blob: 03dce5484cd83490da00573e40b418749d243840 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <tmmintrin.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/blend.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/masked_sad_intrin_ssse3.h"
static INLINE unsigned int masked_sad32xh_avx2(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int width, int height) {
int x, y;
__m256i res = _mm256_setzero_si256();
const __m256i mask_max = _mm256_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
const __m256i round_scale =
_mm256_set1_epi16(1 << (15 - AOM_BLEND_A64_ROUND_BITS));
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 32) {
const __m256i src = _mm256_lddqu_si256((const __m256i *)&src_ptr[x]);
const __m256i a = _mm256_lddqu_si256((const __m256i *)&a_ptr[x]);
const __m256i b = _mm256_lddqu_si256((const __m256i *)&b_ptr[x]);
const __m256i m = _mm256_lddqu_si256((const __m256i *)&m_ptr[x]);
const __m256i m_inv = _mm256_sub_epi8(mask_max, m);
// Calculate 16 predicted pixels.
// Note that the maximum value of any entry of 'pred_l' or 'pred_r'
// is 64 * 255, so we have plenty of space to add rounding constants.
const __m256i data_l = _mm256_unpacklo_epi8(a, b);
const __m256i mask_l = _mm256_unpacklo_epi8(m, m_inv);
__m256i pred_l = _mm256_maddubs_epi16(data_l, mask_l);
pred_l = _mm256_mulhrs_epi16(pred_l, round_scale);
const __m256i data_r = _mm256_unpackhi_epi8(a, b);
const __m256i mask_r = _mm256_unpackhi_epi8(m, m_inv);
__m256i pred_r = _mm256_maddubs_epi16(data_r, mask_r);
pred_r = _mm256_mulhrs_epi16(pred_r, round_scale);
const __m256i pred = _mm256_packus_epi16(pred_l, pred_r);
res = _mm256_add_epi32(res, _mm256_sad_epu8(pred, src));
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'.
res = _mm256_shuffle_epi32(res, 0xd8);
res = _mm256_permute4x64_epi64(res, 0xd8);
res = _mm256_hadd_epi32(res, res);
res = _mm256_hadd_epi32(res, res);
int32_t sad = _mm256_extract_epi32(res, 0);
return sad;
}
static INLINE __m256i xx_loadu2_m128i(const void *hi, const void *lo) {
__m128i a0 = _mm_lddqu_si128((const __m128i *)(lo));
__m128i a1 = _mm_lddqu_si128((const __m128i *)(hi));
__m256i a = _mm256_castsi128_si256(a0);
return _mm256_inserti128_si256(a, a1, 1);
}
static INLINE unsigned int masked_sad16xh_avx2(
const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
int height) {
int y;
__m256i res = _mm256_setzero_si256();
const __m256i mask_max = _mm256_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
const __m256i round_scale =
_mm256_set1_epi16(1 << (15 - AOM_BLEND_A64_ROUND_BITS));
for (y = 0; y < height; y += 2) {
const __m256i src = xx_loadu2_m128i(src_ptr + src_stride, src_ptr);
const __m256i a = xx_loadu2_m128i(a_ptr + a_stride, a_ptr);
const __m256i b = xx_loadu2_m128i(b_ptr + b_stride, b_ptr);
const __m256i m = xx_loadu2_m128i(m_ptr + m_stride, m_ptr);
const __m256i m_inv = _mm256_sub_epi8(mask_max, m);
// Calculate 16 predicted pixels.
// Note that the maximum value of any entry of 'pred_l' or 'pred_r'
// is 64 * 255, so we have plenty of space to add rounding constants.
const __m256i data_l = _mm256_unpacklo_epi8(a, b);
const __m256i mask_l = _mm256_unpacklo_epi8(m, m_inv);
__m256i pred_l = _mm256_maddubs_epi16(data_l, mask_l);
pred_l = _mm256_mulhrs_epi16(pred_l, round_scale);
const __m256i data_r = _mm256_unpackhi_epi8(a, b);
const __m256i mask_r = _mm256_unpackhi_epi8(m, m_inv);
__m256i pred_r = _mm256_maddubs_epi16(data_r, mask_r);
pred_r = _mm256_mulhrs_epi16(pred_r, round_scale);
const __m256i pred = _mm256_packus_epi16(pred_l, pred_r);
res = _mm256_add_epi32(res, _mm256_sad_epu8(pred, src));
src_ptr += src_stride << 1;
a_ptr += a_stride << 1;
b_ptr += b_stride << 1;
m_ptr += m_stride << 1;
}
// At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'.
res = _mm256_shuffle_epi32(res, 0xd8);
res = _mm256_permute4x64_epi64(res, 0xd8);
res = _mm256_hadd_epi32(res, res);
res = _mm256_hadd_epi32(res, res);
int32_t sad = _mm256_extract_epi32(res, 0);
return sad;
}
static INLINE unsigned int aom_masked_sad_avx2(
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride,
const uint8_t *second_pred, const uint8_t *msk, int msk_stride,
int invert_mask, int m, int n) {
unsigned int sad;
if (!invert_mask) {
switch (m) {
case 4:
sad = aom_masked_sad4xh_ssse3(src, src_stride, ref, ref_stride,
second_pred, m, msk, msk_stride, n);
break;
case 8:
sad = aom_masked_sad8xh_ssse3(src, src_stride, ref, ref_stride,
second_pred, m, msk, msk_stride, n);
break;
case 16:
sad = masked_sad16xh_avx2(src, src_stride, ref, ref_stride, second_pred,
m, msk, msk_stride, n);
break;
default:
sad = masked_sad32xh_avx2(src, src_stride, ref, ref_stride, second_pred,
m, msk, msk_stride, m, n);
break;
}
} else {
switch (m) {
case 4:
sad = aom_masked_sad4xh_ssse3(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, n);
break;
case 8:
sad = aom_masked_sad8xh_ssse3(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, n);
break;
case 16:
sad = masked_sad16xh_avx2(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, n);
break;
default:
sad = masked_sad32xh_avx2(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, m, n);
break;
}
}
return sad;
}
#define MASKSADMXN_AVX2(m, n) \
unsigned int aom_masked_sad##m##x##n##_avx2( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
const uint8_t *second_pred, const uint8_t *msk, int msk_stride, \
int invert_mask) { \
return aom_masked_sad_avx2(src, src_stride, ref, ref_stride, second_pred, \
msk, msk_stride, invert_mask, m, n); \
}
MASKSADMXN_AVX2(4, 4)
MASKSADMXN_AVX2(4, 8)
MASKSADMXN_AVX2(8, 4)
MASKSADMXN_AVX2(8, 8)
MASKSADMXN_AVX2(8, 16)
MASKSADMXN_AVX2(16, 8)
MASKSADMXN_AVX2(16, 16)
MASKSADMXN_AVX2(16, 32)
MASKSADMXN_AVX2(32, 16)
MASKSADMXN_AVX2(32, 32)
MASKSADMXN_AVX2(32, 64)
MASKSADMXN_AVX2(64, 32)
MASKSADMXN_AVX2(64, 64)
MASKSADMXN_AVX2(64, 128)
MASKSADMXN_AVX2(128, 64)
MASKSADMXN_AVX2(128, 128)
MASKSADMXN_AVX2(4, 16)
MASKSADMXN_AVX2(16, 4)
MASKSADMXN_AVX2(8, 32)
MASKSADMXN_AVX2(32, 8)
MASKSADMXN_AVX2(16, 64)
MASKSADMXN_AVX2(64, 16)
#if CONFIG_EXT_RECUR_PARTITIONS
MASKSADMXN_AVX2(4, 32)
MASKSADMXN_AVX2(32, 4)
MASKSADMXN_AVX2(8, 64)
MASKSADMXN_AVX2(64, 8)
MASKSADMXN_AVX2(4, 64)
MASKSADMXN_AVX2(64, 4)
#endif // CONFIG_EXT_RECUR_PARTITIONS
static INLINE unsigned int highbd_masked_sad8xh_avx2(
const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr,
int a_stride, const uint16_t *b_ptr, int b_stride, const uint8_t *m_ptr,
int m_stride, int height) {
int y;
__m256i res = _mm256_setzero_si256();
const __m256i mask_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m256i round_const =
_mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m256i one = _mm256_set1_epi16(1);
for (y = 0; y < height; y += 2) {
const __m256i src = xx_loadu2_m128i(src_ptr + src_stride, src_ptr);
const __m256i a = xx_loadu2_m128i(a_ptr + a_stride, a_ptr);
const __m256i b = xx_loadu2_m128i(b_ptr + b_stride, b_ptr);
// Zero-extend mask to 16 bits
const __m256i m = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(
_mm_loadl_epi64((const __m128i *)(m_ptr)),
_mm_loadl_epi64((const __m128i *)(m_ptr + m_stride))));
const __m256i m_inv = _mm256_sub_epi16(mask_max, m);
const __m256i data_l = _mm256_unpacklo_epi16(a, b);
const __m256i mask_l = _mm256_unpacklo_epi16(m, m_inv);
__m256i pred_l = _mm256_madd_epi16(data_l, mask_l);
pred_l = _mm256_srai_epi32(_mm256_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m256i data_r = _mm256_unpackhi_epi16(a, b);
const __m256i mask_r = _mm256_unpackhi_epi16(m, m_inv);
__m256i pred_r = _mm256_madd_epi16(data_r, mask_r);
pred_r = _mm256_srai_epi32(_mm256_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
// Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15,
// so it is safe to do signed saturation here.
const __m256i pred = _mm256_packs_epi32(pred_l, pred_r);
// There is no 16-bit SAD instruction, so we have to synthesize
// an 8-element SAD. We do this by storing 4 32-bit partial SADs,
// and accumulating them at the end
const __m256i diff = _mm256_abs_epi16(_mm256_sub_epi16(pred, src));
res = _mm256_add_epi32(res, _mm256_madd_epi16(diff, one));
src_ptr += src_stride << 1;
a_ptr += a_stride << 1;
b_ptr += b_stride << 1;
m_ptr += m_stride << 1;
}
// At this point, we have four 32-bit partial SADs stored in 'res'.
res = _mm256_hadd_epi32(res, res);
res = _mm256_hadd_epi32(res, res);
int sad = _mm256_extract_epi32(res, 0) + _mm256_extract_epi32(res, 4);
return sad;
}
static INLINE unsigned int highbd_masked_sad16xh_avx2(
const uint16_t *src_ptr, int src_stride, const uint16_t *a_ptr,
int a_stride, const uint16_t *b_ptr, int b_stride, const uint8_t *m_ptr,
int m_stride, int width, int height) {
int x, y;
__m256i res = _mm256_setzero_si256();
const __m256i mask_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
const __m256i round_const =
_mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
const __m256i one = _mm256_set1_epi16(1);
for (y = 0; y < height; y++) {
for (x = 0; x < width; x += 16) {
const __m256i src = _mm256_lddqu_si256((const __m256i *)&src_ptr[x]);
const __m256i a = _mm256_lddqu_si256((const __m256i *)&a_ptr[x]);
const __m256i b = _mm256_lddqu_si256((const __m256i *)&b_ptr[x]);
// Zero-extend mask to 16 bits
const __m256i m =
_mm256_cvtepu8_epi16(_mm_lddqu_si128((const __m128i *)&m_ptr[x]));
const __m256i m_inv = _mm256_sub_epi16(mask_max, m);
const __m256i data_l = _mm256_unpacklo_epi16(a, b);
const __m256i mask_l = _mm256_unpacklo_epi16(m, m_inv);
__m256i pred_l = _mm256_madd_epi16(data_l, mask_l);
pred_l = _mm256_srai_epi32(_mm256_add_epi32(pred_l, round_const),
AOM_BLEND_A64_ROUND_BITS);
const __m256i data_r = _mm256_unpackhi_epi16(a, b);
const __m256i mask_r = _mm256_unpackhi_epi16(m, m_inv);
__m256i pred_r = _mm256_madd_epi16(data_r, mask_r);
pred_r = _mm256_srai_epi32(_mm256_add_epi32(pred_r, round_const),
AOM_BLEND_A64_ROUND_BITS);
// Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15,
// so it is safe to do signed saturation here.
const __m256i pred = _mm256_packs_epi32(pred_l, pred_r);
// There is no 16-bit SAD instruction, so we have to synthesize
// an 8-element SAD. We do this by storing 4 32-bit partial SADs,
// and accumulating them at the end
const __m256i diff = _mm256_abs_epi16(_mm256_sub_epi16(pred, src));
res = _mm256_add_epi32(res, _mm256_madd_epi16(diff, one));
}
src_ptr += src_stride;
a_ptr += a_stride;
b_ptr += b_stride;
m_ptr += m_stride;
}
// At this point, we have four 32-bit partial SADs stored in 'res'.
res = _mm256_hadd_epi32(res, res);
res = _mm256_hadd_epi32(res, res);
int sad = _mm256_extract_epi32(res, 0) + _mm256_extract_epi32(res, 4);
return sad;
}
static INLINE unsigned int aom_highbd_masked_sad_avx2(
const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride,
const uint16_t *second_pred, const uint8_t *msk, int msk_stride,
int invert_mask, int m, int n) {
unsigned int sad;
if (!invert_mask) {
switch (m) {
case 4:
sad =
aom_highbd_masked_sad4xh_ssse3(src, src_stride, ref, ref_stride,
second_pred, m, msk, msk_stride, n);
break;
case 8:
sad = highbd_masked_sad8xh_avx2(src, src_stride, ref, ref_stride,
second_pred, m, msk, msk_stride, n);
break;
default:
sad = highbd_masked_sad16xh_avx2(src, src_stride, ref, ref_stride,
second_pred, m, msk, msk_stride, m, n);
break;
}
} else {
switch (m) {
case 4:
sad =
aom_highbd_masked_sad4xh_ssse3(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, n);
break;
case 8:
sad = highbd_masked_sad8xh_avx2(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, n);
break;
default:
sad = highbd_masked_sad16xh_avx2(src, src_stride, second_pred, m, ref,
ref_stride, msk, msk_stride, m, n);
break;
}
}
return sad;
}
#define HIGHBD_MASKSADMXN_AVX2(m, n) \
unsigned int aom_highbd_masked_sad##m##x##n##_avx2( \
const uint16_t *src8, int src_stride, const uint16_t *ref8, \
int ref_stride, const uint16_t *second_pred8, const uint8_t *msk, \
int msk_stride, int invert_mask) { \
return aom_highbd_masked_sad_avx2(src8, src_stride, ref8, ref_stride, \
second_pred8, msk, msk_stride, \
invert_mask, m, n); \
}
HIGHBD_MASKSADMXN_AVX2(4, 4);
HIGHBD_MASKSADMXN_AVX2(4, 8);
HIGHBD_MASKSADMXN_AVX2(8, 4);
HIGHBD_MASKSADMXN_AVX2(8, 8);
HIGHBD_MASKSADMXN_AVX2(8, 16);
HIGHBD_MASKSADMXN_AVX2(16, 8);
HIGHBD_MASKSADMXN_AVX2(16, 16);
HIGHBD_MASKSADMXN_AVX2(16, 32);
HIGHBD_MASKSADMXN_AVX2(32, 16);
HIGHBD_MASKSADMXN_AVX2(32, 32);
HIGHBD_MASKSADMXN_AVX2(32, 64);
HIGHBD_MASKSADMXN_AVX2(64, 32);
HIGHBD_MASKSADMXN_AVX2(64, 64);
HIGHBD_MASKSADMXN_AVX2(64, 128);
HIGHBD_MASKSADMXN_AVX2(128, 64);
HIGHBD_MASKSADMXN_AVX2(128, 128);
HIGHBD_MASKSADMXN_AVX2(128, 256);
HIGHBD_MASKSADMXN_AVX2(256, 128);
HIGHBD_MASKSADMXN_AVX2(256, 256);
HIGHBD_MASKSADMXN_AVX2(4, 16);
HIGHBD_MASKSADMXN_AVX2(16, 4);
HIGHBD_MASKSADMXN_AVX2(8, 32);
HIGHBD_MASKSADMXN_AVX2(32, 8);
HIGHBD_MASKSADMXN_AVX2(16, 64);
HIGHBD_MASKSADMXN_AVX2(64, 16);
#if CONFIG_EXT_RECUR_PARTITIONS
HIGHBD_MASKSADMXN_AVX2(4, 32);
HIGHBD_MASKSADMXN_AVX2(32, 4);
HIGHBD_MASKSADMXN_AVX2(8, 64);
HIGHBD_MASKSADMXN_AVX2(64, 8);
HIGHBD_MASKSADMXN_AVX2(4, 64);
HIGHBD_MASKSADMXN_AVX2(64, 4);
#endif // CONFIG_EXT_RECUR_PARTITIONS