - x1) * cospi_16_64; | 
|  | t2 = x3 * cospi_8_64  + x2 * cospi_24_64; | 
|  | t3 = x3 * cospi_24_64 - x2 * cospi_8_64; | 
|  | out[0] = fdct_round_shift(t0); | 
|  | out[4] = fdct_round_shift(t2); | 
|  | out[8] = fdct_round_shift(t1); | 
|  | out[12] = fdct_round_shift(t3); | 
|  |  | 
|  | // Stage 2 | 
|  | t0 = (s6 - s5) * cospi_16_64; | 
|  | t1 = (s6 + s5) * cospi_16_64; | 
|  | t2 = fdct_round_shift(t0); | 
|  | t3 = fdct_round_shift(t1); | 
|  |  | 
|  | // Stage 3 | 
|  | x0 = s4 + t2; | 
|  | x1 = s4 - t2; | 
|  | x2 = s7 - t3; | 
|  | x3 = s7 + t3; | 
|  |  | 
|  | // Stage 4 | 
|  | t0 = x0 * cospi_28_64 + x3 *   cospi_4_64; | 
|  | t1 = x1 * cospi_12_64 + x2 *  cospi_20_64; | 
|  | t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; | 
|  | t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64; | 
|  | out[2] = fdct_round_shift(t0); | 
|  | out[6] = fdct_round_shift(t2); | 
|  | out[10] = fdct_round_shift(t1); | 
|  | out[14] = fdct_round_shift(t3); | 
|  | } | 
|  |  | 
|  | // step 2 | 
|  | temp1 = (step1[5] - step1[2]) * cospi_16_64; | 
|  | temp2 = (step1[4] - step1[3]) * cospi_16_64; | 
|  | step2[2] = fdct_round_shift(temp1); | 
|  | step2[3] = fdct_round_shift(temp2); | 
|  | temp1 = (step1[4] + step1[3]) * cospi_16_64; | 
|  | temp2 = (step1[5] + step1[2]) * cospi_16_64; | 
|  | step2[4] = fdct_round_shift(temp1); | 
|  | step2[5] = fdct_round_shift(temp2); | 
|  |  | 
|  | // step 3 | 
|  | step3[0] = step1[0] + step2[3]; | 
|  | step3[1] = step1[1] + step2[2]; | 
|  | step3[2] = step1[1] - step2[2]; | 
|  | step3[3] = step1[0] - step2[3]; | 
|  | step3[4] = step1[7] - step2[4]; | 
|  | step3[5] = step1[6] - step2[5]; | 
|  | step3[6] = step1[6] + step2[5]; | 
|  | step3[7] = step1[7] + step2[4]; | 
|  |  | 
|  | // step 4 | 
|  | temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64; | 
|  | temp2 = step3[2] * -cospi_24_64 - step3[5] *  cospi_8_64; | 
|  | step2[1] = fdct_round_shift(temp1); | 
|  | step2[2] = fdct_round_shift(temp2); | 
|  | temp1 = step3[2] * -cospi_8_64 + step3[5] * cospi_24_64; | 
|  | temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64; | 
|  | step2[5] = fdct_round_shift(temp1); | 
|  | step2[6] = fdct_round_shift(temp2); | 
|  |  | 
|  | // step 5 | 
|  | step1[0] = step3[0] + step2[1]; | 
|  | step1[1] = step3[0] - step2[1]; | 
|  | step1[2] = step3[3] - step2[2]; | 
|  | step1[3] = step3[3] + step2[2]; | 
|  | step1[4] = step3[4] + step2[5]; | 
|  | step1[5] = step3[4] - step2[5]; | 
|  | step1[6] = step3[7] - step2[6]; | 
|  | step1[7] = step3[7] + step2[6]; | 
|  |  | 
|  | // step 6 | 
|  | temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64; | 
|  | temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; | 
|  | out[1] = fdct_round_shift(temp1); | 
|  | out[9] = fdct_round_shift(temp2); | 
|  |  | 
|  | temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; | 
|  | temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64; | 
|  | out[5] = fdct_round_shift(temp1); | 
|  | out[13] = fdct_round_shift(temp2); | 
|  |  | 
|  | temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64; | 
|  | temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; | 
|  | out[3] = fdct_round_shift(temp1); | 
|  | out[11] = fdct_round_shift(temp2); | 
|  |  | 
|  | temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; | 
|  | temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64; | 
|  | out[7] = fdct_round_shift(temp1); | 
|  | out[15] = fdct_round_shift(temp2); | 
|  | } | 
|  |  | 
|  | static void fadst16(const int16_t *input, int16_t *output) { | 
|  | int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15; | 
|  |  | 
|  | int x0 = input[15]; | 
|  | int x1 = input[0]; | 
|  | int x2 = input[13]; | 
|  | int x3 = input[2]; | 
|  | int x4 = input[11]; | 
|  | int x5 = input[4]; | 
|  | int x6 = input[9]; | 
|  | int x7 = input[6]; | 
|  | int x8 = input[7]; | 
|  | int x9 = input[8]; | 
|  | int x10 = input[5]; | 
|  | int x11 = input[10]; | 
|  | int x12 = input[3]; | 
|  | int x13 = input[12]; | 
|  | int x14 = input[1]; | 
|  | int x15 = input[14]; | 
|  |  | 
|  | // stage 1 | 
|  | s0 = x0 * cospi_1_64  + x1 * cospi_31_64; | 
|  | s1 = x0 * cospi_31_64 - x1 * cospi_1_64; | 
|  | s2 = x2 * cospi_5_64  + x3 * cospi_27_64; | 
|  | s3 = x2 * cospi_27_64 - x3 * cospi_5_64; | 
|  | s4 = x4 * cospi_9_64  + x5 * cospi_23_64; | 
|  | s5 = x4 * cospi_23_64 - x5 * cospi_9_64; | 
|  | s6 = x6 * cospi_13_64 + x7 * cospi_19_64; | 
|  | s7 = x6 * cospi_19_64 - x7 * cospi_13_64; | 
|  | s8 = x8 * cospi_17_64 + x9 * cospi_15_64; | 
|  | s9 = x8 * cospi_15_64 - x9 * cospi_17_64; | 
|  | s10 = x10 * cospi_21_64 + x11 * cospi_11_64; | 
|  | s11 = x10 * cospi_11_64 - x11 * cospi_21_64; | 
|  | s12 = x12 * cospi_25_64 + x13 * cospi_7_64; | 
|  | s13 = x12 * cospi_7_64  - x13 * cospi_25_64; | 
|  | s14 = x14 * cospi_29_64 + x15 * cospi_3_64; | 
|  | s15 = x14 * cospi_3_64  - x15 * cospi_29_64; | 
|  |  | 
|  | x0 = fdct_round_shift(s0 + s8); | 
|  | x1 = fdct_round_shift(s1 + s9); | 
|  | x2 = fdct_round_shift(s2 + s10); | 
|  | x3 = fdct_round_shift(s3 + s11); | 
|  | x4 = fdct_round_shift(s4 + s12); | 
|  | x5 = fdct_round_shift(s5 + s13); | 
|  | x6 = fdct_round_shift(s6 + s14); | 
|  | x7 = fdct_round_shift(s7 + s15); | 
|  | x8  = fdct_round_shift(s0 - s8); | 
|  | x9  = fdct_round_shift(s1 - s9); | 
|  | x10 = fdct_round_shift(s2 - s10); | 
|  | x11 = fdct_round_shift(s3 - s11); | 
|  | x12 = fdct_round_shift(s4 - s12); | 
|  | x13 = fdct_round_shift(s5 - s13); | 
|  | x14 = fdct_round_shift(s6 - s14); | 
|  | x15 = fdct_round_shift(s7 - s15); | 
|  |  | 
|  | // stage 2 | 
|  | s0 = x0; | 
|  | s1 = x1; | 
|  | s2 = x2; | 
|  | s3 = x3; | 
|  | s4 = x4; | 
|  | s5 = x5; | 
|  | s6 = x6; | 
|  | s7 = x7; | 
|  | s8 =    x8 * cospi_4_64   + x9 * cospi_28_64; | 
|  | s9 =    x8 * cospi_28_64  - x9 * cospi_4_64; | 
|  | s10 =   x10 * cospi_20_64 + x11 * cospi_12_64; | 
|  | s11 =   x10 * cospi_12_64 - x11 * cospi_20_64; | 
|  | s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; | 
|  | s13 =   x12 * cospi_4_64  + x13 * cospi_28_64; | 
|  | s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; | 
|  | s15 =   x14 * cospi_20_64 + x15 * cospi_12_64; | 
|  |  | 
|  | x0 = s0 + s4; | 
|  | x1 = s1 + s5; | 
|  | x2 = s2 + s6; | 
|  | x3 = s3 + s7; | 
|  | x4 = s0 - s4; | 
|  | x5 = s1 - s5; | 
|  | x6 = s2 - s6; | 
|  | x7 = s3 - s7; | 
|  | x8 = fdct_round_shift(s8 + s12); | 
|  | x9 = fdct_round_shift(s9 + s13); | 
|  | x10 = fdct_round_shift(s10 + s14); | 
|  | x11 = fdct_round_shift(s11 + s15); | 
|  | x12 = fdct_round_shift(s8 - s12); | 
|  | x13 = fdct_round_shift(s9 - s13); | 
|  | x14 = fdct_round_shift(s10 - s14); | 
|  | x15 = fdct_round_shift(s11 - s15); | 
|  |  | 
|  | // stage 3 | 
|  | s0 = x0; | 
|  | s1 = x1; | 
|  | s2 = x2; | 
|  | s3 = x3; | 
|  | s4 = x4 * cospi_8_64  + x5 * cospi_24_64; | 
|  | s5 = x4 * cospi_24_64 - x5 * cospi_8_64; | 
|  | s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; | 
|  | s7 =   x6 * cospi_8_64  + x7 * cospi_24_64; | 
|  | s8 = x8; | 
|  | s9 = x9; | 
|  | s10 = x10; | 
|  | s11 = x11; | 
|  | s12 = x12 * cospi_8_64  + x13 * cospi_24_64; | 
|  | s13 = x12 * cospi_24_64 - x13 * cospi_8_64; | 
|  | s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; | 
|  | s15 =   x14 * cospi_8_64  + x15 * cospi_24_64; | 
|  |  | 
|  | x0 = s0 + s2; | 
|  | x1 = s1 + s3; | 
|  | x2 = s0 - s2; | 
|  | x3 = s1 - s3; | 
|  | x4 = fdct_round_shift(s4 + s6); | 
|  | x5 = fdct_round_shift(s5 + s7); | 
|  | x6 = fdct_round_shift(s4 - s6); | 
|  | x7 = fdct_round_shift(s5 - s7); | 
|  | x8 = s8 + s10; | 
|  | x9 = s9 + s11; | 
|  | x10 = s8 - s10; | 
|  | x11 = s9 - s11; | 
|  | x12 = fdct_round_shift(s12 + s14); | 
|  | x13 = fdct_round_shift(s13 + s15); | 
|  | x14 = fdct_round_shift(s12 - s14); | 
|  | x15 = fdct_round_shift(s13 - s15); | 
|  |  | 
|  | // stage 4 | 
|  | s2 = (- cospi_16_64) * (x2 + x3); | 
|  | s3 = cospi_16_64 * (x2 - x3); | 
|  | s6 = cospi_16_64 * (x6 + x7); | 
|  | s7 = cospi_16_64 * (- x6 + x7); | 
|  | s10 = cospi_16_64 * (x10 + x11); | 
|  | s11 = cospi_16_64 * (- x10 + x11); | 
|  | s14 = (- cospi_16_64) * (x14 + x15); | 
|  | s15 = cospi_16_64 * (x14 - x15); | 
|  |  | 
|  | x2 = fdct_round_shift(s2); | 
|  | x3 = fdct_round_shift(s3); | 
|  | x6 = fdct_round_shift(s6); | 
|  | x7 = fdct_round_shift(s7); | 
|  | x10 = fdct_round_shift(s10); | 
|  | x11 = fdct_round_shift(s11); | 
|  | x14 = fdct_round_shift(s14); | 
|  | x15 = fdct_round_shift(s15); | 
|  |  | 
|  | output[0] = x0; | 
|  | output[1] = - x8; | 
|  | output[2] = x12; | 
|  | output[3] = - x4; | 
|  | output[4] = x6; | 
|  | output[5] = x14; | 
|  | output[6] = x10; | 
|  | output[7] = x2; | 
|  | output[8] = x3; | 
|  | output[9] =  x11; | 
|  | output[10] = x15; | 
|  | output[11] = x7; | 
|  | output[12] = x5; | 
|  | output[13] = - x13; | 
|  | output[14] = x9; | 
|  | output[15] = - x1; | 
|  | } | 
|  |  | 
|  | static const transform_2d FHT_16[] = { | 
|  | { fdct16,  fdct16  },  // DCT_DCT  = 0 | 
|  | { fadst16, fdct16  },  // ADST_DCT = 1 | 
|  | { fdct16,  fadst16 },  // DCT_ADST = 2 | 
|  | { fadst16, fadst16 }   // ADST_ADST = 3 | 
|  | }; | 
|  |  | 
|  | void vp9_fht16x16_c(const int16_t *input, int16_t *output, | 
|  | int stride, int tx_type) { | 
|  | if (tx_type == DCT_DCT) { | 
|  | vp9_fdct16x16_c(input, output, stride); | 
|  | } else { | 
|  | int16_t out[256]; | 
|  | int16_t *outptr = &out[0]; | 
|  | int i, j; | 
|  | int16_t temp_in[16], temp_out[16]; | 
|  | const transform_2d ht = FHT_16[tx_type]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 16; ++i) { | 
|  | for (j = 0; j < 16; ++j) | 
|  | temp_in[j] = input[j * stride + i] * 4; | 
|  | ht.cols(temp_in, temp_out); | 
|  | for (j = 0; j < 16; ++j) | 
|  | outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 16; ++i) { | 
|  | for (j = 0; j < 16; ++j) | 
|  | temp_in[j] = out[j + i * 16]; | 
|  | ht.rows(temp_in, temp_out); | 
|  | for (j = 0; j < 16; ++j) | 
|  | output[j + i * 16] = temp_out[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE int dct_32_round(int input) { | 
|  | int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); | 
|  | assert(-131072 <= rv && rv <= 131071); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static INLINE int half_round_shift(int input) { | 
|  | int rv = (input + 1 + (input < 0)) >> 2; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static void fdct32(const int *input, int *output, int round) { | 
|  | int step[32]; | 
|  | // Stage 1 | 
|  | step[0] = input[0] + input[(32 - 1)]; | 
|  | step[1] = input[1] + input[(32 - 2)]; | 
|  | step[2] = input[2] + input[(32 - 3)]; | 
|  | step[3] = input[3] + input[(32 - 4)]; | 
|  | step[4] = input[4] + input[(32 - 5)]; | 
|  | step[5] = input[5] + input[(32 - 6)]; | 
|  | step[6] = input[6] + input[(32 - 7)]; | 
|  | step[7] = input[7] + input[(32 - 8)]; | 
|  | step[8] = input[8] + input[(32 - 9)]; | 
|  | step[9] = input[9] + input[(32 - 10)]; | 
|  | step[10] = input[10] + input[(32 - 11)]; | 
|  | step[11] = input[11] + input[(32 - 12)]; | 
|  | step[12] = input[12] + input[(32 - 13)]; | 
|  | step[13] = input[13] + input[(32 - 14)]; | 
|  | step[14] = input[14] + input[(32 - 15)]; | 
|  | step[15] = input[15] + input[(32 - 16)]; | 
|  | step[16] = -input[16] + input[(32 - 17)]; | 
|  | step[17] = -input[17] + input[(32 - 18)]; | 
|  | step[18] = -input[18] + input[(32 - 19)]; | 
|  | step[19] = -input[19] + input[(32 - 20)]; | 
|  | step[20] = -input[20] + input[(32 - 21)]; | 
|  | step[21] = -input[21] + input[(32 - 22)]; | 
|  | step[22] = -input[22] + input[(32 - 23)]; | 
|  | step[23] = -input[23] + input[(32 - 24)]; | 
|  | step[24] = -input[24] + input[(32 - 25)]; | 
|  | step[25] = -input[25] + input[(32 - 26)]; | 
|  | step[26] = -input[26] + input[(32 - 27)]; | 
|  | step[27] = -input[27] + input[(32 - 28)]; | 
|  | step[28] = -input[28] + input[(32 - 29)]; | 
|  | step[29] = -input[29] + input[(32 - 30)]; | 
|  | step[30] = -input[30] + input[(32 - 31)]; | 
|  | step[31] = -input[31] + input[(32 - 32)]; | 
|  |  | 
|  | // Stage 2 | 
|  | output[0] = step[0] + step[16 - 1]; | 
|  | output[1] = step[1] + step[16 - 2]; | 
|  | output[2] = step[2] + step[16 - 3]; | 
|  | output[3] = step[3] + step[16 - 4]; | 
|  | output[4] = step[4] + step[16 - 5]; | 
|  | output[5] = step[5] + step[16 - 6]; | 
|  | output[6] = step[6] + step[16 - 7]; | 
|  | output[7] = step[7] + step[16 - 8]; | 
|  | output[8] = -step[8] + step[16 - 9]; | 
|  | output[9] = -step[9] + step[16 - 10]; | 
|  | output[10] = -step[10] + step[16 - 11]; | 
|  | output[11] = -step[11] + step[16 - 12]; | 
|  | output[12] = -step[12] + step[16 - 13]; | 
|  | output[13] = -step[13] + step[16 - 14]; | 
|  | output[14] = -step[14] + step[16 - 15]; | 
|  | output[15] = -step[15] + step[16 - 16]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = step[17]; | 
|  | output[18] = step[18]; | 
|  | output[19] = step[19]; | 
|  |  | 
|  | output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); | 
|  | output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); | 
|  | output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); | 
|  | output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); | 
|  |  | 
|  | output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); | 
|  | output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); | 
|  | output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); | 
|  | output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); | 
|  |  | 
|  | output[28] = step[28]; | 
|  | output[29] = step[29]; | 
|  | output[30] = step[30]; | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // dump the magnitude by 4, hence the intermediate values are within | 
|  | // the range of 16 bits. | 
|  | if (round) { | 
|  | output[0] = half_round_shift(output[0]); | 
|  | output[1] = half_round_shift(output[1]); | 
|  | output[2] = half_round_shift(output[2]); | 
|  | output[3] = half_round_shift(output[3]); | 
|  | output[4] = half_round_shift(output[4]); | 
|  | output[5] = half_round_shift(output[5]); | 
|  | output[6] = half_round_shift(output[6]); | 
|  | output[7] = half_round_shift(output[7]); | 
|  | output[8] = half_round_shift(output[8]); | 
|  | output[9] = half_round_shift(output[9]); | 
|  | output[10] = half_round_shift(output[10]); | 
|  | output[11] = half_round_shift(output[11]); | 
|  | output[12] = half_round_shift(output[12]); | 
|  | output[13] = half_round_shift(output[13]); | 
|  | output[14] = half_round_shift(output[14]); | 
|  | output[15] = half_round_shift(output[15]); | 
|  |  | 
|  | output[16] = half_round_shift(output[16]); | 
|  | output[17] = half_round_shift(output[17]); | 
|  | output[18] = half_round_shift(output[18]); | 
|  | output[19] = half_round_shift(output[19]); | 
|  | output[20] = half_round_shift(output[20]); | 
|  | output[21] = half_round_shift(output[21]); | 
|  | output[22] = half_round_shift(output[22]); | 
|  | output[23] = half_round_shift(output[23]); | 
|  | output[24] = half_round_shift(output[24]); | 
|  | output[25] = half_round_shift(output[25]); | 
|  | output[26] = half_round_shift(output[26]); | 
|  | output[27] = half_round_shift(output[27]); | 
|  | output[28] = half_round_shift(output[28]); | 
|  | output[29] = half_round_shift(output[29]); | 
|  | output[30] = half_round_shift(output[30]); | 
|  | output[31] = half_round_shift(output[31]); | 
|  | } | 
|  |  | 
|  | // Stage 3 | 
|  | step[0] = output[0] + output[(8 - 1)]; | 
|  | step[1] = output[1] + output[(8 - 2)]; | 
|  | step[2] = output[2] + output[(8 - 3)]; | 
|  | step[3] = output[3] + output[(8 - 4)]; | 
|  | step[4] = -output[4] + output[(8 - 5)]; | 
|  | step[5] = -output[5] + output[(8 - 6)]; | 
|  | step[6] = -output[6] + output[(8 - 7)]; | 
|  | step[7] = -output[7] + output[(8 - 8)]; | 
|  | step[8] = output[8]; | 
|  | step[9] = output[9]; | 
|  | step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); | 
|  | step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); | 
|  | step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); | 
|  | step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); | 
|  | step[14] = output[14]; | 
|  | step[15] = output[15]; | 
|  |  | 
|  | step[16] = output[16] + output[23]; | 
|  | step[17] = output[17] + output[22]; | 
|  | step[18] = output[18] + output[21]; | 
|  | step[19] = output[19] + output[20]; | 
|  | step[20] = -output[20] + output[19]; | 
|  | step[21] = -output[21] + output[18]; | 
|  | step[22] = -output[22] + output[17]; | 
|  | step[23] = -output[23] + output[16]; | 
|  | step[24] = -output[24] + output[31]; | 
|  | step[25] = -output[25] + output[30]; | 
|  | step[26] = -output[26] + output[29]; | 
|  | step[27] = -output[27] + output[28]; | 
|  | step[28] = output[28] + output[27]; | 
|  | step[29] = output[29] + output[26]; | 
|  | step[30] = output[30] + output[25]; | 
|  | step[31] = output[31] + output[24]; | 
|  |  | 
|  | // Stage 4 | 
|  | output[0] = step[0] + step[3]; | 
|  | output[1] = step[1] + step[2]; | 
|  | output[2] = -step[2] + step[1]; | 
|  | output[3] = -step[3] + step[0]; | 
|  | output[4] = step[4]; | 
|  | output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); | 
|  | output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); | 
|  | output[7] = step[7]; | 
|  | output[8] = step[8] + step[11]; | 
|  | output[9] = step[9] + step[10]; | 
|  | output[10] = -step[10] + step[9]; | 
|  | output[11] = -step[11] + step[8]; | 
|  | output[12] = -step[12] + step[15]; | 
|  | output[13] = -step[13] + step[14]; | 
|  | output[14] = step[14] + step[13]; | 
|  | output[15] = step[15] + step[12]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = step[17]; | 
|  | output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); | 
|  | output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); | 
|  | output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); | 
|  | output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); | 
|  | output[22] = step[22]; | 
|  | output[23] = step[23]; | 
|  | output[24] = step[24]; | 
|  | output[25] = step[25]; | 
|  | output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); | 
|  | output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); | 
|  | output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); | 
|  | output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); | 
|  | output[30] = step[30]; | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // Stage 5 | 
|  | step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); | 
|  | step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); | 
|  | step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); | 
|  | step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); | 
|  | step[4] = output[4] + output[5]; | 
|  | step[5] = -output[5] + output[4]; | 
|  | step[6] = -output[6] + output[7]; | 
|  | step[7] = output[7] + output[6]; | 
|  | step[8] = output[8]; | 
|  | step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); | 
|  | step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); | 
|  | step[11] = output[11]; | 
|  | step[12] = output[12]; | 
|  | step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); | 
|  | step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); | 
|  | step[15] = output[15]; | 
|  |  | 
|  | step[16] = output[16] + output[19]; | 
|  | step[17] = output[17] + output[18]; | 
|  | step[18] = -output[18] + output[17]; | 
|  | step[19] = -output[19] + output[16]; | 
|  | step[20] = -output[20] + output[23]; | 
|  | step[21] = -output[21] + output[22]; | 
|  | step[22] = output[22] + output[21]; | 
|  | step[23] = output[23] + output[20]; | 
|  | step[24] = output[24] + output[27]; | 
|  | step[25] = output[25] + output[26]; | 
|  | step[26] = -output[26] + output[25]; | 
|  | step[27] = -output[27] + output[24]; | 
|  | step[28] = -output[28] + output[31]; | 
|  | step[29] = -output[29] + output[30]; | 
|  | step[30] = output[30] + output[29]; | 
|  | step[31] = output[31] + output[28]; | 
|  |  | 
|  | // Stage 6 | 
|  | output[0] = step[0]; | 
|  | output[1] = step[1]; | 
|  | output[2] = step[2]; | 
|  | output[3] = step[3]; | 
|  | output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); | 
|  | output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); | 
|  | output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); | 
|  | output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); | 
|  | output[8] = step[8] + step[9]; | 
|  | output[9] = -step[9] + step[8]; | 
|  | output[10] = -step[10] + step[11]; | 
|  | output[11] = step[11] + step[10]; | 
|  | output[12] = step[12] + step[13]; | 
|  | output[13] = -step[13] + step[12]; | 
|  | output[14] = -step[14] + step[15]; | 
|  | output[15] = step[15] + step[14]; | 
|  |  | 
|  | output[16] = step[16]; | 
|  | output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); | 
|  | output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); | 
|  | output[19] = step[19]; | 
|  | output[20] = step[20]; | 
|  | output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); | 
|  | output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); | 
|  | output[23] = step[23]; | 
|  | output[24] = step[24]; | 
|  | output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); | 
|  | output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); | 
|  | output[27] = step[27]; | 
|  | output[28] = step[28]; | 
|  | output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); | 
|  | output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); | 
|  | output[31] = step[31]; | 
|  |  | 
|  | // Stage 7 | 
|  | step[0] = output[0]; | 
|  | step[1] = output[1]; | 
|  | step[2] = output[2]; | 
|  | step[3] = output[3]; | 
|  | step[4] = output[4]; | 
|  | step[5] = output[5]; | 
|  | step[6] = output[6]; | 
|  | step[7] = output[7]; | 
|  | step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); | 
|  | step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); | 
|  | step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); | 
|  | step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); | 
|  | step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); | 
|  | step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); | 
|  | step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); | 
|  | step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); | 
|  |  | 
|  | step[16] = output[16] + output[17]; | 
|  | step[17] = -output[17] + output[16]; | 
|  | step[18] = -output[18] + output[19]; | 
|  | step[19] = output[19] + output[18]; | 
|  | step[20] = output[20] + output[21]; | 
|  | step[21] = -output[21] + output[20]; | 
|  | step[22] = -output[22] + output[23]; | 
|  | step[23] = output[23] + output[22]; | 
|  | step[24] = output[24] + output[25]; | 
|  | step[25] = -output[25] + output[24]; | 
|  | step[26] = -output[26] + output[27]; | 
|  | step[27] = output[27] + output[26]; | 
|  | step[28] = output[28] + output[29]; | 
|  | step[29] = -output[29] + output[28]; | 
|  | step[30] = -output[30] + output[31]; | 
|  | step[31] = output[31] + output[30]; | 
|  |  | 
|  | // Final stage --- outputs indices are bit-reversed. | 
|  | output[0]  = step[0]; | 
|  | output[16] = step[1]; | 
|  | output[8]  = step[2]; | 
|  | output[24] = step[3]; | 
|  | output[4]  = step[4]; | 
|  | output[20] = step[5]; | 
|  | output[12] = step[6]; | 
|  | output[28] = step[7]; | 
|  | output[2]  = step[8]; | 
|  | output[18] = step[9]; | 
|  | output[10] = step[10]; | 
|  | output[26] = step[11]; | 
|  | output[6]  = step[12]; | 
|  | output[22] = step[13]; | 
|  | output[14] = step[14]; | 
|  | output[30] = step[15]; | 
|  |  | 
|  | output[1]  = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); | 
|  | output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); | 
|  | output[9]  = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); | 
|  | output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); | 
|  | output[5]  = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); | 
|  | output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); | 
|  | output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); | 
|  | output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); | 
|  | output[3]  = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); | 
|  | output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); | 
|  | output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); | 
|  | output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); | 
|  | output[7]  = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); | 
|  | output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); | 
|  | output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); | 
|  | output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); | 
|  | } | 
|  |  | 
|  | void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) { | 
|  | int i, j; | 
|  | int output[32 * 32]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 32; ++i) { | 
|  | int temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) | 
|  | temp_in[j] = input[j * stride + i] * 4; | 
|  | fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 32; ++i) { | 
|  | int temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) | 
|  | temp_in[j] = output[j + i * 32]; | 
|  | fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Note that although we use dct_32_round in dct32 computation flow, | 
|  | // this 2d fdct32x32 for rate-distortion optimization loop is operating | 
|  | // within 16 bits precision. | 
|  | void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) { | 
|  | int i, j; | 
|  | int output[32 * 32]; | 
|  |  | 
|  | // Columns | 
|  | for (i = 0; i < 32; ++i) { | 
|  | int temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) | 
|  | temp_in[j] = input[j * stride + i] * 4; | 
|  | fdct32(temp_in, temp_out, 0); | 
|  | for (j = 0; j < 32; ++j) | 
|  | // TODO(cd): see quality impact of only doing | 
|  | //           output[j * 32 + i] = (temp_out[j] + 1) >> 2; | 
|  | //           PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c | 
|  | output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; | 
|  | } | 
|  |  | 
|  | // Rows | 
|  | for (i = 0; i < 32; ++i) { | 
|  | int temp_in[32], temp_out[32]; | 
|  | for (j = 0; j < 32; ++j) | 
|  | temp_in[j] = output[j + i * 32]; | 
|  | fdct32(temp_in, temp_out, 1); | 
|  | for (j = 0; j < 32; ++j) | 
|  | out[j + i * 32] = temp_out[j]; | 
|  | } | 
|  | } |