blob: c78edb89107764e639775e0084cabf554dab1188 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/flow_estimation/corner_detect.h"
#include "aom_dsp/flow_estimation/corner_match.h"
#include "aom_dsp/flow_estimation/disflow.h"
#include "aom_dsp/flow_estimation/flow_estimation.h"
#include "aom_dsp/flow_estimation/ransac.h"
#include "aom_dsp/pyramid.h"
#include "aom_scale/yv12config.h"
#define THRESHOLD_NCC 0.75
/* Compute mean and standard deviation of pixels in a window of size
MATCH_SZ by MATCH_SZ centered at (x, y).
Store results into *mean and *one_over_stddev
Note: The output of this function is scaled by MATCH_SZ, as in
*mean = MATCH_SZ * <true mean> and
*one_over_stddev = 1 / (MATCH_SZ * <true stddev>)
Combined with the fact that we return 1/stddev rather than the standard
deviation itself, this allows us to completely avoid divisions in
aom_compute_correlation, which is much hotter than this function is.
Returns true if this feature point is usable, false otherwise.
*/
bool aom_compute_mean_stddev_c(const unsigned char *frame, int stride, int x,
int y, double *mean, double *one_over_stddev) {
int sum = 0;
int sumsq = 0;
for (int i = 0; i < MATCH_SZ; ++i) {
for (int j = 0; j < MATCH_SZ; ++j) {
sum += frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
sumsq += frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] *
frame[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)];
}
}
*mean = (double)sum / MATCH_SZ;
const double variance = sumsq - (*mean) * (*mean);
if (variance < MIN_FEATURE_VARIANCE) {
*one_over_stddev = 0.0;
return false;
}
*one_over_stddev = 1.0 / sqrt(variance);
return true;
}
/* Compute corr(frame1, frame2) over a window of size MATCH_SZ by MATCH_SZ.
To save on computation, the mean and (1 divided by the) standard deviation
of the window in each frame are precomputed and passed into this function
as arguments.
*/
double aom_compute_correlation_c(const unsigned char *frame1, int stride1,
int x1, int y1, double mean1,
double one_over_stddev1,
const unsigned char *frame2, int stride2,
int x2, int y2, double mean2,
double one_over_stddev2) {
int v1, v2;
int cross = 0;
for (int i = 0; i < MATCH_SZ; ++i) {
for (int j = 0; j < MATCH_SZ; ++j) {
v1 = frame1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)];
v2 = frame2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)];
cross += v1 * v2;
}
}
// Note: In theory, the calculations here "should" be
// covariance = cross / N^2 - mean1 * mean2
// correlation = covariance / (stddev1 * stddev2).
//
// However, because of the scaling in aom_compute_mean_stddev, the
// lines below actually calculate
// covariance * N^2 = cross - (mean1 * N) * (mean2 * N)
// correlation = (covariance * N^2) / ((stddev1 * N) * (stddev2 * N))
//
// ie. we have removed the need for a division, and still end up with the
// correct unscaled correlation (ie, in the range [-1, +1])
double covariance = cross - mean1 * mean2;
double correlation = covariance * (one_over_stddev1 * one_over_stddev2);
return correlation;
}
static int is_eligible_point(int pointx, int pointy, int width, int height) {
return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 &&
pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height);
}
static int is_eligible_distance(int point1x, int point1y, int point2x,
int point2y, int width, int height) {
const int thresh = (width < height ? height : width) >> 4;
return ((point1x - point2x) * (point1x - point2x) +
(point1y - point2y) * (point1y - point2y)) <= thresh * thresh;
}
typedef struct {
int x;
int y;
double mean;
double one_over_stddev;
int best_match_idx;
double best_match_corr;
} PointInfo;
static int determine_correspondence(const unsigned char *src,
const int *src_corners, int num_src_corners,
const unsigned char *ref,
const int *ref_corners, int num_ref_corners,
int width, int height, int src_stride,
int ref_stride,
Correspondence *correspondences) {
PointInfo *src_point_info = NULL;
PointInfo *ref_point_info = NULL;
int num_correspondences = 0;
src_point_info =
(PointInfo *)aom_calloc(num_src_corners, sizeof(*src_point_info));
if (!src_point_info) {
goto finished;
}
ref_point_info =
(PointInfo *)aom_calloc(num_ref_corners, sizeof(*ref_point_info));
if (!ref_point_info) {
goto finished;
}
// First pass (linear):
// Filter corner lists and compute per-patch means and standard deviations,
// for the src and ref frames independently
int src_point_count = 0;
for (int i = 0; i < num_src_corners; i++) {
int src_x = src_corners[2 * i];
int src_y = src_corners[2 * i + 1];
if (!is_eligible_point(src_x, src_y, width, height)) continue;
PointInfo *point = &src_point_info[src_point_count];
point->x = src_x;
point->y = src_y;
point->best_match_corr = THRESHOLD_NCC;
if (!aom_compute_mean_stddev(src, src_stride, src_x, src_y, &point->mean,
&point->one_over_stddev))
continue;
src_point_count++;
}
if (src_point_count == 0) {
goto finished;
}
int ref_point_count = 0;
for (int j = 0; j < num_ref_corners; j++) {
int ref_x = ref_corners[2 * j];
int ref_y = ref_corners[2 * j + 1];
if (!is_eligible_point(ref_x, ref_y, width, height)) continue;
PointInfo *point = &ref_point_info[ref_point_count];
point->x = ref_x;
point->y = ref_y;
point->best_match_corr = THRESHOLD_NCC;
if (!aom_compute_mean_stddev(ref, ref_stride, ref_x, ref_y, &point->mean,
&point->one_over_stddev))
continue;
ref_point_count++;
}
if (ref_point_count == 0) {
goto finished;
}
// Second pass (quadratic):
// For each pair of points, compute correlation, and use this to determine
// the best match of each corner, in both directions
for (int i = 0; i < src_point_count; ++i) {
PointInfo *src_point = &src_point_info[i];
for (int j = 0; j < ref_point_count; ++j) {
PointInfo *ref_point = &ref_point_info[j];
if (!is_eligible_distance(src_point->x, src_point->y, ref_point->x,
ref_point->y, width, height))
continue;
double corr = aom_compute_correlation(
src, src_stride, src_point->x, src_point->y, src_point->mean,
src_point->one_over_stddev, ref, ref_stride, ref_point->x,
ref_point->y, ref_point->mean, ref_point->one_over_stddev);
if (corr > src_point->best_match_corr) {
src_point->best_match_idx = j;
src_point->best_match_corr = corr;
}
if (corr > ref_point->best_match_corr) {
ref_point->best_match_idx = i;
ref_point->best_match_corr = corr;
}
}
}
// Third pass (linear):
// Scan through source corners, generating a correspondence for each corner
// iff ref_best_match[src_best_match[i]] == i
// Then refine the generated correspondences using optical flow
for (int i = 0; i < src_point_count; i++) {
PointInfo *point = &src_point_info[i];
// Skip corners which were not matched, or which didn't find
// a good enough match
if (point->best_match_corr < THRESHOLD_NCC) continue;
PointInfo *match_point = &ref_point_info[point->best_match_idx];
if (match_point->best_match_idx == i) {
// Refine match using optical flow and store
const int sx = point->x;
const int sy = point->y;
const int rx = match_point->x;
const int ry = match_point->y;
double u = (double)(rx - sx);
double v = (double)(ry - sy);
const int patch_tl_x = sx - DISFLOW_PATCH_CENTER;
const int patch_tl_y = sy - DISFLOW_PATCH_CENTER;
aom_compute_flow_at_point(src, ref, patch_tl_x, patch_tl_y, width, height,
src_stride, &u, &v);
Correspondence *correspondence = &correspondences[num_correspondences];
correspondence->x = (double)sx;
correspondence->y = (double)sy;
correspondence->rx = (double)sx + u;
correspondence->ry = (double)sy + v;
num_correspondences++;
}
}
finished:
aom_free(src_point_info);
aom_free(ref_point_info);
return num_correspondences;
}
bool av1_compute_global_motion_feature_match(
TransformationType type, YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *ref,
int bit_depth, int downsample_level, MotionModel *motion_models,
int num_motion_models, bool *mem_alloc_failed) {
int num_correspondences;
Correspondence *correspondences;
ImagePyramid *src_pyramid = src->y_pyramid;
CornerList *src_corners = src->corners;
ImagePyramid *ref_pyramid = ref->y_pyramid;
CornerList *ref_corners = ref->corners;
// Precompute information we will need about each frame
if (aom_compute_pyramid(src, bit_depth, 1, src_pyramid) < 0) {
*mem_alloc_failed = true;
return false;
}
if (!av1_compute_corner_list(src, bit_depth, downsample_level, src_corners)) {
*mem_alloc_failed = true;
return false;
}
if (aom_compute_pyramid(ref, bit_depth, 1, ref_pyramid) < 0) {
*mem_alloc_failed = true;
return false;
}
if (!av1_compute_corner_list(src, bit_depth, downsample_level, ref_corners)) {
*mem_alloc_failed = true;
return false;
}
const uint8_t *src_buffer = src_pyramid->layers[0].buffer;
const int src_width = src_pyramid->layers[0].width;
const int src_height = src_pyramid->layers[0].height;
const int src_stride = src_pyramid->layers[0].stride;
const uint8_t *ref_buffer = ref_pyramid->layers[0].buffer;
assert(ref_pyramid->layers[0].width == src_width);
assert(ref_pyramid->layers[0].height == src_height);
const int ref_stride = ref_pyramid->layers[0].stride;
// find correspondences between the two images
correspondences = (Correspondence *)aom_malloc(src_corners->num_corners *
sizeof(*correspondences));
if (!correspondences) {
*mem_alloc_failed = true;
return false;
}
num_correspondences = determine_correspondence(
src_buffer, src_corners->corners, src_corners->num_corners, ref_buffer,
ref_corners->corners, ref_corners->num_corners, src_width, src_height,
src_stride, ref_stride, correspondences);
bool result = ransac(correspondences, num_correspondences, type,
motion_models, num_motion_models, mem_alloc_failed);
aom_free(correspondences);
return result;
}