| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <smmintrin.h> // SSE4.1 |
| #include <immintrin.h> // AVX2 |
| |
| #include <assert.h> |
| |
| #include "aom/aom_integer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| |
| #include "aom_dsp/x86/synonyms.h" |
| #include "aom_dsp/x86/synonyms_avx2.h" |
| #include "aom_dsp/x86/blend_sse4.h" |
| #include "aom_dsp/x86/blend_mask_sse4.h" |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // aom_highbd_blend_a64_d16_mask_avx2() |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| static INLINE void highbd_blend_a64_d16_mask_w4_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const __m256i *mask0, |
| const __m256i *round_offset, int shift, const __m256i *clip_low, |
| const __m256i *clip_high, const __m256i *mask_max) { |
| // Load 4x u16 pixels from each of 4 rows from each source |
| const __m256i s0 = _mm256_set_epi64x(*(uint64_t *)(src0 + 3 * src0_stride), |
| *(uint64_t *)(src0 + 2 * src0_stride), |
| *(uint64_t *)(src0 + 1 * src0_stride), |
| *(uint64_t *)(src0 + 0 * src0_stride)); |
| const __m256i s1 = _mm256_set_epi64x(*(uint64_t *)(src1 + 3 * src1_stride), |
| *(uint64_t *)(src1 + 2 * src1_stride), |
| *(uint64_t *)(src1 + 1 * src1_stride), |
| *(uint64_t *)(src1 + 0 * src1_stride)); |
| // Generate the inverse mask |
| const __m256i mask1 = _mm256_sub_epi16(*mask_max, *mask0); |
| |
| // Multiply each mask by the respective source |
| const __m256i mul0_highs = _mm256_mulhi_epu16(*mask0, s0); |
| const __m256i mul0_lows = _mm256_mullo_epi16(*mask0, s0); |
| const __m256i mul0h = _mm256_unpackhi_epi16(mul0_lows, mul0_highs); |
| const __m256i mul0l = _mm256_unpacklo_epi16(mul0_lows, mul0_highs); |
| // Note that AVX2 unpack orders 64-bit words as [3 1] [2 0] to keep within |
| // lanes Later, packs does the same again which cancels this out with no need |
| // for a permute. The intermediate values being reordered makes no difference |
| |
| const __m256i mul1_highs = _mm256_mulhi_epu16(mask1, s1); |
| const __m256i mul1_lows = _mm256_mullo_epi16(mask1, s1); |
| const __m256i mul1h = _mm256_unpackhi_epi16(mul1_lows, mul1_highs); |
| const __m256i mul1l = _mm256_unpacklo_epi16(mul1_lows, mul1_highs); |
| |
| const __m256i sumh = _mm256_add_epi32(mul0h, mul1h); |
| const __m256i suml = _mm256_add_epi32(mul0l, mul1l); |
| |
| const __m256i roundh = |
| _mm256_srai_epi32(_mm256_sub_epi32(sumh, *round_offset), shift); |
| const __m256i roundl = |
| _mm256_srai_epi32(_mm256_sub_epi32(suml, *round_offset), shift); |
| |
| const __m256i pack = _mm256_packs_epi32(roundl, roundh); |
| const __m256i clip = |
| _mm256_min_epi16(_mm256_max_epi16(pack, *clip_low), *clip_high); |
| |
| // _mm256_extract_epi64 doesn't exist on x86, so do it the old-fashioned way: |
| const __m128i cliph = _mm256_extracti128_si256(clip, 1); |
| xx_storel_64(dst + 3 * dst_stride, _mm_srli_si128(cliph, 8)); |
| xx_storel_64(dst + 2 * dst_stride, cliph); |
| const __m128i clipl = _mm256_castsi256_si128(clip); |
| xx_storel_64(dst + 1 * dst_stride, _mm_srli_si128(clipl, 8)); |
| xx_storel_64(dst + 0 * dst_stride, clipl); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw0_subh0_w4_avx2( |
| uint16_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0, |
| uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride, |
| const uint8_t *mask, uint32_t mask_stride, int h, |
| const __m256i *round_offset, int shift, const __m256i *clip_low, |
| const __m256i *clip_high, const __m256i *mask_max) { |
| do { |
| // Load 8x u8 pixels from each of 4 rows of the mask, pad each to u16 |
| const __m128i mask08 = _mm_set_epi32(*(uint32_t *)(mask + 3 * mask_stride), |
| *(uint32_t *)(mask + 2 * mask_stride), |
| *(uint32_t *)(mask + 1 * mask_stride), |
| *(uint32_t *)(mask + 0 * mask_stride)); |
| const __m256i mask0 = _mm256_cvtepu8_epi16(mask08); |
| |
| highbd_blend_a64_d16_mask_w4_avx2(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, &mask0, round_offset, shift, |
| clip_low, clip_high, mask_max); |
| |
| dst += dst_stride * 4; |
| src0 += src0_stride * 4; |
| src1 += src1_stride * 4; |
| mask += mask_stride * 4; |
| } while (h -= 4); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw1_subh1_w4_avx2( |
| uint16_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0, |
| uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride, |
| const uint8_t *mask, uint32_t mask_stride, int h, |
| const __m256i *round_offset, int shift, const __m256i *clip_low, |
| const __m256i *clip_high, const __m256i *mask_max) { |
| const __m256i one_b = _mm256_set1_epi8(1); |
| const __m256i two_w = _mm256_set1_epi16(2); |
| do { |
| // Load 8 pixels from each of 8 rows of mask, |
| // (saturating) add together rows then use madd to add adjacent pixels |
| // Finally, divide each value by 4 (with rounding) |
| const __m256i m0246 = |
| _mm256_set_epi64x(*(uint64_t *)(mask + 6 * mask_stride), |
| *(uint64_t *)(mask + 4 * mask_stride), |
| *(uint64_t *)(mask + 2 * mask_stride), |
| *(uint64_t *)(mask + 0 * mask_stride)); |
| const __m256i m1357 = |
| _mm256_set_epi64x(*(uint64_t *)(mask + 7 * mask_stride), |
| *(uint64_t *)(mask + 5 * mask_stride), |
| *(uint64_t *)(mask + 3 * mask_stride), |
| *(uint64_t *)(mask + 1 * mask_stride)); |
| const __m256i addrows = _mm256_adds_epu8(m0246, m1357); |
| const __m256i adjacent = _mm256_maddubs_epi16(addrows, one_b); |
| const __m256i mask0 = |
| _mm256_srli_epi16(_mm256_add_epi16(adjacent, two_w), 2); |
| |
| highbd_blend_a64_d16_mask_w4_avx2(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, &mask0, round_offset, shift, |
| clip_low, clip_high, mask_max); |
| |
| dst += dst_stride * 4; |
| src0 += src0_stride * 4; |
| src1 += src1_stride * 4; |
| mask += mask_stride * 8; |
| } while (h -= 4); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_w8_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const __m256i *mask0a, |
| const __m256i *mask0b, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| // Load 8x u16 pixels from each of 4 rows from each source |
| const __m256i s0a = |
| yy_loadu2_128(src0 + 0 * src0_stride, src0 + 1 * src0_stride); |
| const __m256i s0b = |
| yy_loadu2_128(src0 + 2 * src0_stride, src0 + 3 * src0_stride); |
| const __m256i s1a = |
| yy_loadu2_128(src1 + 0 * src1_stride, src1 + 1 * src1_stride); |
| const __m256i s1b = |
| yy_loadu2_128(src1 + 2 * src1_stride, src1 + 3 * src1_stride); |
| |
| // Generate inverse masks |
| const __m256i mask1a = _mm256_sub_epi16(*mask_max, *mask0a); |
| const __m256i mask1b = _mm256_sub_epi16(*mask_max, *mask0b); |
| |
| // Multiply sources by respective masks |
| const __m256i mul0a_highs = _mm256_mulhi_epu16(*mask0a, s0a); |
| const __m256i mul0a_lows = _mm256_mullo_epi16(*mask0a, s0a); |
| const __m256i mul0ah = _mm256_unpackhi_epi16(mul0a_lows, mul0a_highs); |
| const __m256i mul0al = _mm256_unpacklo_epi16(mul0a_lows, mul0a_highs); |
| // Note that AVX2 unpack orders 64-bit words as [3 1] [2 0] to keep within |
| // lanes Later, packs does the same again which cancels this out with no need |
| // for a permute. The intermediate values being reordered makes no difference |
| |
| const __m256i mul1a_highs = _mm256_mulhi_epu16(mask1a, s1a); |
| const __m256i mul1a_lows = _mm256_mullo_epi16(mask1a, s1a); |
| const __m256i mul1ah = _mm256_unpackhi_epi16(mul1a_lows, mul1a_highs); |
| const __m256i mul1al = _mm256_unpacklo_epi16(mul1a_lows, mul1a_highs); |
| |
| const __m256i sumah = _mm256_add_epi32(mul0ah, mul1ah); |
| const __m256i sumal = _mm256_add_epi32(mul0al, mul1al); |
| |
| const __m256i mul0b_highs = _mm256_mulhi_epu16(*mask0b, s0b); |
| const __m256i mul0b_lows = _mm256_mullo_epi16(*mask0b, s0b); |
| const __m256i mul0bh = _mm256_unpackhi_epi16(mul0b_lows, mul0b_highs); |
| const __m256i mul0bl = _mm256_unpacklo_epi16(mul0b_lows, mul0b_highs); |
| |
| const __m256i mul1b_highs = _mm256_mulhi_epu16(mask1b, s1b); |
| const __m256i mul1b_lows = _mm256_mullo_epi16(mask1b, s1b); |
| const __m256i mul1bh = _mm256_unpackhi_epi16(mul1b_lows, mul1b_highs); |
| const __m256i mul1bl = _mm256_unpacklo_epi16(mul1b_lows, mul1b_highs); |
| |
| const __m256i sumbh = _mm256_add_epi32(mul0bh, mul1bh); |
| const __m256i sumbl = _mm256_add_epi32(mul0bl, mul1bl); |
| |
| // Divide down each result, with rounding |
| const __m256i roundah = |
| _mm256_srai_epi32(_mm256_sub_epi32(sumah, *round_offset), shift); |
| const __m256i roundal = |
| _mm256_srai_epi32(_mm256_sub_epi32(sumal, *round_offset), shift); |
| const __m256i roundbh = |
| _mm256_srai_epi32(_mm256_sub_epi32(sumbh, *round_offset), shift); |
| const __m256i roundbl = |
| _mm256_srai_epi32(_mm256_sub_epi32(sumbl, *round_offset), shift); |
| |
| // Pack each i32 down to an i16 with saturation, then clip to valid range |
| const __m256i packa = _mm256_packs_epi32(roundal, roundah); |
| const __m256i clipa = |
| _mm256_min_epi16(_mm256_max_epi16(packa, *clip_low), *clip_high); |
| const __m256i packb = _mm256_packs_epi32(roundbl, roundbh); |
| const __m256i clipb = |
| _mm256_min_epi16(_mm256_max_epi16(packb, *clip_low), *clip_high); |
| |
| // Store 8x u16 pixels to each of 4 rows in the destination |
| yy_storeu2_128(dst + 0 * dst_stride, dst + 1 * dst_stride, clipa); |
| yy_storeu2_128(dst + 2 * dst_stride, dst + 3 * dst_stride, clipb); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw0_subh0_w8_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const uint8_t *mask, |
| int mask_stride, int h, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| do { |
| // Load 8x u8 pixels from each of 4 rows in the mask |
| const __m128i mask0a8 = |
| _mm_set_epi64x(*(uint64_t *)mask, *(uint64_t *)(mask + mask_stride)); |
| const __m128i mask0b8 = |
| _mm_set_epi64x(*(uint64_t *)(mask + 2 * mask_stride), |
| *(uint64_t *)(mask + 3 * mask_stride)); |
| const __m256i mask0a = _mm256_cvtepu8_epi16(mask0a8); |
| const __m256i mask0b = _mm256_cvtepu8_epi16(mask0b8); |
| |
| highbd_blend_a64_d16_mask_w8_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, &mask0a, &mask0b, |
| round_offset, shift, clip_low, clip_high, mask_max); |
| |
| dst += dst_stride * 4; |
| src0 += src0_stride * 4; |
| src1 += src1_stride * 4; |
| mask += mask_stride * 4; |
| } while (h -= 4); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw1_subh1_w8_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const uint8_t *mask, |
| int mask_stride, int h, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| const __m256i one_b = _mm256_set1_epi8(1); |
| const __m256i two_w = _mm256_set1_epi16(2); |
| do { |
| // Load 16x u8 pixels from each of 8 rows in the mask, |
| // (saturating) add together rows then use madd to add adjacent pixels |
| // Finally, divide each value by 4 (with rounding) |
| const __m256i m02 = |
| yy_loadu2_128(mask + 0 * mask_stride, mask + 2 * mask_stride); |
| const __m256i m13 = |
| yy_loadu2_128(mask + 1 * mask_stride, mask + 3 * mask_stride); |
| const __m256i m0123 = |
| _mm256_maddubs_epi16(_mm256_adds_epu8(m02, m13), one_b); |
| const __m256i mask_0a = |
| _mm256_srli_epi16(_mm256_add_epi16(m0123, two_w), 2); |
| const __m256i m46 = |
| yy_loadu2_128(mask + 4 * mask_stride, mask + 6 * mask_stride); |
| const __m256i m57 = |
| yy_loadu2_128(mask + 5 * mask_stride, mask + 7 * mask_stride); |
| const __m256i m4567 = |
| _mm256_maddubs_epi16(_mm256_adds_epu8(m46, m57), one_b); |
| const __m256i mask_0b = |
| _mm256_srli_epi16(_mm256_add_epi16(m4567, two_w), 2); |
| |
| highbd_blend_a64_d16_mask_w8_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, &mask_0a, |
| &mask_0b, round_offset, shift, clip_low, clip_high, mask_max); |
| |
| dst += dst_stride * 4; |
| src0 += src0_stride * 4; |
| src1 += src1_stride * 4; |
| mask += mask_stride * 8; |
| } while (h -= 4); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_w16_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const __m256i *mask0a, |
| const __m256i *mask0b, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| // Load 16x pixels from each of 2 rows from each source |
| const __m256i s0a = yy_loadu_256(src0); |
| const __m256i s0b = yy_loadu_256(src0 + src0_stride); |
| const __m256i s1a = yy_loadu_256(src1); |
| const __m256i s1b = yy_loadu_256(src1 + src1_stride); |
| |
| // Calculate inverse masks |
| const __m256i mask1a = _mm256_sub_epi16(*mask_max, *mask0a); |
| const __m256i mask1b = _mm256_sub_epi16(*mask_max, *mask0b); |
| |
| // Multiply each source by appropriate mask |
| const __m256i mul0a_highs = _mm256_mulhi_epu16(*mask0a, s0a); |
| const __m256i mul0a_lows = _mm256_mullo_epi16(*mask0a, s0a); |
| const __m256i mul0ah = _mm256_unpackhi_epi16(mul0a_lows, mul0a_highs); |
| const __m256i mul0al = _mm256_unpacklo_epi16(mul0a_lows, mul0a_highs); |
| // Note that AVX2 unpack orders 64-bit words as [3 1] [2 0] to keep within |
| // lanes Later, packs does the same again which cancels this out with no need |
| // for a permute. The intermediate values being reordered makes no difference |
| |
| const __m256i mul1a_highs = _mm256_mulhi_epu16(mask1a, s1a); |
| const __m256i mul1a_lows = _mm256_mullo_epi16(mask1a, s1a); |
| const __m256i mul1ah = _mm256_unpackhi_epi16(mul1a_lows, mul1a_highs); |
| const __m256i mul1al = _mm256_unpacklo_epi16(mul1a_lows, mul1a_highs); |
| |
| const __m256i mulah = _mm256_add_epi32(mul0ah, mul1ah); |
| const __m256i mulal = _mm256_add_epi32(mul0al, mul1al); |
| |
| const __m256i mul0b_highs = _mm256_mulhi_epu16(*mask0b, s0b); |
| const __m256i mul0b_lows = _mm256_mullo_epi16(*mask0b, s0b); |
| const __m256i mul0bh = _mm256_unpackhi_epi16(mul0b_lows, mul0b_highs); |
| const __m256i mul0bl = _mm256_unpacklo_epi16(mul0b_lows, mul0b_highs); |
| |
| const __m256i mul1b_highs = _mm256_mulhi_epu16(mask1b, s1b); |
| const __m256i mul1b_lows = _mm256_mullo_epi16(mask1b, s1b); |
| const __m256i mul1bh = _mm256_unpackhi_epi16(mul1b_lows, mul1b_highs); |
| const __m256i mul1bl = _mm256_unpacklo_epi16(mul1b_lows, mul1b_highs); |
| |
| const __m256i mulbh = _mm256_add_epi32(mul0bh, mul1bh); |
| const __m256i mulbl = _mm256_add_epi32(mul0bl, mul1bl); |
| |
| const __m256i resah = |
| _mm256_srai_epi32(_mm256_sub_epi32(mulah, *round_offset), shift); |
| const __m256i resal = |
| _mm256_srai_epi32(_mm256_sub_epi32(mulal, *round_offset), shift); |
| const __m256i resbh = |
| _mm256_srai_epi32(_mm256_sub_epi32(mulbh, *round_offset), shift); |
| const __m256i resbl = |
| _mm256_srai_epi32(_mm256_sub_epi32(mulbl, *round_offset), shift); |
| |
| // Signed saturating pack from i32 to i16: |
| const __m256i packa = _mm256_packs_epi32(resal, resah); |
| const __m256i packb = _mm256_packs_epi32(resbl, resbh); |
| |
| // Clip the values to the valid range |
| const __m256i clipa = |
| _mm256_min_epi16(_mm256_max_epi16(packa, *clip_low), *clip_high); |
| const __m256i clipb = |
| _mm256_min_epi16(_mm256_max_epi16(packb, *clip_low), *clip_high); |
| |
| // Store 16 pixels |
| yy_storeu_256(dst, clipa); |
| yy_storeu_256(dst + dst_stride, clipb); |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw0_subh0_w16_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const uint8_t *mask, |
| int mask_stride, int h, int w, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| for (int i = 0; i < h; i += 2) { |
| for (int j = 0; j < w; j += 16) { |
| // Load 16x u8 alpha-mask values from each of two rows and pad to u16 |
| const __m128i masks_a8 = xx_loadu_128(mask + j); |
| const __m128i masks_b8 = xx_loadu_128(mask + mask_stride + j); |
| const __m256i mask0a = _mm256_cvtepu8_epi16(masks_a8); |
| const __m256i mask0b = _mm256_cvtepu8_epi16(masks_b8); |
| |
| highbd_blend_a64_d16_mask_w16_avx2( |
| dst + j, dst_stride, src0 + j, src0_stride, src1 + j, src1_stride, |
| &mask0a, &mask0b, round_offset, shift, clip_low, clip_high, mask_max); |
| } |
| dst += dst_stride * 2; |
| src0 += src0_stride * 2; |
| src1 += src1_stride * 2; |
| mask += mask_stride * 2; |
| } |
| } |
| |
| static INLINE void highbd_blend_a64_d16_mask_subw1_subh1_w16_avx2( |
| uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, |
| const CONV_BUF_TYPE *src1, int src1_stride, const uint8_t *mask, |
| int mask_stride, int h, int w, const __m256i *round_offset, int shift, |
| const __m256i *clip_low, const __m256i *clip_high, |
| const __m256i *mask_max) { |
| const __m256i one_b = _mm256_set1_epi8(1); |
| const __m256i two_w = _mm256_set1_epi16(2); |
| for (int i = 0; i < h; i += 2) { |
| for (int j = 0; j < w; j += 16) { |
| // Load 32x u8 alpha-mask values from each of four rows |
| // (saturating) add pairs of rows, then use madd to add adjacent values |
| // Finally, divide down each result with rounding |
| const __m256i m0 = yy_loadu_256(mask + 0 * mask_stride + 2 * j); |
| const __m256i m1 = yy_loadu_256(mask + 1 * mask_stride + 2 * j); |
| const __m256i m2 = yy_loadu_256(mask + 2 * mask_stride + 2 * j); |
| const __m256i m3 = yy_loadu_256(mask + 3 * mask_stride + 2 * j); |
| |
| const __m256i m01_8 = _mm256_adds_epu8(m0, m1); |
| const __m256i m23_8 = _mm256_adds_epu8(m2, m3); |
| |
| const __m256i m01 = _mm256_maddubs_epi16(m01_8, one_b); |
| const __m256i m23 = _mm256_maddubs_epi16(m23_8, one_b); |
| |
| const __m256i mask0a = _mm256_srli_epi16(_mm256_add_epi16(m01, two_w), 2); |
| const __m256i mask0b = _mm256_srli_epi16(_mm256_add_epi16(m23, two_w), 2); |
| |
| highbd_blend_a64_d16_mask_w16_avx2( |
| dst + j, dst_stride, src0 + j, src0_stride, src1 + j, src1_stride, |
| &mask0a, &mask0b, round_offset, shift, clip_low, clip_high, mask_max); |
| } |
| dst += dst_stride * 2; |
| src0 += src0_stride * 2; |
| src1 += src1_stride * 2; |
| mask += mask_stride * 4; |
| } |
| } |
| |
| void aom_highbd_blend_a64_d16_mask_avx2( |
| uint16_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0, |
| uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride, |
| const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh, |
| ConvolveParams *conv_params, const int bd) { |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| const int32_t round_offset = |
| ((1 << (round_bits + bd)) + (1 << (round_bits + bd - 1)) - |
| (1 << (round_bits - 1))) |
| << AOM_BLEND_A64_ROUND_BITS; |
| const __m256i v_round_offset = _mm256_set1_epi32(round_offset); |
| const int shift = round_bits + AOM_BLEND_A64_ROUND_BITS; |
| |
| const __m256i clip_low = _mm256_set1_epi16(0); |
| const __m256i clip_high = _mm256_set1_epi16((1 << bd) - 1); |
| const __m256i mask_max = _mm256_set1_epi16(AOM_BLEND_A64_MAX_ALPHA); |
| |
| assert(IMPLIES((void *)src0 == dst, src0_stride == dst_stride)); |
| assert(IMPLIES((void *)src1 == dst, src1_stride == dst_stride)); |
| |
| assert(h >= 4); |
| assert(w >= 4); |
| assert(IS_POWER_OF_TWO(h)); |
| assert(IS_POWER_OF_TWO(w)); |
| |
| if (subw == 0 && subh == 0) { |
| switch (w) { |
| case 4: |
| highbd_blend_a64_d16_mask_subw0_subh0_w4_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| case 8: |
| highbd_blend_a64_d16_mask_subw0_subh0_w8_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| default: // >= 16 |
| highbd_blend_a64_d16_mask_subw0_subh0_w16_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, w, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| } |
| |
| } else if (subw == 1 && subh == 1) { |
| switch (w) { |
| case 4: |
| highbd_blend_a64_d16_mask_subw1_subh1_w4_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| case 8: |
| highbd_blend_a64_d16_mask_subw1_subh1_w8_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| default: // >= 16 |
| highbd_blend_a64_d16_mask_subw1_subh1_w16_avx2( |
| dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, |
| mask_stride, h, w, &v_round_offset, shift, &clip_low, &clip_high, |
| &mask_max); |
| break; |
| } |
| } else { |
| // Sub-sampling in only one axis doesn't seem to happen very much, so fall |
| // back to the vanilla C implementation instead of having all the optimised |
| // code for these. |
| aom_highbd_blend_a64_d16_mask_c(dst, dst_stride, src0, src0_stride, src1, |
| src1_stride, mask, mask_stride, w, h, subw, |
| subh, conv_params, bd); |
| } |
| } |