| /* | 
 |  * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 3-Clause Clear License | 
 |  * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
 |  * License was not distributed with this source code in the LICENSE file, you | 
 |  * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
 |  * Alliance for Open Media Patent License 1.0 was not distributed with this | 
 |  * source code in the PATENTS file, you can obtain it at | 
 |  * aomedia.org/license/patent-license/. | 
 |  */ | 
 | #include <memory.h> | 
 | #include <math.h> | 
 | #include <time.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <assert.h> | 
 |  | 
 | #include "av1/encoder/ransac.h" | 
 | #include "av1/encoder/mathutils.h" | 
 | #include "av1/encoder/random.h" | 
 |  | 
 | #define MAX_MINPTS 4 | 
 | #define MAX_DEGENERATE_ITER 10 | 
 | #define MINPTS_MULTIPLIER 5 | 
 |  | 
 | #define INLIER_THRESHOLD 1.25 | 
 | #define MIN_TRIALS 20 | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // ransac | 
 | typedef int (*IsDegenerateFunc)(double *p); | 
 | typedef void (*NormalizeFunc)(double *p, int np, double *T); | 
 | typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2); | 
 | typedef int (*FindTransformationFunc)(int points, double *points1, | 
 |                                       double *points2, double *params); | 
 | typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points, | 
 |                                         double *proj, int n, int stride_points, | 
 |                                         int stride_proj); | 
 |  | 
 | static void project_points_double_translation(double *mat, double *points, | 
 |                                               double *proj, int n, | 
 |                                               int stride_points, | 
 |                                               int stride_proj) { | 
 |   int i; | 
 |   for (i = 0; i < n; ++i) { | 
 |     const double x = *(points++), y = *(points++); | 
 |     *(proj++) = x + mat[0]; | 
 |     *(proj++) = y + mat[1]; | 
 |     points += stride_points - 2; | 
 |     proj += stride_proj - 2; | 
 |   } | 
 | } | 
 |  | 
 | static void project_points_double_rotzoom(double *mat, double *points, | 
 |                                           double *proj, int n, | 
 |                                           int stride_points, int stride_proj) { | 
 |   int i; | 
 |   for (i = 0; i < n; ++i) { | 
 |     const double x = *(points++), y = *(points++); | 
 |     *(proj++) = mat[2] * x + mat[3] * y + mat[0]; | 
 |     *(proj++) = -mat[3] * x + mat[2] * y + mat[1]; | 
 |     points += stride_points - 2; | 
 |     proj += stride_proj - 2; | 
 |   } | 
 | } | 
 |  | 
 | static void project_points_double_affine(double *mat, double *points, | 
 |                                          double *proj, int n, int stride_points, | 
 |                                          int stride_proj) { | 
 |   int i; | 
 |   for (i = 0; i < n; ++i) { | 
 |     const double x = *(points++), y = *(points++); | 
 |     *(proj++) = mat[2] * x + mat[3] * y + mat[0]; | 
 |     *(proj++) = mat[4] * x + mat[5] * y + mat[1]; | 
 |     points += stride_points - 2; | 
 |     proj += stride_proj - 2; | 
 |   } | 
 | } | 
 |  | 
 | static void normalize_homography(double *pts, int n, double *T) { | 
 |   double *p = pts; | 
 |   double mean[2] = { 0, 0 }; | 
 |   double msqe = 0; | 
 |   double scale; | 
 |   int i; | 
 |  | 
 |   assert(n > 0); | 
 |   for (i = 0; i < n; ++i, p += 2) { | 
 |     mean[0] += p[0]; | 
 |     mean[1] += p[1]; | 
 |   } | 
 |   mean[0] /= n; | 
 |   mean[1] /= n; | 
 |   for (p = pts, i = 0; i < n; ++i, p += 2) { | 
 |     p[0] -= mean[0]; | 
 |     p[1] -= mean[1]; | 
 |     msqe += sqrt(p[0] * p[0] + p[1] * p[1]); | 
 |   } | 
 |   msqe /= n; | 
 |   scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe); | 
 |   T[0] = scale; | 
 |   T[1] = 0; | 
 |   T[2] = -scale * mean[0]; | 
 |   T[3] = 0; | 
 |   T[4] = scale; | 
 |   T[5] = -scale * mean[1]; | 
 |   T[6] = 0; | 
 |   T[7] = 0; | 
 |   T[8] = 1; | 
 |   for (p = pts, i = 0; i < n; ++i, p += 2) { | 
 |     p[0] *= scale; | 
 |     p[1] *= scale; | 
 |   } | 
 | } | 
 |  | 
 | static void invnormalize_mat(double *T, double *iT) { | 
 |   double is = 1.0 / T[0]; | 
 |   double m0 = -T[2] * is; | 
 |   double m1 = -T[5] * is; | 
 |   iT[0] = is; | 
 |   iT[1] = 0; | 
 |   iT[2] = m0; | 
 |   iT[3] = 0; | 
 |   iT[4] = is; | 
 |   iT[5] = m1; | 
 |   iT[6] = 0; | 
 |   iT[7] = 0; | 
 |   iT[8] = 1; | 
 | } | 
 |  | 
 | static void denormalize_homography(double *params, double *T1, double *T2) { | 
 |   double iT2[9]; | 
 |   double params2[9]; | 
 |   invnormalize_mat(T2, iT2); | 
 |   multiply_mat(params, T1, params2, 3, 3, 3); | 
 |   multiply_mat(iT2, params2, params, 3, 3, 3); | 
 | } | 
 |  | 
 | static void denormalize_affine_reorder(double *params, double *T1, double *T2) { | 
 |   double params_denorm[MAX_PARAMDIM]; | 
 |   params_denorm[0] = params[0]; | 
 |   params_denorm[1] = params[1]; | 
 |   params_denorm[2] = params[4]; | 
 |   params_denorm[3] = params[2]; | 
 |   params_denorm[4] = params[3]; | 
 |   params_denorm[5] = params[5]; | 
 |   params_denorm[6] = params_denorm[7] = 0; | 
 |   params_denorm[8] = 1; | 
 |   denormalize_homography(params_denorm, T1, T2); | 
 |   params[0] = params_denorm[2]; | 
 |   params[1] = params_denorm[5]; | 
 |   params[2] = params_denorm[0]; | 
 |   params[3] = params_denorm[1]; | 
 |   params[4] = params_denorm[3]; | 
 |   params[5] = params_denorm[4]; | 
 |   params[6] = params[7] = 0; | 
 | } | 
 |  | 
 | static void denormalize_rotzoom_reorder(double *params, double *T1, | 
 |                                         double *T2) { | 
 |   double params_denorm[MAX_PARAMDIM]; | 
 |   params_denorm[0] = params[0]; | 
 |   params_denorm[1] = params[1]; | 
 |   params_denorm[2] = params[2]; | 
 |   params_denorm[3] = -params[1]; | 
 |   params_denorm[4] = params[0]; | 
 |   params_denorm[5] = params[3]; | 
 |   params_denorm[6] = params_denorm[7] = 0; | 
 |   params_denorm[8] = 1; | 
 |   denormalize_homography(params_denorm, T1, T2); | 
 |   params[0] = params_denorm[2]; | 
 |   params[1] = params_denorm[5]; | 
 |   params[2] = params_denorm[0]; | 
 |   params[3] = params_denorm[1]; | 
 |   params[4] = -params[3]; | 
 |   params[5] = params[2]; | 
 |   params[6] = params[7] = 0; | 
 | } | 
 |  | 
 | static void denormalize_translation_reorder(double *params, double *T1, | 
 |                                             double *T2) { | 
 |   double params_denorm[MAX_PARAMDIM]; | 
 |   params_denorm[0] = 1; | 
 |   params_denorm[1] = 0; | 
 |   params_denorm[2] = params[0]; | 
 |   params_denorm[3] = 0; | 
 |   params_denorm[4] = 1; | 
 |   params_denorm[5] = params[1]; | 
 |   params_denorm[6] = params_denorm[7] = 0; | 
 |   params_denorm[8] = 1; | 
 |   denormalize_homography(params_denorm, T1, T2); | 
 |   params[0] = params_denorm[2]; | 
 |   params[1] = params_denorm[5]; | 
 |   params[2] = params[5] = 1; | 
 |   params[3] = params[4] = 0; | 
 |   params[6] = params[7] = 0; | 
 | } | 
 |  | 
 | static int find_translation(int np, double *pts1, double *pts2, double *mat) { | 
 |   int i; | 
 |   double sx, sy, dx, dy; | 
 |   double sumx, sumy; | 
 |  | 
 |   double T1[9], T2[9]; | 
 |   normalize_homography(pts1, np, T1); | 
 |   normalize_homography(pts2, np, T2); | 
 |  | 
 |   sumx = 0; | 
 |   sumy = 0; | 
 |   for (i = 0; i < np; ++i) { | 
 |     dx = *(pts2++); | 
 |     dy = *(pts2++); | 
 |     sx = *(pts1++); | 
 |     sy = *(pts1++); | 
 |  | 
 |     sumx += dx - sx; | 
 |     sumy += dy - sy; | 
 |   } | 
 |   mat[0] = sumx / np; | 
 |   mat[1] = sumy / np; | 
 |   denormalize_translation_reorder(mat, T1, T2); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) { | 
 |   const int np2 = np * 2; | 
 |   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20)); | 
 |   double *b = a + np2 * 4; | 
 |   double *temp = b + np2; | 
 |   int i; | 
 |   double sx, sy, dx, dy; | 
 |  | 
 |   double T1[9], T2[9]; | 
 |   normalize_homography(pts1, np, T1); | 
 |   normalize_homography(pts2, np, T2); | 
 |  | 
 |   for (i = 0; i < np; ++i) { | 
 |     dx = *(pts2++); | 
 |     dy = *(pts2++); | 
 |     sx = *(pts1++); | 
 |     sy = *(pts1++); | 
 |  | 
 |     a[i * 2 * 4 + 0] = sx; | 
 |     a[i * 2 * 4 + 1] = sy; | 
 |     a[i * 2 * 4 + 2] = 1; | 
 |     a[i * 2 * 4 + 3] = 0; | 
 |     a[(i * 2 + 1) * 4 + 0] = sy; | 
 |     a[(i * 2 + 1) * 4 + 1] = -sx; | 
 |     a[(i * 2 + 1) * 4 + 2] = 0; | 
 |     a[(i * 2 + 1) * 4 + 3] = 1; | 
 |  | 
 |     b[2 * i] = dx; | 
 |     b[2 * i + 1] = dy; | 
 |   } | 
 |   if (!least_squares(4, a, np2, 4, b, temp, mat)) { | 
 |     aom_free(a); | 
 |     return 1; | 
 |   } | 
 |   denormalize_rotzoom_reorder(mat, T1, T2); | 
 |   aom_free(a); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int find_affine(int np, double *pts1, double *pts2, double *mat) { | 
 |   assert(np > 0); | 
 |   const int np2 = np * 2; | 
 |   double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42)); | 
 |   if (a == NULL) return 1; | 
 |   double *b = a + np2 * 6; | 
 |   double *temp = b + np2; | 
 |   int i; | 
 |   double sx, sy, dx, dy; | 
 |  | 
 |   double T1[9], T2[9]; | 
 |   normalize_homography(pts1, np, T1); | 
 |   normalize_homography(pts2, np, T2); | 
 |  | 
 |   for (i = 0; i < np; ++i) { | 
 |     dx = *(pts2++); | 
 |     dy = *(pts2++); | 
 |     sx = *(pts1++); | 
 |     sy = *(pts1++); | 
 |  | 
 |     a[i * 2 * 6 + 0] = sx; | 
 |     a[i * 2 * 6 + 1] = sy; | 
 |     a[i * 2 * 6 + 2] = 0; | 
 |     a[i * 2 * 6 + 3] = 0; | 
 |     a[i * 2 * 6 + 4] = 1; | 
 |     a[i * 2 * 6 + 5] = 0; | 
 |     a[(i * 2 + 1) * 6 + 0] = 0; | 
 |     a[(i * 2 + 1) * 6 + 1] = 0; | 
 |     a[(i * 2 + 1) * 6 + 2] = sx; | 
 |     a[(i * 2 + 1) * 6 + 3] = sy; | 
 |     a[(i * 2 + 1) * 6 + 4] = 0; | 
 |     a[(i * 2 + 1) * 6 + 5] = 1; | 
 |  | 
 |     b[2 * i] = dx; | 
 |     b[2 * i + 1] = dy; | 
 |   } | 
 |   if (!least_squares(6, a, np2, 6, b, temp, mat)) { | 
 |     aom_free(a); | 
 |     return 1; | 
 |   } | 
 |   denormalize_affine_reorder(mat, T1, T2); | 
 |   aom_free(a); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int get_rand_indices(int npoints, int minpts, int *indices, | 
 |                             unsigned int *seed) { | 
 |   int i, j; | 
 |   int ptr = lcg_rand16(seed) % npoints; | 
 |   if (minpts > npoints) return 0; | 
 |   indices[0] = ptr; | 
 |   ptr = (ptr == npoints - 1 ? 0 : ptr + 1); | 
 |   i = 1; | 
 |   while (i < minpts) { | 
 |     int index = lcg_rand16(seed) % npoints; | 
 |     while (index) { | 
 |       ptr = (ptr == npoints - 1 ? 0 : ptr + 1); | 
 |       for (j = 0; j < i; ++j) { | 
 |         if (indices[j] == ptr) break; | 
 |       } | 
 |       if (j == i) index--; | 
 |     } | 
 |     indices[i++] = ptr; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | typedef struct { | 
 |   int num_inliers; | 
 |   double variance; | 
 |   int *inlier_indices; | 
 | } RANSAC_MOTION; | 
 |  | 
 | // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. | 
 | static int compare_motions(const void *arg_a, const void *arg_b) { | 
 |   const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; | 
 |   const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; | 
 |  | 
 |   if (motion_a->num_inliers > motion_b->num_inliers) return -1; | 
 |   if (motion_a->num_inliers < motion_b->num_inliers) return 1; | 
 |   if (motion_a->variance < motion_b->variance) return -1; | 
 |   if (motion_a->variance > motion_b->variance) return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int is_better_motion(const RANSAC_MOTION *motion_a, | 
 |                             const RANSAC_MOTION *motion_b) { | 
 |   return compare_motions(motion_a, motion_b) < 0; | 
 | } | 
 |  | 
 | static void copy_points_at_indices(double *dest, const double *src, | 
 |                                    const int *indices, int num_points) { | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     const int index = indices[i]; | 
 |     dest[i * 2] = src[index * 2]; | 
 |     dest[i * 2 + 1] = src[index * 2 + 1]; | 
 |   } | 
 | } | 
 |  | 
 | static const double kInfiniteVariance = 1e12; | 
 |  | 
 | static void clear_motion(RANSAC_MOTION *motion, int num_points) { | 
 |   motion->num_inliers = 0; | 
 |   motion->variance = kInfiniteVariance; | 
 |   memset(motion->inlier_indices, 0, | 
 |          sizeof(*motion->inlier_indices) * num_points); | 
 | } | 
 |  | 
 | static int ransac(const int *matched_points, int npoints, | 
 |                   int *num_inliers_by_motion, MotionModel *params_by_motion, | 
 |                   int num_desired_motions, int minpts, | 
 |                   IsDegenerateFunc is_degenerate, | 
 |                   FindTransformationFunc find_transformation, | 
 |                   ProjectPointsDoubleFunc projectpoints) { | 
 |   int trial_count = 0; | 
 |   int i = 0; | 
 |   int ret_val = 0; | 
 |  | 
 |   unsigned int seed = (unsigned int)npoints; | 
 |  | 
 |   int indices[MAX_MINPTS] = { 0 }; | 
 |  | 
 |   double *points1, *points2; | 
 |   double *corners1, *corners2; | 
 |   double *image1_coord; | 
 |  | 
 |   // Store information for the num_desired_motions best transformations found | 
 |   // and the worst motion among them, as well as the motion currently under | 
 |   // consideration. | 
 |   RANSAC_MOTION *motions, *worst_kept_motion = NULL; | 
 |   RANSAC_MOTION current_motion; | 
 |  | 
 |   // Store the parameters and the indices of the inlier points for the motion | 
 |   // currently under consideration. | 
 |   double params_this_motion[MAX_PARAMDIM]; | 
 |  | 
 |   double *cnp1, *cnp2; | 
 |  | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     num_inliers_by_motion[i] = 0; | 
 |   } | 
 |   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2); | 
 |   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2); | 
 |   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2); | 
 |   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2); | 
 |   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2); | 
 |  | 
 |   motions = | 
 |       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions); | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     motions[i].inlier_indices = | 
 |         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints); | 
 |     clear_motion(motions + i, npoints); | 
 |   } | 
 |   current_motion.inlier_indices = | 
 |       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints); | 
 |   clear_motion(¤t_motion, npoints); | 
 |  | 
 |   worst_kept_motion = motions; | 
 |  | 
 |   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions && | 
 |         current_motion.inlier_indices)) { | 
 |     ret_val = 1; | 
 |     goto finish_ransac; | 
 |   } | 
 |  | 
 |   cnp1 = corners1; | 
 |   cnp2 = corners2; | 
 |   for (i = 0; i < npoints; ++i) { | 
 |     *(cnp1++) = *(matched_points++); | 
 |     *(cnp1++) = *(matched_points++); | 
 |     *(cnp2++) = *(matched_points++); | 
 |     *(cnp2++) = *(matched_points++); | 
 |   } | 
 |  | 
 |   while (MIN_TRIALS > trial_count) { | 
 |     double sum_distance = 0.0; | 
 |     double sum_distance_squared = 0.0; | 
 |  | 
 |     clear_motion(¤t_motion, npoints); | 
 |  | 
 |     int degenerate = 1; | 
 |     int num_degenerate_iter = 0; | 
 |  | 
 |     while (degenerate) { | 
 |       num_degenerate_iter++; | 
 |       if (!get_rand_indices(npoints, minpts, indices, &seed)) { | 
 |         ret_val = 1; | 
 |         goto finish_ransac; | 
 |       } | 
 |  | 
 |       copy_points_at_indices(points1, corners1, indices, minpts); | 
 |       copy_points_at_indices(points2, corners2, indices, minpts); | 
 |  | 
 |       degenerate = is_degenerate(points1); | 
 |       if (num_degenerate_iter > MAX_DEGENERATE_ITER) { | 
 |         ret_val = 1; | 
 |         goto finish_ransac; | 
 |       } | 
 |     } | 
 |  | 
 |     if (find_transformation(minpts, points1, points2, params_this_motion)) { | 
 |       trial_count++; | 
 |       continue; | 
 |     } | 
 |  | 
 |     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2); | 
 |  | 
 |     for (i = 0; i < npoints; ++i) { | 
 |       double dx = image1_coord[i * 2] - corners2[i * 2]; | 
 |       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1]; | 
 |       double distance = sqrt(dx * dx + dy * dy); | 
 |  | 
 |       if (distance < INLIER_THRESHOLD) { | 
 |         current_motion.inlier_indices[current_motion.num_inliers++] = i; | 
 |         sum_distance += distance; | 
 |         sum_distance_squared += distance * distance; | 
 |       } | 
 |     } | 
 |  | 
 |     if (current_motion.num_inliers >= worst_kept_motion->num_inliers && | 
 |         current_motion.num_inliers > 1) { | 
 |       double mean_distance; | 
 |       mean_distance = sum_distance / ((double)current_motion.num_inliers); | 
 |       current_motion.variance = | 
 |           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) - | 
 |           mean_distance * mean_distance * ((double)current_motion.num_inliers) / | 
 |               ((double)current_motion.num_inliers - 1.0); | 
 |       if (is_better_motion(¤t_motion, worst_kept_motion)) { | 
 |         // This motion is better than the worst currently kept motion. Remember | 
 |         // the inlier points and variance. The parameters for each kept motion | 
 |         // will be recomputed later using only the inliers. | 
 |         worst_kept_motion->num_inliers = current_motion.num_inliers; | 
 |         worst_kept_motion->variance = current_motion.variance; | 
 |         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices, | 
 |                sizeof(*current_motion.inlier_indices) * npoints); | 
 |         assert(npoints > 0); | 
 |         // Determine the new worst kept motion and its num_inliers and variance. | 
 |         for (i = 0; i < num_desired_motions; ++i) { | 
 |           if (is_better_motion(worst_kept_motion, &motions[i])) { | 
 |             worst_kept_motion = &motions[i]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     trial_count++; | 
 |   } | 
 |  | 
 |   // Sort the motions, best first. | 
 |   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); | 
 |  | 
 |   // Recompute the motions using only the inliers. | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     if (motions[i].num_inliers >= minpts) { | 
 |       copy_points_at_indices(points1, corners1, motions[i].inlier_indices, | 
 |                              motions[i].num_inliers); | 
 |       copy_points_at_indices(points2, corners2, motions[i].inlier_indices, | 
 |                              motions[i].num_inliers); | 
 |  | 
 |       find_transformation(motions[i].num_inliers, points1, points2, | 
 |                           params_by_motion[i].params); | 
 |  | 
 |       params_by_motion[i].num_inliers = motions[i].num_inliers; | 
 |       memcpy(params_by_motion[i].inliers, motions[i].inlier_indices, | 
 |              sizeof(*motions[i].inlier_indices) * npoints); | 
 |       num_inliers_by_motion[i] = motions[i].num_inliers; | 
 |     } | 
 |   } | 
 |  | 
 | finish_ransac: | 
 |   aom_free(points1); | 
 |   aom_free(points2); | 
 |   aom_free(corners1); | 
 |   aom_free(corners2); | 
 |   aom_free(image1_coord); | 
 |   aom_free(current_motion.inlier_indices); | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     aom_free(motions[i].inlier_indices); | 
 |   } | 
 |   aom_free(motions); | 
 |  | 
 |   return ret_val; | 
 | } | 
 |  | 
 | static int ransac_double_prec(const double *matched_points, int npoints, | 
 |                               int *num_inliers_by_motion, | 
 |                               MotionModel *params_by_motion, | 
 |                               int num_desired_motions, int minpts, | 
 |                               IsDegenerateFunc is_degenerate, | 
 |                               FindTransformationFunc find_transformation, | 
 |                               ProjectPointsDoubleFunc projectpoints) { | 
 |   int trial_count = 0; | 
 |   int i = 0; | 
 |   int ret_val = 0; | 
 |  | 
 |   unsigned int seed = (unsigned int)npoints; | 
 |  | 
 |   int indices[MAX_MINPTS] = { 0 }; | 
 |  | 
 |   double *points1, *points2; | 
 |   double *corners1, *corners2; | 
 |   double *image1_coord; | 
 |  | 
 |   // Store information for the num_desired_motions best transformations found | 
 |   // and the worst motion among them, as well as the motion currently under | 
 |   // consideration. | 
 |   RANSAC_MOTION *motions, *worst_kept_motion = NULL; | 
 |   RANSAC_MOTION current_motion; | 
 |  | 
 |   // Store the parameters and the indices of the inlier points for the motion | 
 |   // currently under consideration. | 
 |   double params_this_motion[MAX_PARAMDIM]; | 
 |  | 
 |   double *cnp1, *cnp2; | 
 |  | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     num_inliers_by_motion[i] = 0; | 
 |   } | 
 |   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2); | 
 |   points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2); | 
 |   corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2); | 
 |   corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2); | 
 |   image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2); | 
 |  | 
 |   motions = | 
 |       (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions); | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     motions[i].inlier_indices = | 
 |         (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints); | 
 |     clear_motion(motions + i, npoints); | 
 |   } | 
 |   current_motion.inlier_indices = | 
 |       (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints); | 
 |   clear_motion(¤t_motion, npoints); | 
 |  | 
 |   worst_kept_motion = motions; | 
 |  | 
 |   if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions && | 
 |         current_motion.inlier_indices)) { | 
 |     ret_val = 1; | 
 |     goto finish_ransac; | 
 |   } | 
 |  | 
 |   cnp1 = corners1; | 
 |   cnp2 = corners2; | 
 |   for (i = 0; i < npoints; ++i) { | 
 |     *(cnp1++) = *(matched_points++); | 
 |     *(cnp1++) = *(matched_points++); | 
 |     *(cnp2++) = *(matched_points++); | 
 |     *(cnp2++) = *(matched_points++); | 
 |   } | 
 |  | 
 |   while (MIN_TRIALS > trial_count) { | 
 |     double sum_distance = 0.0; | 
 |     double sum_distance_squared = 0.0; | 
 |  | 
 |     clear_motion(¤t_motion, npoints); | 
 |  | 
 |     int degenerate = 1; | 
 |     int num_degenerate_iter = 0; | 
 |  | 
 |     while (degenerate) { | 
 |       num_degenerate_iter++; | 
 |       if (!get_rand_indices(npoints, minpts, indices, &seed)) { | 
 |         ret_val = 1; | 
 |         goto finish_ransac; | 
 |       } | 
 |  | 
 |       copy_points_at_indices(points1, corners1, indices, minpts); | 
 |       copy_points_at_indices(points2, corners2, indices, minpts); | 
 |  | 
 |       degenerate = is_degenerate(points1); | 
 |       if (num_degenerate_iter > MAX_DEGENERATE_ITER) { | 
 |         ret_val = 1; | 
 |         goto finish_ransac; | 
 |       } | 
 |     } | 
 |  | 
 |     if (find_transformation(minpts, points1, points2, params_this_motion)) { | 
 |       trial_count++; | 
 |       continue; | 
 |     } | 
 |  | 
 |     projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2); | 
 |  | 
 |     for (i = 0; i < npoints; ++i) { | 
 |       double dx = image1_coord[i * 2] - corners2[i * 2]; | 
 |       double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1]; | 
 |       double distance = sqrt(dx * dx + dy * dy); | 
 |  | 
 |       if (distance < INLIER_THRESHOLD) { | 
 |         current_motion.inlier_indices[current_motion.num_inliers++] = i; | 
 |         sum_distance += distance; | 
 |         sum_distance_squared += distance * distance; | 
 |       } | 
 |     } | 
 |  | 
 |     if (current_motion.num_inliers >= worst_kept_motion->num_inliers && | 
 |         current_motion.num_inliers > 1) { | 
 |       double mean_distance; | 
 |       mean_distance = sum_distance / ((double)current_motion.num_inliers); | 
 |       current_motion.variance = | 
 |           sum_distance_squared / ((double)current_motion.num_inliers - 1.0) - | 
 |           mean_distance * mean_distance * ((double)current_motion.num_inliers) / | 
 |               ((double)current_motion.num_inliers - 1.0); | 
 |       if (is_better_motion(¤t_motion, worst_kept_motion)) { | 
 |         // This motion is better than the worst currently kept motion. Remember | 
 |         // the inlier points and variance. The parameters for each kept motion | 
 |         // will be recomputed later using only the inliers. | 
 |         worst_kept_motion->num_inliers = current_motion.num_inliers; | 
 |         worst_kept_motion->variance = current_motion.variance; | 
 |         memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices, | 
 |                sizeof(*current_motion.inlier_indices) * npoints); | 
 |         assert(npoints > 0); | 
 |         // Determine the new worst kept motion and its num_inliers and variance. | 
 |         for (i = 0; i < num_desired_motions; ++i) { | 
 |           if (is_better_motion(worst_kept_motion, &motions[i])) { | 
 |             worst_kept_motion = &motions[i]; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     trial_count++; | 
 |   } | 
 |  | 
 |   // Sort the motions, best first. | 
 |   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); | 
 |  | 
 |   // Recompute the motions using only the inliers. | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     if (motions[i].num_inliers >= minpts) { | 
 |       copy_points_at_indices(points1, corners1, motions[i].inlier_indices, | 
 |                              motions[i].num_inliers); | 
 |       copy_points_at_indices(points2, corners2, motions[i].inlier_indices, | 
 |                              motions[i].num_inliers); | 
 |  | 
 |       find_transformation(motions[i].num_inliers, points1, points2, | 
 |                           params_by_motion[i].params); | 
 |       memcpy(params_by_motion[i].inliers, motions[i].inlier_indices, | 
 |              sizeof(*motions[i].inlier_indices) * npoints); | 
 |     } | 
 |     num_inliers_by_motion[i] = motions[i].num_inliers; | 
 |   } | 
 |  | 
 | finish_ransac: | 
 |   aom_free(points1); | 
 |   aom_free(points2); | 
 |   aom_free(corners1); | 
 |   aom_free(corners2); | 
 |   aom_free(image1_coord); | 
 |   aom_free(current_motion.inlier_indices); | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     aom_free(motions[i].inlier_indices); | 
 |   } | 
 |   aom_free(motions); | 
 |  | 
 |   return ret_val; | 
 | } | 
 |  | 
 | static int is_collinear3(double *p1, double *p2, double *p3) { | 
 |   static const double collinear_eps = 1e-3; | 
 |   const double v = | 
 |       (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]); | 
 |   return fabs(v) < collinear_eps; | 
 | } | 
 |  | 
 | static int is_degenerate_translation(double *p) { | 
 |   return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2; | 
 | } | 
 |  | 
 | static int is_degenerate_affine(double *p) { | 
 |   return is_collinear3(p, p + 2, p + 4); | 
 | } | 
 |  | 
 | static int ransac_translation(int *matched_points, int npoints, | 
 |                               int *num_inliers_by_motion, | 
 |                               MotionModel *params_by_motion, | 
 |                               int num_desired_motions) { | 
 |   return ransac(matched_points, npoints, num_inliers_by_motion, | 
 |                 params_by_motion, num_desired_motions, 3, | 
 |                 is_degenerate_translation, find_translation, | 
 |                 project_points_double_translation); | 
 | } | 
 |  | 
 | static int ransac_rotzoom(int *matched_points, int npoints, | 
 |                           int *num_inliers_by_motion, | 
 |                           MotionModel *params_by_motion, | 
 |                           int num_desired_motions) { | 
 |   return ransac(matched_points, npoints, num_inliers_by_motion, | 
 |                 params_by_motion, num_desired_motions, 3, is_degenerate_affine, | 
 |                 find_rotzoom, project_points_double_rotzoom); | 
 | } | 
 |  | 
 | static int ransac_affine(int *matched_points, int npoints, | 
 |                          int *num_inliers_by_motion, | 
 |                          MotionModel *params_by_motion, | 
 |                          int num_desired_motions) { | 
 |   return ransac(matched_points, npoints, num_inliers_by_motion, | 
 |                 params_by_motion, num_desired_motions, 3, is_degenerate_affine, | 
 |                 find_affine, project_points_double_affine); | 
 | } | 
 |  | 
 | RansacFunc av1_get_ransac_type(TransformationType type) { | 
 |   switch (type) { | 
 |     case AFFINE: return ransac_affine; | 
 |     case ROTZOOM: return ransac_rotzoom; | 
 |     case TRANSLATION: return ransac_translation; | 
 |     default: assert(0); return NULL; | 
 |   } | 
 | } | 
 |  | 
 | static int ransac_translation_double_prec(double *matched_points, int npoints, | 
 |                                           int *num_inliers_by_motion, | 
 |                                           MotionModel *params_by_motion, | 
 |                                           int num_desired_motions) { | 
 |   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion, | 
 |                             params_by_motion, num_desired_motions, 3, | 
 |                             is_degenerate_translation, find_translation, | 
 |                             project_points_double_translation); | 
 | } | 
 |  | 
 | static int ransac_rotzoom_double_prec(double *matched_points, int npoints, | 
 |                                       int *num_inliers_by_motion, | 
 |                                       MotionModel *params_by_motion, | 
 |                                       int num_desired_motions) { | 
 |   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion, | 
 |                             params_by_motion, num_desired_motions, 3, | 
 |                             is_degenerate_affine, find_rotzoom, | 
 |                             project_points_double_rotzoom); | 
 | } | 
 |  | 
 | static int ransac_affine_double_prec(double *matched_points, int npoints, | 
 |                                      int *num_inliers_by_motion, | 
 |                                      MotionModel *params_by_motion, | 
 |                                      int num_desired_motions) { | 
 |   return ransac_double_prec(matched_points, npoints, num_inliers_by_motion, | 
 |                             params_by_motion, num_desired_motions, 3, | 
 |                             is_degenerate_affine, find_affine, | 
 |                             project_points_double_affine); | 
 | } | 
 |  | 
 | RansacFuncDouble av1_get_ransac_double_prec_type(TransformationType type) { | 
 |   switch (type) { | 
 |     case AFFINE: return ransac_affine_double_prec; | 
 |     case ROTZOOM: return ransac_rotzoom_double_prec; | 
 |     case TRANSLATION: return ransac_translation_double_prec; | 
 |     default: assert(0); return NULL; | 
 |   } | 
 | } |