| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <string.h> |
| #include "test/acm_random.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "./vpx_config.h" |
| #include "./vp9_rtcd.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| |
| namespace { |
| typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride, |
| uint8_t *dst, ptrdiff_t dst_stride, |
| const int16_t *filter_x, int filter_x_stride, |
| const int16_t *filter_y, int filter_y_stride, |
| int w, int h); |
| |
| struct ConvolveFunctions { |
| ConvolveFunctions(ConvolveFunc h8, ConvolveFunc h8_avg, |
| ConvolveFunc v8, ConvolveFunc v8_avg, |
| ConvolveFunc hv8, ConvolveFunc hv8_avg) |
| : h8_(h8), v8_(v8), hv8_(hv8), h8_avg_(h8_avg), v8_avg_(v8_avg), |
| hv8_avg_(hv8_avg) {} |
| |
| ConvolveFunc h8_; |
| ConvolveFunc v8_; |
| ConvolveFunc hv8_; |
| ConvolveFunc h8_avg_; |
| ConvolveFunc v8_avg_; |
| ConvolveFunc hv8_avg_; |
| }; |
| |
| typedef std::tr1::tuple<int, int, const ConvolveFunctions *> ConvolveParam; |
| |
| // Reference 8-tap subpixel filter, slightly modified to fit into this test. |
| #define VP9_FILTER_WEIGHT 128 |
| #define VP9_FILTER_SHIFT 7 |
| uint8_t clip_pixel(int x) { |
| return x < 0 ? 0 : |
| x > 255 ? 255 : |
| x; |
| } |
| |
| void filter_block2d_8_c(const uint8_t *src_ptr, |
| const unsigned int src_stride, |
| const int16_t *HFilter, |
| const int16_t *VFilter, |
| uint8_t *dst_ptr, |
| unsigned int dst_stride, |
| unsigned int output_width, |
| unsigned int output_height) { |
| // Between passes, we use an intermediate buffer whose height is extended to |
| // have enough horizontally filtered values as input for the vertical pass. |
| // This buffer is allocated to be big enough for the largest block type we |
| // support. |
| const int kInterp_Extend = 4; |
| const unsigned int intermediate_height = |
| (kInterp_Extend - 1) + output_height + kInterp_Extend; |
| |
| /* Size of intermediate_buffer is max_intermediate_height * filter_max_width, |
| * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height |
| * + kInterp_Extend |
| * = 3 + 16 + 4 |
| * = 23 |
| * and filter_max_width = 16 |
| */ |
| uint8_t intermediate_buffer[71 * 64]; |
| const int intermediate_next_stride = 1 - intermediate_height * output_width; |
| |
| // Horizontal pass (src -> transposed intermediate). |
| { |
| uint8_t *output_ptr = intermediate_buffer; |
| const int src_next_row_stride = src_stride - output_width; |
| unsigned int i, j; |
| src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); |
| for (i = 0; i < intermediate_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = (src_ptr[0] * HFilter[0]) + |
| (src_ptr[1] * HFilter[1]) + |
| (src_ptr[2] * HFilter[2]) + |
| (src_ptr[3] * HFilter[3]) + |
| (src_ptr[4] * HFilter[4]) + |
| (src_ptr[5] * HFilter[5]) + |
| (src_ptr[6] * HFilter[6]) + |
| (src_ptr[7] * HFilter[7]) + |
| (VP9_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT); |
| ++src_ptr; |
| output_ptr += intermediate_height; |
| } |
| src_ptr += src_next_row_stride; |
| output_ptr += intermediate_next_stride; |
| } |
| } |
| |
| // Vertical pass (transposed intermediate -> dst). |
| { |
| uint8_t *src_ptr = intermediate_buffer; |
| const int dst_next_row_stride = dst_stride - output_width; |
| unsigned int i, j; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| // Apply filter... |
| const int temp = (src_ptr[0] * VFilter[0]) + |
| (src_ptr[1] * VFilter[1]) + |
| (src_ptr[2] * VFilter[2]) + |
| (src_ptr[3] * VFilter[3]) + |
| (src_ptr[4] * VFilter[4]) + |
| (src_ptr[5] * VFilter[5]) + |
| (src_ptr[6] * VFilter[6]) + |
| (src_ptr[7] * VFilter[7]) + |
| (VP9_FILTER_WEIGHT >> 1); // Rounding |
| |
| // Normalize back to 0-255... |
| *dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT); |
| src_ptr += intermediate_height; |
| } |
| src_ptr += intermediate_next_stride; |
| dst_ptr += dst_next_row_stride; |
| } |
| } |
| } |
| |
| void block2d_average_c(uint8_t *src, |
| unsigned int src_stride, |
| uint8_t *output_ptr, |
| unsigned int output_stride, |
| unsigned int output_width, |
| unsigned int output_height) { |
| unsigned int i, j; |
| for (i = 0; i < output_height; ++i) { |
| for (j = 0; j < output_width; ++j) { |
| output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; |
| } |
| output_ptr += output_stride; |
| } |
| } |
| |
| void filter_average_block2d_8_c(const uint8_t *src_ptr, |
| const unsigned int src_stride, |
| const int16_t *HFilter, |
| const int16_t *VFilter, |
| uint8_t *dst_ptr, |
| unsigned int dst_stride, |
| unsigned int output_width, |
| unsigned int output_height) { |
| uint8_t tmp[64 * 64]; |
| |
| assert(output_width <= 64); |
| assert(output_height <= 64); |
| filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64, |
| output_width, output_height); |
| block2d_average_c(tmp, 64, dst_ptr, dst_stride, |
| output_width, output_height); |
| } |
| |
| class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> { |
| public: |
| static void SetUpTestCase() { |
| // Force input_ to be unaligned, output to be 16 byte aligned. |
| input_ = reinterpret_cast<uint8_t*>( |
| vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1; |
| output_ = reinterpret_cast<uint8_t*>( |
| vpx_memalign(kDataAlignment, kOutputBufferSize)); |
| } |
| |
| static void TearDownTestCase() { |
| vpx_free(input_ - 1); |
| input_ = NULL; |
| vpx_free(output_); |
| output_ = NULL; |
| } |
| |
| protected: |
| static const int kDataAlignment = 16; |
| static const int kOuterBlockSize = 256; |
| static const int kInputStride = kOuterBlockSize; |
| static const int kOutputStride = kOuterBlockSize; |
| static const int kMaxDimension = 64; |
| static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; |
| static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; |
| |
| int Width() const { return GET_PARAM(0); } |
| int Height() const { return GET_PARAM(1); } |
| int BorderLeft() const { |
| const int center = (kOuterBlockSize - Width()) / 2; |
| return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); |
| } |
| int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } |
| |
| bool IsIndexInBorder(int i) { |
| return (i < BorderTop() * kOuterBlockSize || |
| i >= (BorderTop() + Height()) * kOuterBlockSize || |
| i % kOuterBlockSize < BorderLeft() || |
| i % kOuterBlockSize >= (BorderLeft() + Width())); |
| } |
| |
| virtual void SetUp() { |
| UUT_ = GET_PARAM(2); |
| /* Set up guard blocks for an inner block centered in the outer block */ |
| for (int i = 0; i < kOutputBufferSize; ++i) { |
| if (IsIndexInBorder(i)) |
| output_[i] = 255; |
| else |
| output_[i] = 0; |
| } |
| |
| ::libvpx_test::ACMRandom prng; |
| for (int i = 0; i < kInputBufferSize; ++i) { |
| if (i & 1) |
| input_[i] = 255; |
| else |
| input_[i] = prng.Rand8Extremes(); |
| } |
| } |
| |
| void SetConstantInput(int value) { |
| memset(input_, value, kInputBufferSize); |
| } |
| |
| void CheckGuardBlocks() { |
| for (int i = 0; i < kOutputBufferSize; ++i) { |
| if (IsIndexInBorder(i)) |
| EXPECT_EQ(255, output_[i]); |
| } |
| } |
| |
| uint8_t* input() const { |
| return input_ + BorderTop() * kOuterBlockSize + BorderLeft(); |
| } |
| |
| uint8_t* output() const { |
| return output_ + BorderTop() * kOuterBlockSize + BorderLeft(); |
| } |
| |
| const ConvolveFunctions* UUT_; |
| static uint8_t* input_; |
| static uint8_t* output_; |
| }; |
| uint8_t* ConvolveTest::input_ = NULL; |
| uint8_t* ConvolveTest::output_ = NULL; |
| |
| TEST_P(ConvolveTest, GuardBlocks) { |
| CheckGuardBlocks(); |
| } |
| |
| TEST_P(ConvolveTest, CopyHoriz) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; |
| |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->h8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) |
| << "(" << x << "," << y << ")"; |
| } |
| |
| TEST_P(ConvolveTest, CopyVert) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; |
| |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->v8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) |
| << "(" << x << "," << y << ")"; |
| } |
| |
| TEST_P(ConvolveTest, Copy2D) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; |
| |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->hv8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) |
| << "(" << x << "," << y << ")"; |
| } |
| |
| const int kNumFilterBanks = 4; |
| const int kNumFilters = 16; |
| |
| TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpKernel *filters = |
| vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); |
| for (int i = 0; i < kNumFilters; i++) { |
| const int p0 = filters[i][0] + filters[i][1]; |
| const int p1 = filters[i][2] + filters[i][3]; |
| const int p2 = filters[i][4] + filters[i][5]; |
| const int p3 = filters[i][6] + filters[i][7]; |
| EXPECT_LE(p0, 128); |
| EXPECT_LE(p1, 128); |
| EXPECT_LE(p2, 128); |
| EXPECT_LE(p3, 128); |
| EXPECT_LE(p0 + p3, 128); |
| EXPECT_LE(p0 + p3 + p1, 128); |
| EXPECT_LE(p0 + p3 + p1 + p2, 128); |
| EXPECT_EQ(p0 + p1 + p2 + p3, 128); |
| } |
| } |
| } |
| |
| const int16_t kInvalidFilter[8] = { 0 }; |
| |
| TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| uint8_t ref[kOutputStride * kMaxDimension]; |
| |
| |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpKernel *filters = |
| vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); |
| const InterpKernel *const eighttap_smooth = |
| vp9_get_interp_kernel(EIGHTTAP_SMOOTH); |
| |
| for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { |
| for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { |
| filter_block2d_8_c(in, kInputStride, |
| filters[filter_x], filters[filter_y], |
| ref, kOutputStride, |
| Width(), Height()); |
| |
| if (filters == eighttap_smooth || (filter_x && filter_y)) |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->hv8_(in, kInputStride, out, kOutputStride, |
| filters[filter_x], 16, filters[filter_y], 16, |
| Width(), Height())); |
| else if (filter_y) |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->v8_(in, kInputStride, out, kOutputStride, |
| kInvalidFilter, 16, filters[filter_y], 16, |
| Width(), Height())); |
| else |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->h8_(in, kInputStride, out, kOutputStride, |
| filters[filter_x], 16, kInvalidFilter, 16, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) |
| << "mismatch at (" << x << "," << y << "), " |
| << "filters (" << filter_bank << "," |
| << filter_x << "," << filter_y << ")"; |
| } |
| } |
| } |
| } |
| |
| TEST_P(ConvolveTest, MatchesReferenceAveragingSubpixelFilter) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| uint8_t ref[kOutputStride * kMaxDimension]; |
| |
| // Populate ref and out with some random data |
| ::libvpx_test::ACMRandom prng; |
| for (int y = 0; y < Height(); ++y) { |
| for (int x = 0; x < Width(); ++x) { |
| const uint8_t r = prng.Rand8Extremes(); |
| |
| out[y * kOutputStride + x] = r; |
| ref[y * kOutputStride + x] = r; |
| } |
| } |
| |
| for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { |
| const InterpKernel *filters = |
| vp9_get_interp_kernel(static_cast<INTERP_FILTER>(filter_bank)); |
| const InterpKernel *const eighttap_smooth = |
| vp9_get_interp_kernel(EIGHTTAP_SMOOTH); |
| |
| for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { |
| for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { |
| filter_average_block2d_8_c(in, kInputStride, |
| filters[filter_x], filters[filter_y], |
| ref, kOutputStride, |
| Width(), Height()); |
| |
| if (filters == eighttap_smooth || (filter_x && filter_y)) |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->hv8_avg_(in, kInputStride, out, kOutputStride, |
| filters[filter_x], 16, filters[filter_y], 16, |
| Width(), Height())); |
| else if (filter_y) |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->v8_avg_(in, kInputStride, out, kOutputStride, |
| filters[filter_x], 16, filters[filter_y], 16, |
| Width(), Height())); |
| else |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->h8_avg_(in, kInputStride, out, kOutputStride, |
| filters[filter_x], 16, filters[filter_y], 16, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) |
| for (int x = 0; x < Width(); ++x) |
| ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) |
| << "mismatch at (" << x << "," << y << "), " |
| << "filters (" << filter_bank << "," |
| << filter_x << "," << filter_y << ")"; |
| } |
| } |
| } |
| } |
| |
| DECLARE_ALIGNED(256, const int16_t, kChangeFilters[16][8]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 128}, |
| { 0, 0, 128}, |
| { 0, 128}, |
| { 128}, |
| { 0, 0, 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 0, 128}, |
| { 0, 0, 0, 128}, |
| { 0, 0, 128}, |
| { 0, 128}, |
| { 128} |
| }; |
| |
| /* This test exercises the horizontal and vertical filter functions. */ |
| TEST_P(ConvolveTest, ChangeFilterWorks) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| |
| /* Assume that the first input sample is at the 8/16th position. */ |
| const int kInitialSubPelOffset = 8; |
| |
| /* Filters are 8-tap, so the first filter tap will be applied to the pixel |
| * at position -3 with respect to the current filtering position. Since |
| * kInitialSubPelOffset is set to 8, we first select sub-pixel filter 8, |
| * which is non-zero only in the last tap. So, applying the filter at the |
| * current input position will result in an output equal to the pixel at |
| * offset +4 (-3 + 7) with respect to the current filtering position. |
| */ |
| const int kPixelSelected = 4; |
| |
| /* Assume that each output pixel requires us to step on by 17/16th pixels in |
| * the input. |
| */ |
| const int kInputPixelStep = 17; |
| |
| /* The filters are setup in such a way that the expected output produces |
| * sets of 8 identical output samples. As the filter position moves to the |
| * next 1/16th pixel position the only active (=128) filter tap moves one |
| * position to the left, resulting in the same input pixel being replicated |
| * in to the output for 8 consecutive samples. After each set of 8 positions |
| * the filters select a different input pixel. kFilterPeriodAdjust below |
| * computes which input pixel is written to the output for a specified |
| * x or y position. |
| */ |
| |
| /* Test the horizontal filter. */ |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->h8_(in, kInputStride, out, kOutputStride, |
| kChangeFilters[kInitialSubPelOffset], |
| kInputPixelStep, NULL, 0, Width(), Height())); |
| |
| for (int x = 0; x < Width(); ++x) { |
| const int kFilterPeriodAdjust = (x >> 3) << 3; |
| const int ref_x = |
| kPixelSelected + ((kInitialSubPelOffset |
| + kFilterPeriodAdjust * kInputPixelStep) |
| >> SUBPEL_BITS); |
| ASSERT_EQ(in[ref_x], out[x]) << "x == " << x << "width = " << Width(); |
| } |
| |
| /* Test the vertical filter. */ |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->v8_(in, kInputStride, out, kOutputStride, |
| NULL, 0, kChangeFilters[kInitialSubPelOffset], |
| kInputPixelStep, Width(), Height())); |
| |
| for (int y = 0; y < Height(); ++y) { |
| const int kFilterPeriodAdjust = (y >> 3) << 3; |
| const int ref_y = |
| kPixelSelected + ((kInitialSubPelOffset |
| + kFilterPeriodAdjust * kInputPixelStep) |
| >> SUBPEL_BITS); |
| ASSERT_EQ(in[ref_y * kInputStride], out[y * kInputStride]) << "y == " << y; |
| } |
| |
| /* Test the horizontal and vertical filters in combination. */ |
| ASM_REGISTER_STATE_CHECK( |
| UUT_->hv8_(in, kInputStride, out, kOutputStride, |
| kChangeFilters[kInitialSubPelOffset], kInputPixelStep, |
| kChangeFilters[kInitialSubPelOffset], kInputPixelStep, |
| Width(), Height())); |
| |
| for (int y = 0; y < Height(); ++y) { |
| const int kFilterPeriodAdjustY = (y >> 3) << 3; |
| const int ref_y = |
| kPixelSelected + ((kInitialSubPelOffset |
| + kFilterPeriodAdjustY * kInputPixelStep) |
| >> SUBPEL_BITS); |
| for (int x = 0; x < Width(); ++x) { |
| const int kFilterPeriodAdjustX = (x >> 3) << 3; |
| const int ref_x = |
| kPixelSelected + ((kInitialSubPelOffset |
| + kFilterPeriodAdjustX * kInputPixelStep) |
| >> SUBPEL_BITS); |
| |
| ASSERT_EQ(in[ref_y * kInputStride + ref_x], out[y * kOutputStride + x]) |
| << "x == " << x << ", y == " << y; |
| } |
| } |
| } |
| |
| /* This test exercises that enough rows and columns are filtered with every |
| possible initial fractional positions and scaling steps. */ |
| TEST_P(ConvolveTest, CheckScalingFiltering) { |
| uint8_t* const in = input(); |
| uint8_t* const out = output(); |
| const InterpKernel *const eighttap = vp9_get_interp_kernel(EIGHTTAP); |
| |
| SetConstantInput(127); |
| |
| for (int frac = 0; frac < 16; ++frac) { |
| for (int step = 1; step <= 32; ++step) { |
| /* Test the horizontal and vertical filters in combination. */ |
| ASM_REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride, |
| eighttap[frac], step, |
| eighttap[frac], step, |
| Width(), Height())); |
| |
| CheckGuardBlocks(); |
| |
| for (int y = 0; y < Height(); ++y) { |
| for (int x = 0; x < Width(); ++x) { |
| ASSERT_EQ(in[y * kInputStride + x], out[y * kOutputStride + x]) |
| << "x == " << x << ", y == " << y |
| << ", frac == " << frac << ", step == " << step; |
| } |
| } |
| } |
| } |
| } |
| |
| using std::tr1::make_tuple; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| #else |
| const ConvolveFunctions convolve8_c( |
| vp9_convolve8_horiz_c, vp9_convolve8_avg_horiz_c, |
| vp9_convolve8_vert_c, vp9_convolve8_avg_vert_c, |
| vp9_convolve8_c, vp9_convolve8_avg_c); |
| |
| INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_c), |
| make_tuple(8, 4, &convolve8_c), |
| make_tuple(4, 8, &convolve8_c), |
| make_tuple(8, 8, &convolve8_c), |
| make_tuple(16, 8, &convolve8_c), |
| make_tuple(8, 16, &convolve8_c), |
| make_tuple(16, 16, &convolve8_c), |
| make_tuple(32, 16, &convolve8_c), |
| make_tuple(16, 32, &convolve8_c), |
| make_tuple(32, 32, &convolve8_c), |
| make_tuple(64, 32, &convolve8_c), |
| make_tuple(32, 64, &convolve8_c), |
| make_tuple(64, 64, &convolve8_c))); |
| #endif |
| |
| #if HAVE_SSE2 && ARCH_X86_64 |
| #if CONFIG_VP9_HIGHBITDEPTH |
| #else |
| const ConvolveFunctions convolve8_sse2( |
| vp9_convolve8_horiz_sse2, vp9_convolve8_avg_horiz_sse2, |
| vp9_convolve8_vert_sse2, vp9_convolve8_avg_vert_sse2, |
| vp9_convolve8_sse2, vp9_convolve8_avg_sse2); |
| |
| INSTANTIATE_TEST_CASE_P(SSE2, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_sse2), |
| make_tuple(8, 4, &convolve8_sse2), |
| make_tuple(4, 8, &convolve8_sse2), |
| make_tuple(8, 8, &convolve8_sse2), |
| make_tuple(16, 8, &convolve8_sse2), |
| make_tuple(8, 16, &convolve8_sse2), |
| make_tuple(16, 16, &convolve8_sse2), |
| make_tuple(32, 16, &convolve8_sse2), |
| make_tuple(16, 32, &convolve8_sse2), |
| make_tuple(32, 32, &convolve8_sse2), |
| make_tuple(64, 32, &convolve8_sse2), |
| make_tuple(32, 64, &convolve8_sse2), |
| make_tuple(64, 64, &convolve8_sse2))); |
| #endif |
| #endif |
| |
| #if HAVE_SSSE3 |
| const ConvolveFunctions convolve8_ssse3( |
| vp9_convolve8_horiz_ssse3, vp9_convolve8_avg_horiz_ssse3, |
| vp9_convolve8_vert_ssse3, vp9_convolve8_avg_vert_ssse3, |
| vp9_convolve8_ssse3, vp9_convolve8_avg_ssse3); |
| |
| INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_ssse3), |
| make_tuple(8, 4, &convolve8_ssse3), |
| make_tuple(4, 8, &convolve8_ssse3), |
| make_tuple(8, 8, &convolve8_ssse3), |
| make_tuple(16, 8, &convolve8_ssse3), |
| make_tuple(8, 16, &convolve8_ssse3), |
| make_tuple(16, 16, &convolve8_ssse3), |
| make_tuple(32, 16, &convolve8_ssse3), |
| make_tuple(16, 32, &convolve8_ssse3), |
| make_tuple(32, 32, &convolve8_ssse3), |
| make_tuple(64, 32, &convolve8_ssse3), |
| make_tuple(32, 64, &convolve8_ssse3), |
| make_tuple(64, 64, &convolve8_ssse3))); |
| #endif |
| |
| #if HAVE_AVX2 && HAVE_SSSE3 |
| const ConvolveFunctions convolve8_avx2( |
| vp9_convolve8_horiz_avx2, vp9_convolve8_avg_horiz_ssse3, |
| vp9_convolve8_vert_avx2, vp9_convolve8_avg_vert_ssse3, |
| vp9_convolve8_avx2, vp9_convolve8_avg_ssse3); |
| |
| INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_avx2), |
| make_tuple(8, 4, &convolve8_avx2), |
| make_tuple(4, 8, &convolve8_avx2), |
| make_tuple(8, 8, &convolve8_avx2), |
| make_tuple(8, 16, &convolve8_avx2), |
| make_tuple(16, 8, &convolve8_avx2), |
| make_tuple(16, 16, &convolve8_avx2), |
| make_tuple(32, 16, &convolve8_avx2), |
| make_tuple(16, 32, &convolve8_avx2), |
| make_tuple(32, 32, &convolve8_avx2), |
| make_tuple(64, 32, &convolve8_avx2), |
| make_tuple(32, 64, &convolve8_avx2), |
| make_tuple(64, 64, &convolve8_avx2))); |
| #endif // HAVE_AVX2 && HAVE_SSSE3 |
| |
| #if HAVE_NEON_ASM |
| const ConvolveFunctions convolve8_neon( |
| vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon, |
| vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon, |
| vp9_convolve8_neon, vp9_convolve8_avg_neon); |
| |
| INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_neon), |
| make_tuple(8, 4, &convolve8_neon), |
| make_tuple(4, 8, &convolve8_neon), |
| make_tuple(8, 8, &convolve8_neon), |
| make_tuple(16, 8, &convolve8_neon), |
| make_tuple(8, 16, &convolve8_neon), |
| make_tuple(16, 16, &convolve8_neon), |
| make_tuple(32, 16, &convolve8_neon), |
| make_tuple(16, 32, &convolve8_neon), |
| make_tuple(32, 32, &convolve8_neon), |
| make_tuple(64, 32, &convolve8_neon), |
| make_tuple(32, 64, &convolve8_neon), |
| make_tuple(64, 64, &convolve8_neon))); |
| #endif |
| |
| #if HAVE_DSPR2 |
| const ConvolveFunctions convolve8_dspr2( |
| vp9_convolve8_horiz_dspr2, vp9_convolve8_avg_horiz_dspr2, |
| vp9_convolve8_vert_dspr2, vp9_convolve8_avg_vert_dspr2, |
| vp9_convolve8_dspr2, vp9_convolve8_avg_dspr2); |
| |
| INSTANTIATE_TEST_CASE_P(DSPR2, ConvolveTest, ::testing::Values( |
| make_tuple(4, 4, &convolve8_dspr2), |
| make_tuple(8, 4, &convolve8_dspr2), |
| make_tuple(4, 8, &convolve8_dspr2), |
| make_tuple(8, 8, &convolve8_dspr2), |
| make_tuple(16, 8, &convolve8_dspr2), |
| make_tuple(8, 16, &convolve8_dspr2), |
| make_tuple(16, 16, &convolve8_dspr2), |
| make_tuple(32, 16, &convolve8_dspr2), |
| make_tuple(16, 32, &convolve8_dspr2), |
| make_tuple(32, 32, &convolve8_dspr2), |
| make_tuple(64, 32, &convolve8_dspr2), |
| make_tuple(32, 64, &convolve8_dspr2), |
| make_tuple(64, 64, &convolve8_dspr2))); |
| #endif |
| } // namespace |